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Abstract 
Consider a simple undirected graph 𝐺 = (𝑉,  𝐸) with vertex set 𝑉 and edge set 𝐸. Let 𝐺 − 𝑢 be a subgraph 

induced by the vertex set 𝑉 − 𝑢. The distance 𝑑𝐺(𝑥, 𝑦) is defined as the length of the shortest path between 
vertices 𝑥  and 𝑦  in 𝐺 . The vertex 𝑢 ∈ 𝑉  is a hinge vertex if there are two vertices 𝑥, 𝑦 ∈ 𝑉 − 𝑢  such 
that 𝑑𝐺−𝑢(𝑥, 𝑦)  >  𝑑𝐺(𝑥, 𝑦). Let 𝑈 be a set consisting of all hinge vertices of 𝐺. The neighborhood of 𝑢, denoted 
by 𝑁(𝑢), is the set of all vertices adjacent to 𝑢. We define the detour degree of  𝑢 as 𝑑𝑒𝑡(𝑢) = max{ 𝑑𝐺−𝑢(𝑥, 𝑦) −

2 ∣ 𝑑𝐺−𝑢(𝑥, 𝑦) > 𝑑𝐺(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑁(𝑢)} for 𝑢 ∈ 𝑈. The detour hinge vertex problem aims to determine the hinge 
vertex 𝑢 that maximizes 𝑑𝑒𝑡(𝑢) in 𝐺. In this study, we proposed an efficient algorithm for solving the detour hinge 
vertex problem on circular-arc graphs that runs in 𝑂(𝑛2) time, where 𝑛 is the number of vertices in the graph. 

Keywords:  Circular-arc graphs, Design and analysis of algorithms, Detour hinge vertex problem, Intersection graphs 
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I. INTRODUCTION 
Consider a simple undirected graph 𝐺 = (𝑉,  𝐸) 

with vertex set 𝑉 and edge set 𝐸. In this study, 𝑛 is the 
number of vertices in the graph. Let 𝐺 − 𝑢  be a 
subgraph induced by the vertex set 𝑉 − 𝑢. The distance 
𝑑𝐺(𝑥, 𝑦) is defined as the length (that is, the number  
of edges) of the shortest path between vertices 𝑥 and 
𝑦 in 𝐺. Chang et al. [1] defined 𝑢 ∈ 𝑉 as a hinge vertex  
if there are two vertices 𝑥, 𝑦 ∈ 𝑉 − 𝑢  such that 
𝑑𝐺−𝑢(𝑥, 𝑦)  >  𝑑𝐺(𝑥, 𝑦). 

Finding all hinge vertices of a given graph is  
called the hinge vertex problem. This problem has 
applications regarding the improvement of the stability 
and robustness of communication network systems [2]. 
If a terminal in a network corresponding to a hinge 
vertex stalls, the number of hops between a pair of 
terminals will increase, resulting in the decreasing 
efficiency of the communication across the network. 
The set of hinge vertices in a graph can be used to 
identify critical nodes, which can be useful in 
constructing communication network systems with high 
stability. 

Let 𝑈 be a set consisting of all hinge vertices of 𝐺. 
The neighborhood of 𝑢, denoted by 𝑁(𝑢), is the set of 
all vertices adjacent to 𝑢. Honma et al. [3] defined the 
detour degree of 𝑢  as 𝑑𝑒𝑡(𝑢) = max{ 𝑑𝐺−𝑢(𝑥, 𝑦) 

−2 ∣ 𝑑𝐺−𝑢(𝑥, 𝑦) > 𝑑𝐺(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑁(𝑢)}  for 𝑢 ∈ 𝑈 . 
That is, 𝑑𝑒𝑡(𝑢) indicates the degree to which a path 
between 𝑥 and 𝑦 becomes longer upon removal of a 
hinge vertex 𝑢  from 𝐺 . The detour hinge vertex 
problem aims to determine the hinge vertex 𝑢  that 
maximizes 𝑑𝑒𝑡(𝑢)  in 𝐺 . Solving this problem can 
promote practical applications such as network 
stabilization at a limited cost [2]. 

An articulation vertex is a special case of a hinge 
vertex; its removal changes the finite distance between 
any pair of non-adjacent vertices 𝑥, 𝑦 to infinity. Every 
articulation vertex has a maximum detour degree. In 

this study, we assume that a circular-arc graph does 
not include any articulation vertices, that is, the graph 
is biconnected. 

Despite the existence of polynomial-time 
algorithms for these problems, there are many 
problems that are very computationally intensive for 
large graphs. So far, we have restricted graphs to a class 
of intersection graphs, and have researched and 
developed optimal or efficient algorithms for them.  

In this study, we proposed an efficient algorithm for 
solving the detour hinge vertex problem on circular-arc 
graphs. Circular-arc graphs are used to model problems 
in periodic resource allocation found in the field of 
operations research. They have applications in various 
fields such as genetic research, traffic control, computer 
compiler design, and statistics [4]. An 𝑂(𝑛 + 𝑚) time 
algorithm has been used to recognize a circular-arc 
graph [5]; these graphs have also been extensively 
discussed in existing literature [6]. Circular-arc graphs 
belong to the superclass of interval graphs, and have a 
wider range of practical applications. This study 
attempts to arrange an algorithm applicable to circular-
arc graphs without increasing the time complexity, 
based on the algorithm for the detour hinge vertex 
problem that has been developed for interval graphs. 
Therefore, this study is an interesting theme from the 
point of view of computational complexity theory in 
the field of graph theory, and is significant both in terms 
of practical applications and advances in 
computational theory. 

The remainder of this paper is organized as follows. 
In Section 2, we discuss previous research related to 
hinge vertex problems on intersection graphs. Section 
3 presents some definitions of circular-arc models and 
graphs and the notations used. Section 4 describes the 
lemmas useful for constructing the algorithm for solving 
the detour hinge vertex problem. Section 5 describes 
the steps and complexity of the proposed algorithm 
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used for solving this problem. Finally, Section 6 
concludes the paper. 

 
II. PREVIOUS WORKS 

Lemma 1, proposed by Chang et al. [1], characterizes 
the hinge vertices of a simple graph 𝐺. Using Lemma 1, 
the problem of finding all hinge vertices in a simple 
graph can be solved in 𝑂(𝑛3) time. 

Lemma 1([1]): For a simple graph 𝐺, vertex 𝑢 is a 
hinge vertex of 𝐺 if and only if there exist two non-
adjacent vertices 𝑥, 𝑦  such that 𝑢  is the only vertex 
adjacent to both 𝑥 and 𝑦 in 𝐺.  

Several studies on hinge vertices have been 
conducted in recent years. Ho et al. [7] presented an 
𝑂(𝑛)  time algorithm to find all hinge vertices in 
permutation graphs; some minor errors in their 
approach have been corrected [8]. Hsu et al. [9] 
presented an 𝑂(𝑛)  time algorithm for solving this 
problem on interval graphs. Honma and Masuyama [10] 
developed an 𝑂(𝑛)  time algorithm for solving it on 
circular-arc graphs. The class of trapezoid graphs 
contains both interval and permutation graphs. Bera et 
al. [11] developed an 𝑂(𝑛log 𝑛)  time algorithm for 
solving the problem on such graphs. Recently, Honma 
and Nakajima [12] presented an 𝑂(𝑛2) algorithm for 
solving it in circular trapezoid graphs, a superclass of 
trapezoid graphs. 

For the detour hinge vertex problem, Honma and 
Nakajima presented an 𝑂(𝑛2)  time algorithm for 
solving it in interval graphs [3] and permutation graphs 
[13]. Recently, they also constructed an 𝑂(𝑛2)  time 
algorithm for solving the probrem of finding the 
maximum influential hinge vertices in interval graphs 
[14].  

 
III. DEFINITIONS 

Here, we introduced the terms and notations used 
in the paper. 

A. Circular-arc Model and Graph 
First, we shall define the circular-arc model before 

defining the circular-arc graph. Consider a unit circle 𝐶 
and a family 𝐴  of 𝑛  arcs 𝐴1, 𝐴2, … , 𝐴𝑛  along the 
circumference of 𝐶 . Each arc 𝐴𝑖  has two endpoints, 
namely the left endpoint 𝑎𝑖 and right endpoint 𝑏𝑖, and 
𝐴𝑖 = [𝑎𝑖 , 𝑏𝑖]. The left endpoint 𝑎𝑖 (resp., right endpoint 
𝑏𝑖 ) is the last point of 𝐴𝑖  that is encountered when 
walking counterclockwise along 𝐴𝑖  (resp., clockwise). 
Without loss of generality, the coordinates of all the 
left and right endpoints are distinct and are assigned 
clockwise positions with consecutive integer values 
1, 2, … , 2𝑛. The arc numbers 𝑖, 𝑗 are assigned to each 
arc in the increasing order of the right endpoints 𝑏𝑖’s, 
i.e., 𝐴𝑖 < 𝐴𝑗 if 𝑏𝑖 < 𝑏𝑗 . Note that an arc 𝐴𝑖 with  𝑎𝑖 > 𝑏𝑖 
is called a feedback arc. All these geometric 
representations comprise the definition of a circular-arc 
model. Figure 1(a) illustrates a circular-arc model 𝑀, 
which consists of 12 arcs (𝐴1 and 𝐴2 are feedback arcs). 
Table 1 lists the details of 𝑀. 

This model is considered proper if any two arcs do 
not cover the entire circumference 𝐶 . In this study, 
since we only considered proper circular-arc models 
and graphs, the word “proper” shall be omitted 
henceforth. 

A graph 𝑮 = (𝑽,  𝑬) is called a circular-arc graph if 
there exists a family of arcs 𝑨 = {𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏} such 
that there is a one-to-one correspondence between 
vertex 𝒊 ∈ 𝑽  and the arc 𝑨𝒊 ∈ 𝑨  such that an edge 
(𝒊, 𝒋) ∈ 𝑬  if and only if 𝑨𝒊  intersects with 𝑨𝒋  in 𝑴 . 
Figure 1(b) illustrates the circular-arc graph 𝑮 
corresponding to 𝑴 shown in Fig. 1(a). In this example, 
the hinge vertices of 𝑮 are vertices 𝒗𝟏, 𝒗𝟐, 𝒗𝟓, and 𝒗𝟏𝟏. 
The detour degree of each hinge vertex is 𝒅𝒆𝒕(𝒗𝟏) =

𝒅𝒆𝒕(𝒗𝟐) = 𝟐, 𝒅𝒆𝒕(𝒗𝟏𝟏) = 𝟏, and 𝒅𝒆𝒕(𝒗𝟓) = 𝟑. If hinge 
vertex 𝒗𝟓  is removed from 𝑮, the distance between 
vertices 𝒗𝟑  and 𝒗𝟕  lengthens from 2 to 5. Thus, the 
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detour degree of vertex 𝒗𝟓 is 𝒅𝒆𝒕(𝒗𝟓) = 𝟑; vertex 𝒗𝟓 is 
the maximum detour hinge vertex in 𝑮. 
 

 
 

Figure 1: Circular-arc Model and Graph 
 

Table 1: Details of Circular-arc Model M 

 
 

B. Extended Circular-arc Model 
Next, we shall introduce an extended circular-arc 

model (𝐸𝑀 ) constructed from 𝑀 . First,  𝑀 is cut at 
points between 1 and 2𝑛. Then, it is unrolled onto the 
real horizontal line. Each arc 𝐴𝑖 = [𝑎𝑖 , 𝑏𝑖] in 𝑀 is also 

changed to interval 𝐼𝑖 . Hereafter, for clarity, the arcs in 
𝑀 and 𝐸𝑀 are denoted as 𝐴𝑖 and 𝐼𝑖 , respectively. For 
each 𝐼𝑖 , 1 ≤ 𝑖 ≤ 𝑛, copies 𝐼𝑖+𝑛 and 𝐼𝑖−𝑛 are created by 
shifting 2𝑛  to the right and left, respectively. This 
process can be executed in 𝑂(𝑛) time [10]. Figure 2 
illustrates the 𝐸𝑀 constructed from 𝑀 shown in Fig. 1. 
For simplicity, we use “arc,” “interval,” and “vertex” 
are used interchangeably if no confusion arises. 

The neighborhood of vertex 𝑖 is the set of all the 
vertices adjacent to 𝑖 , and it is denoted by 𝑁(𝑖) . 
Moreover, a neighbourhood in which 𝑖 itself is included, 
called the closed neighbourhood and denoted by 𝑁[𝑖]. 
For an interval 𝐼𝑖 , 1 ≤ 𝑖 ≤ 𝑛, in 𝐸𝑀, we define 𝑙𝑎(𝑖) =

𝑘 , where 𝑎𝑘 = min{  𝑎𝑗 ∣ 𝑗 ∈ 𝑁[𝑖]}  and 𝑟𝑏(𝑖) = 𝑘 , 
where 𝑏𝑘 = max{  𝑏𝑗 ∣ 𝑗 ∈ 𝑁[𝑖]}. Table 2 lists the details 
of 𝐸𝑀 illustrated in Fig. 2. 

 
C. Shortest Circular Circuit 

The shortest circular circuit (𝑆𝐶𝐶) is a set of the 
smallest number of arcs covering the entire 
circumference 𝐶 in 𝑀. In Fig. 1, the sample of 𝑆𝐶𝐶 is 
⟨𝐴1, 𝐴2, 𝐴5, 𝐴7, 𝐴11, 𝐴1⟩. 

Let 𝑈 be a set that consists of all hinge vertices of 
the circular-arc graph 𝐺. Set 𝑈 is classified into 𝑈1 and 
𝑈2 according to the following conditions: 𝑈1 = {𝑢 ∣ 𝑢 ∈

𝑆𝐶𝐶, 𝑢 ∈ 𝑈}  and 𝑈2 = {𝑢 ∣ 𝑢 ∉ 𝑆𝐶𝐶, 𝑢 ∈ 𝑈} . Regarding 
the example shown in Fig. 2, 𝑆𝐶𝐶  is 
⟨𝑣1, 𝑣2, 𝑣5, 𝑣7, 𝑣11, 𝑣1⟩  and a hinge vertex set 𝑈 =

{𝑣1, 𝑣2, 𝑣5, 𝑣11}; 𝑈1 = {𝑣1, 𝑣2, 𝑣5, 𝑣11}; and 𝑈2 =  ∅. 

 

 
 

Figure 2: Extended Circular-arc Model EM 
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Table 2: Details of arrays N(i), la(i), and rb(i) 

 
 

IV. PROPERTIES OF HINGE VERTICES OF  
CIRCULAR-ARC GRAPH 

We have described some lemmas that are useful for 
constructing the algorithm for solving the detour hinge 
vertex problem on a circular-arc graph 𝐺. 

Lemma 2([10]): Let 𝑀 be a circular-arc model and 
𝐺 = (𝑉,  𝐸)  be a circular-arc graph with 𝑢, 𝑥, 𝑦 (𝑥 <

𝑦) ∈ 𝑉  corresponding to 𝑀 . Let 𝐸𝑀 be an extended 
circular-arc model constructed from 𝑀. A vertex 𝑢 is a 
hinge vertex for 𝑥 and 𝑦 of 𝐺 if and only if at least one 
of the following conditions holds in 𝐸𝑀.  
1. 𝐼𝑥 does not intersect 𝐼𝑦 , 𝐼𝑟𝑏(𝑥) does not intersect 𝐼𝑦 , 

and 𝐼𝑢 is the only interval intersecting both 𝐼𝑥 and 
𝐼𝑦 . 

2. 𝐼𝑦 does not intersect 𝐼𝑥+𝑛, 𝐼𝑟𝑏(𝑦) does not intersect 
𝐼𝑥+𝑛, and 𝐼𝑢 is the only interval intersecting both 𝐼𝑦 
and 𝐼𝑥+𝑛. 
Lemma 2 was proposed by Honma et al. [10]. Using 

this lemma, all the hinge vertices in a circular-arc graph 
can be obtained in 𝑂(𝑛) time. 

Lemma 3: Let 𝑆𝐶𝐶 be the shortest circular circuit 
of a circular-arc graph 𝐺 . Then, any vertex in 𝐺  is 
adjacent to at most three vertices in 𝑆𝐶𝐶. 
(Proof) Consider the shortest circular circuit 𝑆𝐶𝐶 =

⟨𝑣1, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑙 , 𝑣1⟩ of length 𝑙.  
Suppose that vertex 𝑣′ , which is not included in 

𝑆𝐶𝐶 , is adjacent to four vertices 𝑣1, 𝑣2, 𝑣3 , and 𝑣4  in 
𝑆𝐶𝐶 . Here, there are cycles ⟨𝑣′ , 𝑣4, … , 𝑣𝑙 , 𝑣1, 𝑣′⟩  of 
length 𝑙 − 1 (Fig. 3). This contradicts the assumption 
that 𝑆𝐶𝐶 is the shortest circular cycle. 

 
 

Figure 3: Illustration of Lemma 3. 
 

Lemma 4: Let 𝑆𝐶𝐶 be the shortest circular circuit of 
a circular-arc graph 𝐺. If vertex 𝑢 is a hinge vertex of 𝐺, 
and it is not in 𝑆𝐶𝐶, then the detour degree of 𝑢 is 1. 
In other word, 𝑑𝑒𝑡(𝑢) = 1 for 𝑢 ∉ 𝑈2. 

(Proof) Since vertex 𝑢  is a hinge vertex of 𝐺 , 
according to Lemma 2, there exist intervals 𝐼𝑥 , 𝐼𝑦 , and 
𝐼𝑢  in 𝐸𝑀 such that 𝐼𝑥  does not intersect 𝐼𝑦 , and 𝐼𝑢  is 
the only interval intersecting both 𝐼𝑥 and 𝐼𝑦 (Fig. 4). For 
simplicity, we assume that 𝑥 = 𝑙𝑎(𝑢)  and 𝑦 = 𝑟𝑏(𝑢) . 
Based on this assumption, since 𝑢 is not in 𝑆𝐶𝐶, there 
is a need for two intervals 𝑣1 and 𝑣2 that intersect each 
other (𝑣1  covers 𝑥  and 𝑢 , 𝑣2  covers 𝑦 and 𝑢 ). In this 
case, the shortest path between 𝑣𝑥 and 𝑣𝑦 in a graph 
𝐺 − 𝑢  is ⟨𝑣𝑥 , 𝑣1, 𝑣2, 𝑣𝑦 , 𝑣𝑥⟩ . Then,  𝑑𝐺−𝑢(𝑣𝑥 , 𝑣𝑦) = 3 ; 
𝑑𝑒𝑡(𝑢) = 1.  

 

 
 

Figure 4: Illustration of Lemma 4 
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Hsu et al. [9] presented Lemma 5. By using this 
lemma, the shortest length between two vertices in a 
circular-arc graph 𝐺 can be obtained in 𝑂(𝑛) time. 

Lemma 5([9]): Let 𝑀 be a circular-arc model and 𝐺 
be a circular-arc graph corresponding to 𝑀 . Any 
shortest length query between two vertices in 𝐺 can 
be answered in 𝑂(1) time (it requires a preprocessing 
that runs in 𝑂(𝑛) time using 𝑂(𝑛) space data structure). 
 

V. ALGORITHM AND ANALYSIS 
In this section, we present the algorithm for solving 

the detour hinge vertex problem on a circular-arc graph; 
an outline of this algorithm is provided below. 

First, we obtained a hinge vertex set 𝑈 by applying 
the algorithm introduced by Honma et al. [10]. Next, 
we compute the shortest circular circuit 𝑆𝐶𝐶 of 𝐺 and 
construct 𝑈1 = {𝑢 ∣ 𝑢 ∈ 𝑆𝐶𝐶, 𝑢 ∈ 𝑈} and 𝑈2 = {𝑢 ∣ 𝑢 ∉

𝑆𝐶𝐶, 𝑢 ∈ 𝑈}. From Lemma 4，𝑑𝑒𝑡(𝑢) = 1 for 𝑢 ∉ 𝑈2. 
We obtained 𝑑𝑒𝑡(𝑢)  for 𝑢 ∈ 𝑈1  by computing 
𝑑𝐺−𝑢(𝑥, 𝑦) − 2 for all pairs 𝑥, 𝑦 ∈ 𝑁(𝑢) adjacent to 𝑢. 
Finally, we obtained 𝑢 as the maximum detour hinge 
vertex such that 𝑑𝑒𝑡(𝑢) has maximum value for 𝑢 ∈ 𝑈. 

 
We described the MDHV algorithm and the analysis 

of the complexity in each step. The inputs to the MDHV 
algorithm are the left and right endpoints of the 

circular-arc model 𝑀; the output is a vertex number 
with the maximum detour degree. 

Step 1 is the preprocessing step. 𝐸𝑀 is constructed 
from input 𝑀, and all the hinge vertices of the circular-
arc graph 𝐺 are obtained using the algorithm proposed 
by Honma et al. [10]. Next, 𝑆𝐶𝐶 of 𝐺 is computed, and 
the hinge vertex sets 𝑈1  and 𝑈2  are constructed. All 
these processes can be executed in 𝑂(𝑛) time. 

In Step 2, 𝑑𝑒𝑡(𝑢)  is obtained for 𝑢 ∈ 𝑈2 . From 

Lemma 4，𝑑𝑒𝑡(𝑢) = 1 for 𝑢 ∈ 𝑈2 . This step can be 
completed in 𝑂(𝑛) time. 

In Step 3, 𝑚𝑎𝑥{ 𝑑𝐺−𝑢(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑁(𝑢)}  is 
computed for 𝑢 ∈ 𝑈1  to obtain the detour degree 
𝑑𝑒𝑡(𝑢) . According to Lemma 3, any vertex in 𝐺  is 
adjacent to at most three vertices in 𝑆𝐶𝐶. This implies 
that the sum of the degrees of 𝑣𝑖 ∈ 𝑆𝐶𝐶 needs to be 
less than 3𝑛 , i.e., ∑ 𝜌(𝑣𝑖)𝑖∈𝑆𝐶𝐶 ≤ 3𝑛 , where 𝜌(𝑣) 
denotes the degree of vertex 𝑣. Therefore,  𝑂(𝑛2) time 
is required to compute 𝑚𝑎𝑥{ 𝑑𝐺−𝑢(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑁(𝑢)}. 

Step 4 can be run in 𝑂(𝑛) time. Based on these 
steps, we introduced the following theorem: 

Theorem 1: Let 𝐺  be a circular-arc graph 
corresponding to a circular-arc model 𝑀. The proposed 
algorithm solves the detour hinge vertex problem on 𝐺 
in 𝑂(𝑛2) time when the input is a set of arcs of 𝑀 
where the arcs are sorted with respect to the right 
endpoints. 

In the following, we discuss the efficiency and 
contribution of the MDHV algorithm developed in this 
study. 

The MDHV algorithm first computes all hinge 
vertices of a given circular-arc graph. for a given circular-
arc graph. This process can execute in 𝑂(𝑛3) time using 
the properties of Lemma 1 in a naive way, but can 
complete in 𝑂(𝑛) time by applying our algorithm [10]. 
Next, we compute the detour degree for each hinge 
vertex extracted, which requires 𝑂(𝑛3)  time in the 
naive method. 
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We focused on shortest circular circuits included in 
circular-arc graphs and showed their useful features in 
Lemmas 2 and 3. The MDHV algorithm efficiently 
derives the detour degree of each hinge vertex in 
𝑂(𝑛2)  time by applying Lemma 2 and 3, and the 
shortest path algorithm on the circular-arc graph [9]. 

 
VI. CONCLUSION 

In this study, we proposed an MDHV algorithm for 
solving the detour hinge vertex problem on a circular-
arc graph in 𝑂(𝑛2)  time. The algorithm uses the 
algorithm proposed by Honma et al. to find the hinge 
vertices and that proposed by Hsu et al. to determine 
the shortest path across a circular-arc graph. We have 
also developed an algorithm [3] that solves the same 
problem in 𝑂(𝑛2) time for interval graphs, which are 
subclasses of circular-arc graphs. We showed that it can 
be realized for circular-arc graphs of a class larger than 
interval graphs without increasing the time complexity. 
For this reason, we think this study is also worthy. In 
future studies, we shall consider reducing the 
complexity of the algorithm and extending the results 
to other graphs. 
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