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Abstract

Consider a simple undirected graph G = (V, E) with vertex setV and edge setE. Let G —u be a subgraph
induced by the vertex set V —u. The distance dg;(x,y) is defined as the length of the shortest path between
vertices x and y in G. The vertex u €V is a hinge vertex if there are two vertices x,y €V —u such
thatdg_,(x,y) > dg(x,y). Let U be a set consisting of all hinge vertices of G. The neighborhood of u, denoted
by N(w), is the set of all vertices adjacent to u. We define the detour degree of u as det(u) = max{d;_,(x,y) —
21dg_y(x,y) >dg(x,y),x,y € Nw)}foru € U. The detour hinge vertex problem aims to determine the hinge
vertex u that maximizes det(u) in G. In this study, we proposed an efficient algorithm for solving the detour hinge

vertex problem on circular-arc graphs that runs in 0(n?) time, where n is the number of vertices in the graph.
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[. INTRODUCTION

Consider a simple undirected graph G = (V, E)
with vertex set V and edge set E. In this study, n is the
number of vertices in the graph. Let G —u be a
subgraph induced by the vertex set V — u. The distance
dg(x,y) is defined as the length (that is, the number
of edges) of the shortest path between vertices x and
vy in G. Chang et al. [1] defined u € V as a hinge vertex
if there are two vertices x,y €V —u such that
de—u(x,y) > dg(x,y).

Finding all hinge vertices of a given graph is
called the hinge vertex problem. This problem has
applications regarding the improvement of the stability
and robustness of commmunication network systems [2].
If a terminal in a network corresponding to a hinge
vertex stalls, the number of hops between a pair of
terminals will increase, resulting in the decreasing
efficiency of the communication across the network.
The set of hinge vertices in a graph can be used to
identify critical nodes, which can be useful in
constructing communication network systems with high
stability.

Let U be a set consisting of all hinge vertices of G.
The neighborhood of u, denoted by N(u), is the set of
all vertices adjacent to u. Honma et al. [3] defined the
detour degree of u as det(u) = max{d;_,(x,y)
=2 ldg_y(x,y) >de(x,¥),x,y e Nw)} for u eU .
That is, det(u) indicates the degree to which a path
between x and y becomes longer upon removal of a
hinge vertex u from G . The detour hinge vertex
problem aims to determine the hinge vertex u that
maximizes det(u) in G . Solving this problem can
promote practical applications such as network
stabilization at a limited cost [2].

An articulation vertex is a special case of a hinge
vertex; its removal changes the finite distance between

any pair of non-adjacent vertices x,y to infinity. Every

articulation vertex has a maximum detour degree. In

this study, we assume that a circular-arc graph does
not include any articulation vertices, that is, the graph
is biconnected.

Despite the existence of polynomial-time
algorithms for these problems, there are many
problems that are very computationally intensive for
large graphs. So far, we have restricted graphs to a class
of intersection graphs, and have researched and
developed optimal or efficient algorithms for them.

In this study, we proposed an efficient algorithm for
solving the detour hinge vertex problem on circular-arc
graphs. Circular-arc graphs are used to model problems
in periodic resource allocation found in the field of
operations research. They have applications in various
fields such as genetic research, traffic control, computer
compiler design, and statistics [4]. An O(n + m) time
algorithm has been used to recognize a circular-arc
graph [5]; these graphs have also been extensively
discussed in existing literature [6]. Circular-arc graphs
belong to the superclass of interval graphs, and have a
wider range of practical applications. This study
attempts to arrange an algorithm applicable to circular-
arc graphs without increasing the time complexity,
based on the algorithm for the detour hinge vertex
problem that has been developed for interval graphs.
Therefore, this study is an interesting theme from the
point of view of computational complexity theory in
the field of graph theory, and is significant both in terms
of practical  applications and advances in
computational theory.

The remainder of this paper is organized as follows.
In Section 2, we discuss previous research related to
hinge vertex problems on intersection graphs. Section
3 presents some definitions of circular-arc models and
graphs and the notations used. Section 4 describes the
lemmas useful for constructing the algorithm for solving

the detour hinge vertex problem. Section 5 describes

the steps and complexity of the proposed algorithm



used for solving this problem. Finally, Section 6

concludes the paper.

IIl. PREVIOUS WORKS

Lemma 1, proposed by Chang et al. [1], characterizes
the hinge vertices of a simple graph G. Using Lemma 1,
the problem of finding all hinge vertices in a simple
graph can be solved in 0(n?) time.

Lemma 1([1]): For a simple graph G, vertex u is a
hinge vertex of G if and only if there exist two non-
adjacent vertices x,y such that u is the only vertex
adjacent to both x and y in G.

Several studies on hinge vertices have been
conducted in recent years. Ho et al. [7] presented an
0(n) time algorithm to find all hinge vertices in
some minor in  their

permutation graphs; errors

approach have been corrected [8]. Hsu et al. [9]
presented an O(n) time algorithm for solving this
problem on interval graphs. Honma and Masuyama [10]
developed an 0(n) time algorithm for solving it on
circular-arc graphs. The class of trapezoid g¢raphs
contains both interval and permutation graphs. Bera et
al. [11] developed an O(nlogn) time algorithm for
solving the problem on such graphs. Recently, Honma
and Nakajima [12] presented an 0(n?) algorithm for
solving it in circular trapezoid graphs, a superclass of
trapezoid graphs.

For the detour hinge vertex problem, Honma and
Nakajima presented an 0(n?) time algorithm for
solving it in interval graphs [3] and permutation graphs
[13]. Recently, they also constructed an 0(n?) time
algorithm for solving the probrem of finding the
maximum influential hinge vertices in interval graphs

[14].

[Il. DEFINITIONS
Here, we introduced the terms and notations used

in the paper.
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A. Circular-arc Model and Graph

First, we shall define the circular-arc model before
defining the circular-arc graph. Consider a unit circle C
and a family A of n arcs Ay, A4y, ..., 4, along the
circumference of C. Each arc 4; has two endpoints,
namely the left endpoint a; and right endpoint b;, and
A; = [a;, b;]. The left endpoint a; (resp., right endpoint
b;) is the last point of 4; that is encountered when
walking counterclockwise along A4; (resp., clockwise).
Without loss of generality, the coordinates of all the
left and right endpoints are distinct and are assigned
clockwise positions with consecutive integer values
1,2,...,2n. The arc numbers i,j are assigned to each
arc in the increasing order of the right endpoints b;’s,
i.e., A; < A;if b; < b;. Note that an arc 4; with a; > b;
is called a feedback arc. AWl these geometric
representations comprise the definition of a circular-arc
model. Figure 1(a) illustrates a circular-arc model M,
which consists of 12 arcs (A; and A, are feedback arcs).
Table 1 lists the details of M.

This model is considered proper if any two arcs do
not cover the entire circumference C. In this study,
since we only considered proper circular-arc models
and graphs, the word “proper” shall be omitted
henceforth.

A graph 6 = (V, E) is called a circular-arc graph if
there exists a family of arcs 4 = {44, 45, ..., A,} such
that there is a one-to-one correspondence between
vertex i €V and the arc A; € 4 such that an edge
(i,j) EE if and only if A4; intersects with A; in M.
Figure 1(b) illustrates the circular-arc graph G
corresponding to M shown in Fig. 1(a). In this example,
the hinge vertices of G are vertices vy, v,, V5, and vq;.
The detour degree of each hinge vertex is det(v,) =
det(v,) = 2, det(vy1) = 1, and det(vs) = 3. If hinge
vertex vg is removed from G, the distance between

vertices v3 and v, lengthens from 2 to 5. Thus, the
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detour degree of vertex vy is det(vg) = 3; vertex vg is

the maximum detour hinge vertex in G.

(a) Circular-arc model M.

12 1 2 4
Q
C 1 f%
10 5 3
9 8 7

(b) Circular-arc graph G.

Figure 1: Circular-arc Model and Graph

Table 1: Details of Circular-arc Model M

i 1 2 3 4 5 6 i/ 8 9 10 11 12
ap | 20 24 5§ 2 3 8 9 12, 15 16 11 19
bi 1 4 6 7 100 713 14 17 18 21 22 23

B. Extended Circular-arc Model

Next, we shall introduce an extended circular-arc
model (EM) constructed from M. First, M is cut at
points between 1 and 2n. Then, it is unrolled onto the

real horizontal line. Each arc 4; = [a;, b;] in M is also

changed to interval I;. Hereafter, for clarity, the arcs in
M and EM are denoted as 4; and [;, respectively. For
each I;, 1 <i < n,copies I;;, and [;_, are created by
shifting 2n to the right and left, respectively. This
process can be executed in 0(n) time [10]. Figure 2
illustrates the EM constructed from M shown in Fig. 1.

» s

For simplicity, we use “arc,” “interval,” and “vertex”
are used interchangeably if no confusion arises.

The neighborhood of vertex i is the set of all the
vertices adjacent to i, and it is denoted by N(i).
Moreover, a neighbourhood in which i itself is included,
called the closed neighbourhood and denoted by NJi].
For aninterval I;, 1 £ i < n, in EM, we define [,(i) =
k , where a, =min{ a; |j € N[i]} and n,(0)) =k,
where b, = max{ b; | j € N[i]}. Table 2 lists the details
of EM illustrated in Fig. 2.

C. Shortest Circular Circuit

The shortest circular circuit (SCC) is a set of the
smallest number of arcs covering the entire
circumference € in M. In Fig. 1, the sample of SCC is
(AI'AZJASIA%All'Al)-

Let U be a set that consists of all hinge vertices of
the circular-arc graph G. Set U is classified into U; and
U, according to the following conditions: U; = {u | u €
SCC,ue U} and U, ={ulu &SCC,u € U}. Regarding
the example shown in Fig. 2, SCC is
(vq,V3,Vs,V7,V11,71) and a hinge vertex set U =

{v1, 2,5, V11}; Uy = {01, 02, V5,11 }; and U, = 0.

Figure 2: Extended Circular-arc Model EM



Journal of Engineering and Digital Technology (JEDT)
Vol.11 No.1 January - June 2023

Table 2: Details of arrays M), (i), and r,()

i 1 2 3 4 5 6 7 8 9 10 11 12
a; -4 0 5 2 3 8 9 12 15 16 11 19
b; 1 4 6 7 10 13 14 17 18 21 22 23
N(i) {2,10,11,12}  {1,4,5} {2,3.4,6,7} {5,6,8, 11} {1,6,7,8,9,10,11, 12}
la(i) A 1 2 2 5 5 6 11 11 6 1
rp(i) | --- 2 5 5 5 7 11 11 11 11 13 13 13

IV. PROPERTIES OF HINGE VERTICES OF
CIRCULAR-ARC GRAPH

We have described some lemmas that are useful for
constructing the algorithm for solving the detour hinge
vertex problem on a circular-arc graph G.

Lemma 2([10]): Let M be a circular-arc model and
G = (V, E) be a circular-arc graph with u,x,y (x <
y) € V corresponding to M. Let EM be an extended
circular-arc model constructed from M. A vertex u is a
hinge vertex for x and y of G if and only if at least one
of the following conditions holds in EM.

1. I, does not intersect I, I, () does not intersect I,
and I, is the only interval intersecting both I, and

I,
2. I, does not intersect Iy, I, () does not intersect

Iein, and I, is the only interval intersecting both I,

and Lyyp.

Lemma 2 was proposed by Honma et al. [10]. Using
this lemma, all the hinge vertices in a circular-arc graph
can be obtained in 0(n) time.

Lemma 3: Let SCC be the shortest circular circuit
of a circular-arc graph G. Then, any vertex in G is
adjacent to at most three vertices in SCC.

(Proof) Consider the shortest circular circuit SCC =
(vy,V,, V3,0, ..., v, V1) Of length L.

Suppose that vertex v', which is not included in
SCC, is adjacent to four vertices vy, v,, V3, and v, in
SCC . Here, there are cycles (v, vy, ..., v, vy, V") Of
length [ — 1 (Fig. 3). This contradicts the assumption
that SCC is the shortest circular cycle.

Figure 3: Illustration of Lemma 3.

Lemma 4: Let SCC be the shortest circular circuit of
a circular-arc graph G. If vertex u is a hinge vertex of G,
and it is not in SCC, then the detour degree of u is 1.
In other word, det(u) = 1 for u ¢ U,.

(Proof) Since vertex u is a hinge vertex of G,
according to Lemma 2, there exist intervals Iy, I,,, and
I, in EM such that I, does not intersect I, and I, is
the only interval intersecting both I, and I, (Fig. 4). For
simplicity, we assume that x = 1,(uw) and y = r,(w).
Based on this assumption, since u is not in SCC, there
is a need for two intervals v; and v, that intersect each
other (v; covers x and u, v, covers y and u). In this
case, the shortest path between v, and v, in a graph
G—uis (vx,vl,vz,vy, vx). Then, dG_u(vx, vy) =3;

det(u) = 1.

Vi Vs

Figure 4: Illustration of Lemma 4
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Hsu et al. [9] presented Lemma 5. By using this
lemma, the shortest length between two vertices in a
circular-arc graph G can be obtained in 0(n) time.

Lemma 5([9]): Let M be a circular-arc model and G
be a circular-arc graph corresponding to M. Any
shortest length query between two vertices in G can
be answered in 0(1) time (it requires a preprocessing

that runs in 0(n) time using 0(n) space data structure).

V. ALGORITHM AND ANALYSIS
In this section, we present the algorithm for solving
the detour hinge vertex problem on a circular-arc graph;
an outline of this algorithm is provided below.
First, we obtained a hinge vertex set U by applying
the algorithm introduced by Honma et al. [10]. Next,
we compute the shortest circular circuit SCC of G and

construct Uy ={ulueSCC,uelU}and U, ={ulu¢

SCC,u € U}. From Lemma 4, det(u) = 1foru ¢ U,.

We obtained det(u) for ue€U; by computing
de_y(x,y) — 2 for all pairs x,y € N(u) adjacent to u.
Finally, we obtained u as the maximum detour hinge

vertex such that det(u) has maximum value for u € U.

Algorithm 1: MDHYV algorithm
Input: Arcs A; = |a;, b;] of a circular-arc model M.
Output: Maximum detour hinge vertices of a circular-arc
graph G.

(Step 1) /* Preparation */

1: Construct an EM from M

2: Find the hinge vertex set U of G by applying Honma’s
algorithm [10]:

3: Find a shortest circular circuit (SSC) of G:

4: Divide all hinge vertex set U to U; and U»:

(Step 2) /* Obtain det(u) for u € U, */
for u € U; do

det(u) := 1;
end

(Step 3) /* Obtain det(u) for u € Uy */
for x,y € N(u), u € Uy do

det(u) = max{dg_,(x, y) - 2}:
end
(Step 4) /* Obtain maximum detour hinge vertex */
The maximum detour hinge vertex is k such that
d(k) = max{ d(u) |ue U}

We described the MDHV algorithm and the analysis
of the complexity in each step. The inputs to the MDHV
algorithm are the left and right endpoints of the

circular-arc model M; the output is a vertex number
with the maximum detour degree.

Step 1 is the preprocessing step. EM is constructed
from input M, and all the hinge vertices of the circular-
arc graph G are obtained using the algorithm proposed
by Honma et al. [10]. Next, SCC of G is computed, and
the hinge vertex sets U; and U, are constructed. All
these processes can be executed in 0(n) time.

In Step 2, det(u) is obtained for u € U,. From

Lemma 4, det(u) =1 foru € U,. This step can be
completed in 0(n) time.

In Step 3, max{dg;_,(x,y) | x,y € Nw)} is
computed for u € U; to obtain the detour degree
det(u). According to Lemma 3, any vertex in G is
adjacent to at most three vertices in SCC. This implies
that the sum of the degrees of v; € SCC needs to be
less than 3n, ie., Yiesccp(v;) <3n, where p(v)
denotes the degree of vertex v. Therefore, 0(n?) time
is required to compute max{d;_,(x,y) | x,y € N(w)}.

Step 4 can be run in 0(n) time. Based on these
steps, we introduced the following theorem:

Theorem 1. Let G be a circular-arc graph
corresponding to a circular-arc model M. The proposed
algorithm solves the detour hinge vertex problem on G
in 0(n?) time when the input is a set of arcs of M
where the arcs are sorted with respect to the right
endpoints.

In the following, we discuss the efficiency and
contribution of the MDHV algorithm developed in this
study.

The MDHV algorithm first computes all hinge
vertices of a given circular-arc graph. for a given circular-
arc graph. This process can execute in 0(n?) time using
the properties of Lemma 1 in a naive way, but can
complete in 0(n) time by applying our algorithm [10].
Next, we compute the detour degree for each hinge

vertex extracted, which requires 0(n®) time in the

naive method.



We focused on shortest circular circuits included in
circular-arc graphs and showed their useful features in
Lemmas 2 and 3. The MDHV algorithm efficiently
derives the detour degree of each hinge vertex in
0(n?) time by applying Lemma 2 and 3, and the

shortest path algorithm on the circular-arc graph [9].

VI. CONCLUSION

In this study, we proposed an MDHV algorithm for
solving the detour hinge vertex problem on a circular-
arc graph in 0(n?) time. The algorithm uses the
algorithm proposed by Honma et al. to find the hinge
vertices and that proposed by Hsu et al. to determine
the shortest path across a circular-arc graph. We have
also developed an algorithm [3] that solves the same
problem in 0(n?) time for interval graphs, which are
subclasses of circular-arc graphs. We showed that it can
be realized for circular-arc graphs of a class larger than
interval graphs without increasing the time complexity.
For this reason, we think this study is also worthy. In
future studies, we shall consider reducing the
complexity of the algorithm and extending the results

to other graphs.
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