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Abstract

This paper presents the sensitivity analysis using standardized regression coefficients (SRC) to enumerate an
important factor of each suspension parameter on the critical velocity of a bogie. Due to uncertain parameters,
the semi-global sensitivity analysis benefits both designers and maintenance engineers in controlling the risk levels
of the screened components. The bogie represents a two-axle railway truck of the State Railway of Thailand (SRT).
Six-degree-of-freedom motion equations describe its dynamic behaviors traveling on a tangent track. In a stochastic
model, the stiffness and damping coefficients of suspension components are considered random variables with
presumed Gaussian distribution. A probability distribution obtained, where the SRCs were derived, shows that the
speed strongly correlates with the longitudinal yaw stiffness value of the primary suspension system. The secondary
suspension system’s lateral and longitudinal yaw damping coefficients appear equally influential on the critical

speed.
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. INTRODUCTION

Recently, the railway industry has faced the challenges
of reducing manufacturing costs while maintaining
marginal engineering safety. Operators first provide
conceptual requirements to engineering teams to
design the vehicles with constructed infrastructures
expected to be in service for predefined service life
against relevant damage mechanisms. After the vehicle
is fabricated, it must pass safety requirements according
to applicable railway safety standards. However, critical
items deteriorate at different rates, and the defects that
occur further degrade operating performance. Monitoring
the key performance indicators can help maintenance
engineers identify the parts to be inspected and keep
the damage within a safe range. This defect-tolerance
design strategy partly leaves the safety issues to
maintenance departments to inspect based on time or
risk measurements. In either method, knowledge
management along the engineering design process on
the sensitive parts is inevitable. To ensure safe
operation, railway engineers must understand the rank
of the influential parameters of the railway vehicles on
the critical speed to set railway operating windows of
the vehicles. Overlooking the life-critical components
may lead to a severe accident that could cost human
lives.

A railway system’s safe and economic operation
depends on the railway vehicles’ running performance
in service. The acceptable conditions of the vehicles
are described in EN14363 [1] and UIC 518 [2]. One of
the safety issues is the safety against derailment as
quantified by a limiting ratio of the lateral to vertical
forces at a flange contact due to lateral oscillation
motion. The hunting motion, arising from non-
conservative forces, causes vehicle instability beyond a
critical velocity. The further the operation speed, the
more violent the oscillation and eventually causes

severe flange wear, wheel climbing, and derailment.
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Since stability is essential to the safe operation of
railway vehicles, the oscillation motion on tangent
tracks has been the subject of intense investigations
using four, six, or ten degrees of freedom models.
Wheelsets’ lateral displacement and yaw angle are the
state variables in 4-DOF systems [3]-[7]. When the
bogie’s lateral displacement and yaw angle are
considered, the 6-DOF models were investigated in
different aspects [8]-[13]. Up to 10 DOF systems
consider more on each wheelset’s vertical and roll
angle [14], [15]. The works relied on linearizing a system
of governing differential equations to study the bogie’s
dynamic behaviors traveling on a straight track. In
particular, the suspension parameters and wheel
conicity are two categories of parameters in consideration.
Wickens [6] showed that a model required at least 6-
DOF for realistic stability analysis. Flexibility between
the wheelset and the frame and wheel/rail profile
should be considered in the design of high-speed
railway vehicles. More flexible damped or stiffer
suspension is preferable [10], [11]. The effect of nonlinear
yaw dampers on the behavior was studied by Mehdi
and Shaopu [10] using the Bogoliubov averaging
method. A local sensitivity, as a result, suggests the
influence of the secondary suspension parameters. Due
to existing nonlinear creep forces at the interface, two-
axle trucks indicate subcritical Hopf bifurcation dynamic
behaviors [3], [5], [8], [16], [17]. They found that the
critical velocity on a tangent track strongly depended
on characteristics of the wheel/rail interface expressed
as conicity.

A central point of the present study is to determine
the critical velocity and the sensitivity of each
parameter on the velocity of a railway bogie of SRT.
The physical parameters of primary and secondary
suspension, including conicity, are provided with a
predetermined probability distribution. The sensitivity

analysis method is a hybrid local-global scheme on the
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linearized model. The Monte Carlo method [18] is
implemented to generate the parameters as random
variables to be distributed normally about their specific
operative means with a standard deviation of 10% of
the means. The condition for critical velocity data
acquirement is when the real part of each root of the
characteristic equation derived from the six-DOF bogie
truck system is recognized as positive at which the
bifurcation points are located. The distribution of the
obtained critical velocity is assessed as an influence
measure by the normalized factor’s standard deviation
compared to those influenced by other parameters.
Classification of these parameters benefits designers
and service engineers in discriminating between critical
and less critical parameters. Delaying damage
mechanisms that compromise the elements relevant
to the vital parameters will then prolong the safe
operating lifetime of the system. Keeping the part fitted
in service with a risk-based maintenance strategy needs
a quick calculation of the sensitivity of the parameters.
Less distributed measurements of the parameter can
mitigate risk. The standardized regression coefficients
(SRC) conducted is the method that includes both the

effect of physical behavior and the uncertainty of the

measured parameters.

Il. METHODOLOGY

A. Equations of Motion of a Wheelset on a Tangent
Track

A wheelset is a crucial component that governs the
dynamic behaviors of railway vehicles. This study employs
wheelset motion equations based on an equilibrium
track coordinate system to specify a bogie mathematical
model [10], [14]. The wheelset dynamic equation
describes the system when the bogie travels on a
tangent track at a constant speed. Figure 1 illustrates
the free-body diagram of the wheelset in which F;, and
F, are creep forces in the longitudinal and lateral
direction on the left (i = L) and right (i = R) wheel/rail
contact points. M;, is the creep moments about the
vertical direction Equations for lateral and vertical

motions in the equilibrium axes derived from Newton’s

law are:
my:FLy+FRy+NRy+NLy+E€y_FT (1)
mzZ=F,,+Fg, + Npy + N, + F, — W, (2)
L= (I, = 1,)0 iy = Rpy(Fp; + Ngs)
_RRZ(FR]/ + NRy) + RLy(FLz + NLz) (3)

—Ry;(Fiy + Npy)
Iy — (wa - Iwy)¢9. = RRx(FRy + NRy) - RRyFRx
+ Ry (Fy + Nyy) — Ry Fry
+M;, + Mg, + M,
in which N, = Nycos(8, + @)+ Ny sin(6, + ¢)j, N =

(@)

Ngrcos(6g — @i — Ngsin(6g — @)j . N; is the normal
contact force and §; is contact angle. ¢ and  are roll

angle and yaw angle, respectively.

T, "L 1,
7 o My
qu\} X ﬂ{ )
E sl
(- Fy L
|ll| Right oft ,%U
(i 4 ol b
4 |p_~4_ '
Al w1 -
""""""""""""""""""" (1R M, | 2
A
I A F |l |
| I \‘ :
\_{ | ‘ﬂ Fry L{ Fiy
Ng ,

Figure 1: The free-body diagram of a wheelset
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For small perturbation from the wheelset’s equilibrium

position, the magnitude of normal contact forces are

Nycos(8, + ) ~ 5 Wy — Fyy)

(5)
—(Q2a) " (rgFgy + 1,F1y)

1
Nrcos(6g — ) = E(WA — Fsz)
+(2a)_1(rRFRy + T‘LFLy)
According to Kalker’s linear creep theory, creep

(6)

forces as functions of creepages are:

Longitudinal creep force:

F, = —f338, (7)

Lateral creep force:
Fy = =fii, — fizb, (8)

Spin creep moment:
M, = fi28, = f228, 9)

in which &_,x,&_,y,asp are longitudinal, lateral, and spin
creepages in Table 1[14]. £, fy, fsp are creep coefficients
as provided in [10].

The determination of the lateral suspension forces
and the vertical suspension moment are presented in
Eq. (10). Moreover, Eq. (11) applied to the 6-DOF model
(Figure 2) in terms of lateral and longitudinal stiffness
(K,,) and damp coefficient (C,,).

Longitudinal creep force:

Fyy = —2Kyyy — 2Cyyy (10)
Vertical suspension moment:
M, = —2Kyxb? — 2C,,. b3 (11)

Table 1: Creepage at the Left/Right Wheel/Rail Contact Points [14]

Left Wheel/Rail Contact Point

1 T, .
tu=y(v-y-ai)

o

1 .
& =5 (0 +nd=Vy)cos(8, + 9)

1
Sopr = LW cos(Bu + @) — 2sin(5,)}

Right Wheel/Rail Contact Point

1 TR .
Sxk = V(V_Z”"’)
1 .
byr =7 (0 + 1ad—Vy)cos(®, — §)

1
Sopr = 77 L cos(8r — @) + 2sin(8r)}
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Figure 2: Two-axle bogie configuration

To prevent derailment of the vehicle operating at a
velocity higher than a critical speed, a nonlinear flange

contact force is

K. (y - 6) y>4
Fr = 0 -§<y<$§ (12)
K(y+6) y<-6

in which K, is the wheel/rail contact lateral stiffness. §
is the flange clearance determined when the first
abrupt change of rolling radius difference values occurs,
as indicated in Figure 3, using the semi-analytical
method [1]. The wheelset is shifted laterally to create
a contact locus to determine a yaw-angle that satisfies
the criteria of an equi-vertical distance between each
pair of left/right wheel and rail profiles. The wheel
profile is Vidura provided by SRT, while the 54E1 rail
profile refers to EN13674-1 [2].
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Figure 3: Determination of flange clearance
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By substituting Eq. (5) and (6) into Eq. (1) and Eq. (4)
for normal contact force, the motion equations of the
wheelset become Eq. (13) and Eq. (14), respectively,
when further using Eqg. (15) and neglecting high-order
terms.

my, + 22 (y + 8 — vy ) + 2f5 (1 -

TLH+TR 6L Sr 5.8
2R, )+2f12(__ 2R, )+mwg( +¢)_ (13)
Fs,y - FT
Tz 4 (hay = h) o+ 228 2’;“ (y+
TL+TR¢ % ) 2a? f33w Zfzz = (14)
amyg 6L+6R Y+ == Zfzz =M,
1
8§, =0r =M% (TL R):xy!E(TLJ"TR) =Tg,¢=7»§ (15)

The Lmeanzed differential equations of wheelsets
when i =1 represents the front axle and i =2

represents the rear axle are Eq. (16) and (17).

2f, A\ . 2fia . A
mw}’t""% <1+Taa)}’i—vwi +%‘VL+WAE.VL (16)
_FsyL FTi
2f1, M 2d%fs3
7[(1"'7"0;)371' V‘VL-]"' T aWhy, (17)
2fi .
+7‘Vi Mszt

The governing differential equations of the motion
of the bogie frame for lateral and yaw movement are

myy, = —Fsy1 — Foyo — 2Ky Yy — 2Ctyyt (18)

—2Kyylyr —ye + l1\l’t]l1
+2Kwy[YZ — YVt — llll/t]l1
—2Cuy[y1 —ye + lzli/t]lz
+2Cwy[372 — YVt — lz\ift]lz
—2K b3y, — 2Ce b3y,
+2K,xb? (w, + v, — 2y,)
+2€wxb22(\|/1 ty, - Z\VL-)
Eq. (16)-(19) complete the 6-DOF system of motion for

Iwz\TIt =

(19)

the two-axle bogie on a straight track considered in this
paper. Table 2 provides the nomenclatures and operative

values of system parameters.

Table 2: Nomenclature and system parameters used for numerical analysis [10]

Parameter Symbol [10] SRT Unit
Half of the track gauge a 0.7176 0.5000 m
Lateral rail stiffness K, 1.617E7 1.617E7 N/m
Flange clearance 1) 0.00923 0.00740 m
Wheel radius I 0.5330 0.4255 m
Wheel conicity A 0.0500 0.0536 -
Wheelset mass my, 1800 1542 kg
Moment of inertia of the wheelset - roll component Lyx 625.7 2722 kg- m?
Moment of inertia of the wheelset - pitch component Ly 133.90 7315 kg -m?
Moment of inertia of the wheelset — yaw component ) . 625.7 2722  kg- m?
Total bogie mass m - 5500 kg
Axle load Wy 38492 42620 N
Mass of bogie frame m; 4255.6 2439.0 kg
Moment of inertia of bogie frame in yaw I, 10314 1998 kg - m?
Primary suspension - Lateral stiffness Ky 8.67E4 1.87E5 N/m
Primary suspension - Lateral damping coefficient Cuy 2.10E4 - N-s/m
Primary suspension — Longitudinal yaw spring stiffness Ky 8.67E4 1.87E5 N/m
Primary suspension - Longitudinal yaw damping coefficient Cux 1.92E4 - N-s/m
Secondary suspension - Lateral stiffness Kty 1.532E5 8.0E5 N/m
Secondary suspension - Lateral damping coefficient Cty 5.254E4 254  N-s/m
Secondary suspension - Longitudinal yaw spring stiffness Ky 2.189E5 8.0E5 N/m
Secondary suspension - Longitudinal yaw damping coefficient Cex 6.129E5 2565 N-s/m
Half of the primary longitudinal yaw spring arm b, 1.0000 0.7875 m
Half of the primary longitudinal yaw damper arm b, 1.2700 0.7875 m
Half of the secondary longitudinal yaw spring arm b, 0.7940 0.7875 m
Half of the secondary longitudinal yaw damper arm b, 0.889 1.095 m
Half of the longitudinal distance of the lateral secondary spring L 1.295 1.15 m
Half of the longitudinal distance of the lateral secondary dampers l, 1.295 1.15 m
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B. Sensitivity Analysis Using Standardized Regression
Coefficient (SRC) [3]

Sensitivity analysis is typically implemented to
assess model input factor’s relative importance. To the
first intuition, sensitivity can be evaluated by computing
partial derivatives of an output variable concerning
other dependent parameters. A parameter giving a
higher value of the derivative shows more the extent
of output change per unit change of the input when
other variables are constant. The principle represents
local sensitivity that is independent of the factor’s
uncertainty. The sensitivity analysis can be performed
in a deterministic or probabilistic way. A type of
sensitivity analysis performed in the context of
stochastic analysis provides information regarding the
distribution of random variables. A better measure for
such an analysis is considering the factor’s standard
deviation according to Eq. (20). Due to the calculation,
assumptions must be made about the range of
variation of the element; thus, Eq. (20) is a hybrid local-

global measure.

s = z—zg—z (20)
where S7 is the sensitivity of output y to the factor
parameter x, o; is the standard deviation of the
parameter. The suspension parameters of interest are
those mentioned in the last sections. To express their
sensitivity to critical velocity, we assume a normal
distribution of each parameter with a standard
deviation of 10% of its operating design value. Also, to
consider the influence of uncertainty, the standard
deviation of K, varies at 5%, 10% and 20%. Normally,
Eq. (20) is commonly not used for sensitivity analysis
because the coefficients, g_Z’ are dimensioned. As a
result, the practice is to compute the standardized

regression coefficients, SRC (B,), defined in a regression

model as:
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y—y X—X
O-y - .Bx oy ’
in which ¥ is the vector of regression model prediction.

y= (21)
Eqg. (21) insinuates that B, = Sy under the linear model

assumption.

Il RESULTS AND DISCUSSION
A. Numerical Analysis of the Critical Speed of the Two-
axle Bogie
We solved the eigenvalue problems numerically to
determine the critical velocity of the bogie. The state-
space equations of the motion are transformed in the

form of Eq. (22)-(23) below

X=AWMX+FX) (22)

in which A(V)X represents the linear term and F(X)
represent the nonlinear term. X(t) is a 12-column
matrix of state variables describing the lateral and yaw
motion of the wheelsets and bogie frame.
X = (Y10, 90, Wy Vg, Vo T2 W Wy Ve Ve W W) (23)

At different velocities, an eigenvalue and eigenvector
problem of A(V) is solved repeatedly. The system
becomes unstable when at least one resolved
eigenvalue is a positive real number. However, it is
undetermined when a pair of the eigenvalues is
imaginary. Consequently, the critical velocity (V) is the
highest velocity at which all the eigenvalues associated
with the matrix are negative real numbers. The
numerical method results in Figure 4, in which the dot
marker represents the critical velocity at 43.3 m/s with
the contact conicity of 0.0536. The conicity was
calculated from the contact pair profile configuration
of the Vidura wheel profile and 54E1 rail profile. When
using the same parameters presented by Mehdi and
Shaopu [4], we obtain the same critical velocity of the
bogie is 32.8 m/s at a conicity of 0.05.

For demonstrating the hunting phenomena of the

vehicle, Eq. (16)-(19) are solved numerically using the
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4™ order Runge-Kutta integration scheme [5]. Lateral
displacements of each wheelset (y;,y,) and of the
truck (y,) oscillating with time are presented in Figure 5a)
at the velocity of 40 m/s located in undamped regime
and in Figure 5b) at the velocity of 45 m/s located on
the other side. Initial lateral displacement of the front
wheelset (y,) is set to be 5 mm, while all other initial

values are zeros.
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Figure 4: Numerical calculation of I versus A

At velocities less than V., the amplitudes of lateral
displacements asymptotically vanish in the absence of
track irregularity. The dynamic behavior is an underdamped
system where the magnitude of the negative real part
of system eigenvalues specifies the decay rate. Upon
increasing the velocities above V7, the vehicle vibrates
as an undamped system but is limited by the wheel
flange constraint with the rail. The amplitude of
wheelset displacement is greater than 7.4 mm possessing
a risk of a flange climb. Preventing a flange climb that
leads to derailment is paramount for safe operations.
Consequently, a derailment ratio is denoted as Y/Q in
which Y and Q are the lateral and vertical forces in the
flange contact, respectively. According to Nadal’s
theory in UIC 518 regulation, Y/Q is limited to 0.8 when

the flange angle is 65° when using the coefficient of

friction of 0.5.
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B. The Relationship of Each Suspension System Parameter
on the Critical Velocity

Suspension systems of the two-axle bogie usually
consist of two-stage primary and secondary suspension.
The main components are springs and dampers arranged
to secure a stable running behavior and safety. Springs
and dampers between the bogie frame and the
wheelset are of primary suspension. The lateral motion
of the wheelset is controlled by two pairs of springs
and dampers on both sides. The other two pairs,
oriented in a longitudinal direction, assist in securing
the yaw motion of the wheelset. The car body is
connected to the bogie via the secondary suspension
system, in which two pairs of springs and dampers
orient in the lateral and longitudinal directions.

Figure 6 exhibits stability diagrams for spring stiffness
and the damping coefficient of springs and dampers in
the primary suspension. Two regions separated by the
resulting curves are typically recognized. When operating
in the left region of the curve, the vehicle is in subcritical
bifurcation phenomena with vanishing displacement
amplitude with time. However, when operating in the

right area, the vehicle exhibits supercritical Hopf



bifurcation and oscillates till constrained by flange
contact forces. K,,, and K,,,, increase with the critical
velocity about the operating stiffness. If the spring
stiffness is greater than 4.5E5 N/m, the critical velocity
decreases with increasing K,,. It should be noted that
our range of consideration may be unrealistically wide
but just for an intuitive point. For comparison, each
figure has a filled dot representing the operating physical
parameter (Table 2) and its corresponding critical velocity.

Figure 7 demonstrates the monotonic relationship
of the secondary suspension parameters with critical
velocity. Increasing Kiy, Cty, Ky, Cry increases the critical
velocity. However, the correlations become obscure in

the comparative aspects of the parameters.
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Figure 7: The effect of secondary suspension parameters on
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C. Sensitivity Analysis of Two-axle Bogie’s Stability

To classify the relative importance, we perform a
Monte Carlo experiment on the model for sensitivity
analysis to create scatter plots of the normalized
critical velocity versus normalized physical parameters
of each component in Figure 8-Figure 10. The model
parameters are generated in a column matrix for 10000
data sets according to their distribution before being
substituted into the mathematical model to compute
critical velocity. The number of data sets is large enough
to provide meaningful statistical results without too
much loading on our computational resources. The
normal distribution of calculated critical velocity
obtained after substituting the random parameter
matrix into the dynamic model is shown in Figure 11.
Averaged critical velocity is 43.44 m/s with a standard
deviation of 2.28.

K, is recognized immediately in Figure 8a as the
most influential factor when compared to ﬁwy in Figure
8b and Ky, Cty, Kix, Cyx in Figure 9. The aggregated data
in circular-like bounded shapes on the x-y plane
characterize weak correlations in contrast to the case
in which the scattered data are bound in the tilted
band. Nevertheless, the local dependency of K, in
Figure 6b and Ky, Cty, K¢y, Cpye in Figure 7 are smeared
out due to the variation of the measured data. The
other strong influence similar to K, is also observed
for the conicity in Figure 10, but in negative correlation,
i.e., the increase of the conicity reduces the critical
velocity. This qualitative recognition is invaluable for
understanding the system but hard to be implemented
as an input to commercial probability safety
assessment programs if numeric values are required.
When the quantitative sense is necessary, the stiffness
value should be paid to control vehicle safety and

performance. The important factor of both primary and

secondary suspension elements, including conicity, are
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determined quantitatively using the linear regression

method of the distributed data according to Eq. (20).

Normalized critical velocity, V,
bhbdbiocoanmwasan

5 4 3-2-1012 3 45
Normalized K.,

b)

5 4 3 2101 2 3 45
Normalized Ky, Ky

hbhbbbiloanvwasa

Normalized critical velocity, 1%

Figure 8: Scatter plot of ¥ versus V. using g,, = 10%
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Normalized critical velocity, V,
b b b N S o a N w s oo

3 2 44 0 1 2 3 4 5
Normalized Conicity, A

&
IN

Figure 10: Scatter plots for A versus V. using o, = 10%

96

o
>

=3
=
1
~
N
i}
1
7

o
)

lity density
o
1
Y
/

36 38 40 42 44 46 48 50 52 54 56
Critical velocity, V. (m/s

Figure 11: Output distribution from a Monte Carlo simulation of
10000 experiments, employing nine input parameters with

individual a,, = 10%

Error! Reference source not found. 3 summarizes
the results from the SRC sensitivity analysis method.
The sign in front of the SRC indicates each element
positive or negative influences. According to the table,
primary suspension - longitudinal yaw stiffness (K.)
appears to have the most substantial on increasing the
critical speed. Bigoni et al. [6] indicated the same result,
while Gao et al. [7] suggested the importance of the
secondary lateral damper of a Chinese railway bogie.
Global sensitivity analysis showed that the rear
wheelset’s stiffness is more significant than that of the
front wheelset. Unfortunately, the primary suspension
parameters are not considered variables in the work of
Mehdi and Shaopu (1998) [4]. Of primary suspension

parameters are K,,,, that have more impact than K.

Table 3: SRC of each suspension parameter and conicity

Parameter K, K, . K, Cey
SRC(By) 006311 060140 001177  0.06703
Parameter A Ky Cex
SRC (By) - 0.76400 003967 021501




The variation of K, in the secondary suspension is
insignificant to the system’s dynamic behaviors. We

found a strong influence of longitudinal dampers over

the lateral damper in the secondary suspension system.

The impact is also recognized by Mehdi and Shaopu [4].
The knowledge that the yaw dampers stabilize the
vehicles is common to railway engineers. We enlist
them as our significant parameters. However, the
parameter is not considered essential [8] due to the
selected probability distribution. The uncertainty is
significant to both hybrid-global and global analysis. At

different standard deviation values of 5%, 10%, and 20%

on K, alone, the calculated SRC increases with
uncertainty. The SRC values of K,,, are 0.3219, 0.60140,
and 0.8213, respectively. More precise measurements
can dramatically change the result. This concept allows
maintenance engineers to mitigate the sensitive
components’ risk values by measuring their parameters
more precisely and accurately.

In addition to the above analysis, we examine SRC
of the equivalent conicity. Its highest value substantiates

railway engineers’ recognition of the limited value of

the conicity when considering safety issues.

IV. CONCLUSION

This study presents the effect of suspension
parameters and conicity on the critical velocity for a
linearized model of a two-axle bogie. The numerical
method in solving the derived eigenvalue problem
indicates that the velocity locates at the bifurcation
point, beyond which lateral displacement of the
vehicle rigorously oscillates until limited by flange
contact forces. The hybrid-global sensitivity analysis
using SRC is implemented to screen for the essential
parameters. Specifying the significance of the parameter
will assist involved engineers in improving the hunting

behaviors of the vehicle. Longitudinal yaw stiffness of
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the primary suspension is critical to preventing

excessive flange contact on a tangent track leading to
flange wear and derailment. Other less important
parameters are K, of primary suspension and Ky, Cty,
K:y , Cy of secondary suspension. In addition to
suspension parameters, we found the most decisive
influence of conicity on the value of critical velocity.
These findings guided us to design suspension systems
and rail systems better when the right-most attention
was paid only to the essential parameters that matter

to safety and maintenance issues.
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