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Abstract 
This paper presents the sensitivity analysis using standardized regression coefficients (SRC) to enumerate an 

important factor of each suspension parameter on the critical velocity of a bogie. Due to uncertain parameters, 
the semi-global sensitivity analysis benefits both designers and maintenance engineers in controlling the risk levels 
of the screened components. The bogie represents a two-axle railway truck of the State Railway of Thailand (SRT). 
Six-degree-of-freedom motion equations describe its dynamic behaviors traveling on a tangent track. In a stochastic 
model, the stiffness and damping coefficients of suspension components are considered random variables with 
presumed Gaussian distribution. A probability distribution obtained, where the SRCs were derived, shows that the 
speed strongly correlates with the longitudinal yaw stiffness value of the primary suspension system. The secondary 
suspension system’s lateral and longitudinal yaw damping coefficients appear equally influential on the critical 
speed. 
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I. INTRODUCTION 
Recently, the railway industry has faced the challenges 

of reducing manufacturing costs while maintaining 
marginal engineering safety. Operators first provide 
conceptual requirements to engineering teams to 
design the vehicles with constructed infrastructures 
expected to be in service for predefined service life 
against relevant damage mechanisms. After the vehicle 
is fabricated, it must pass safety requirements according 
to applicable railway safety standards. However, critical 
items deteriorate at different rates, and the defects that 
occur further degrade operating performance. Monitoring 
the key performance indicators can help maintenance 
engineers identify the parts to be inspected and keep 
the damage within a safe range. This defect-tolerance 
design strategy partly leaves the safety issues to 
maintenance departments to inspect based on time or 
risk measurements. In either method, knowledge 
management along the engineering design process on 
the sensitive parts is inevitable. To ensure safe 
operation, railway engineers must understand the rank 
of the influential parameters of the railway vehicles on 
the critical speed to set railway operating windows of 
the vehicles. Overlooking the life-critical components 
may lead to a severe accident that could cost human 
lives. 

A railway system’s safe and economic operation 
depends on the railway vehicles’ running performance 
in service. The acceptable conditions of the vehicles 
are described in EN14363 [1] and UIC 518 [2]. One of 
the safety issues is the safety against derailment as 
quantified by a limiting ratio of the lateral to vertical 
forces at a flange contact due to lateral oscillation 
motion. The hunting motion, arising from non-
conservative forces, causes vehicle instability beyond a 
critical velocity. The further the operation speed, the 
more violent the oscillation and eventually causes 
severe flange wear, wheel climbing, and derailment.  

Since stability is essential to the safe operation of 
railway vehicles, the oscillation motion on tangent 
tracks has been the subject of intense investigations 
using four, six, or ten degrees of freedom models. 
Wheelsets’ lateral displacement and yaw angle are the 
state variables in 4-DOF systems [3]-[7]. When the 
bogie’s lateral displacement and yaw angle are 
considered, the 6-DOF models were investigated in 
different aspects [8]–[13]. Up to 10 DOF systems 
consider more on each wheelset’s vertical and roll 
angle [14], [15]. The works relied on linearizing a system 
of governing differential equations to study the bogie’s 
dynamic behaviors traveling on a straight track. In 
particular, the suspension parameters and wheel 
conicity are two categories of parameters in consideration. 
Wickens [6] showed that a model required at least 6-
DOF for realistic stability analysis. Flexibility between 
the wheelset and the frame and wheel/rail profile 
should be considered in the design of high-speed 
railway vehicles. More flexible damped or stiffer 
suspension is preferable [10], [11]. The effect of nonlinear 
yaw dampers on the behavior was studied by Mehdi 
and Shaopu [10] using the Bogoliubov averaging 
method. A local sensitivity, as a result, suggests the 
influence of the secondary suspension parameters. Due 
to existing nonlinear creep forces at the interface, two-
axle trucks indicate subcritical Hopf bifurcation dynamic 
behaviors [3], [5], [8], [16], [17]. They found that the 
critical velocity on a tangent track strongly depended 
on characteristics of the wheel/rail interface expressed 
as conicity.  

A central point of the present study is to determine 
the critical velocity and the sensitivity of each 
parameter on the velocity of a railway bogie of SRT. 
The physical parameters of primary and secondary 
suspension, including conicity, are provided with a 
predetermined probability distribution. The sensitivity 
analysis method is a hybrid local-global scheme on the 
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linearized model. The Monte Carlo method [18] is 
implemented to generate the parameters as random 
variables to be distributed normally about their specific 
operative means with a standard deviation of 10% of 
the means. The condition for critical velocity data 
acquirement is when the real part of each root of the 
characteristic equation derived from the six-DOF bogie 
truck system is recognized as positive at which the 
bifurcation points are located. The distribution of the 
obtained critical velocity is assessed as an influence 
measure by the normalized factor’s standard deviation 
compared to those influenced by other parameters. 
Classification of these parameters benefits designers 
and service engineers in discriminating between critical 
and less critical parameters. Delaying damage 
mechanisms that compromise the elements relevant 
to the vital parameters will then prolong the safe 
operating lifetime of the system. Keeping the part fitted 
in service with a risk-based maintenance strategy needs 
a quick calculation of the sensitivity of the parameters. 
Less distributed measurements of the parameter can 
mitigate risk. The standardized regression coefficients 
(SRC) conducted is the method that includes both the 
effect of physical behavior and the uncertainty of the 
measured parameters. 

 
 
 

II. METHODOLOGY 
A. Equations of Motion of a Wheelset on a Tangent 
Track 

A wheelset is a crucial component that governs the 
dynamic behaviors of railway vehicles. This study employs 
wheelset motion equations based on an equilibrium 
track coordinate system to specify a bogie mathematical 
model [10], [14]. The wheelset dynamic equation 
describes the system when the bogie travels on a 
tangent track at a constant speed. Figure 1 illustrates 
the free-body diagram of the wheelset in which 𝐹𝑖𝑥 and 
𝐹𝑖𝑦  are creep forces in the longitudinal and lateral 
direction on the left (𝑖 = 𝐿) and right (𝑖 = 𝑅) wheel/rail 
contact points. 𝑀𝑖𝑧  is the creep moments about the 
vertical direction Equations for lateral and vertical 
motions in the equilibrium axes derived from Newton’s 
law are: 

𝑚𝑦̈ = 𝐹𝐿𝑦 + 𝐹𝑅𝑦 + 𝑁𝑅𝑦 + 𝑁𝐿𝑦 + 𝐹𝑠𝑦 − 𝐹𝑇 (1) 
  

𝑚𝑧̈ = 𝐹𝐿𝑧 + 𝐹𝑅𝑧 + 𝑁𝑅𝑧 + 𝑁𝐿𝑧 + 𝐹𝑠𝑧 − 𝑊𝐴 (2) 
  

𝐼𝑥̈ − (𝐼𝑦 − 𝐼𝑧)𝜃̇̇ = 𝑅𝑅𝑦(𝐹𝑅𝑧 + 𝑁𝑅𝑧) 
                                         −𝑅𝑅𝑧(𝐹𝑅𝑦 + 𝑁𝑅𝑦) + 𝑅𝐿𝑦(𝐹𝐿𝑧 + 𝑁𝐿𝑧) 

                                       −𝑅𝐿𝑧(𝐹𝐿𝑦 + 𝑁𝐿𝑦) 
(3) 

  

𝐼𝑧̈− (𝐼𝑤𝑥 − 𝐼𝑤𝑦)̇ 𝜃̇ = 𝑅𝑅𝑥(𝐹𝑅𝑦 + 𝑁𝑅𝑦) − 𝑅𝑅𝑦𝐹𝑅𝑥  

                                         + 𝑅𝐿𝑥(𝐹𝐿𝑦 + 𝑁𝐿𝑦) − 𝑅𝐿𝑦𝐹𝐿𝑥 
                                         +𝑀𝐿𝑧 + 𝑀𝑅𝑧 + 𝑀𝑠𝑧 

(4) 

in which 𝑁⃑⃑ 𝐿 = 𝑁𝐿𝑐𝑜𝑠(𝛿𝐿 + )𝑖̂ + 𝑁𝐿𝑠𝑖𝑛(𝛿𝐿 + )𝑗̂,  𝑁⃑⃑ 𝑅 =

𝑁𝑅𝑐𝑜𝑠(𝛿𝑅 − )𝑖̂ − 𝑁𝑅𝑠𝑖𝑛(𝛿𝑅 − )𝑗̂ . 𝑁𝑖  is the normal 
contact force and 𝛿𝑖 is contact angle.  and  are roll 
angle and yaw angle, respectively. 

 

 
 

Figure 1: The free-body diagram of a wheelset 
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For small perturbation from the wheelset’s equilibrium 
position, the magnitude of normal contact forces are  

𝑁𝐿𝑐𝑜𝑠(𝛿𝐿 + ) ≈
1

2
(𝑊𝐴 − 𝐹𝑠𝑧) 

                                 −(2𝑎)−1(𝑟𝑅𝐹𝑅𝑦 + 𝑟𝐿𝐹𝐿𝑦) 
(5) 

  

𝑁𝑅𝑐𝑜𝑠(𝛿𝑅 − ) ≈
1

2
(𝑊𝐴 − 𝐹𝑠𝑧) 

                                                 +(2𝑎)−1(𝑟𝑅𝐹𝑅𝑦 + 𝑟𝐿𝐹𝐿𝑦) 
(6) 

According to Kalker’s linear creep theory, creep 
forces as functions of creepages are: 
Longitudinal creep force: 

𝐹𝑥 = −𝑓33𝑥
 (7) 

Lateral creep force: 
𝐹𝑦 = −𝑓11𝑦

− 𝑓12𝑠𝑝
 (8) 

Spin creep moment: 
𝑀𝑧 = 𝑓12𝑦

− 𝑓22𝑠𝑝
 (9) 

in which 
𝑥
, 

𝑦
, 

𝑠𝑝
 are longitudinal, lateral, and spin 

creepages in Table 1 [14]. 𝑓𝑥, 𝑓𝑦, 𝑓𝑠𝑝 are creep coefficients 
as provided in [10]. 

The determination of the lateral suspension forces 
and the vertical suspension moment are presented in 
Eq. (10). Moreover, Eq. (11) applied to the 6-DOF model 
(Figure 2) in terms of lateral and longitudinal stiffness 
(𝐾𝑤) and damp coefficient (𝐶𝑤).  
Longitudinal creep force:  

𝐹𝑠,𝑦 = −2𝐾𝑤𝑦𝑦 − 2𝐶𝑤𝑦𝑦̇ (10) 
Vertical suspension moment: 

𝑀𝑠,𝑧 = −2𝐾𝑤𝑥𝑏1
2 − 2𝐶𝑤𝑥𝑏2

2 (11) 
 

Table 1: Creepage at the Left/Right Wheel/Rail Contact Points [14] 

Left Wheel/Rail Contact Point 


𝑥𝐿

= 
1

𝑉
(𝑉 −

𝑟𝐿
𝑟𝑜

− 𝑎̇) 


𝑦𝐿

=
1

𝑉
(𝑦̇ + 𝑟𝐿̇− 𝑉)𝑐𝑜𝑠(𝛿𝐿 + ) 


𝑠𝑝𝐿

=
1

𝑉
{̇ 𝑐𝑜𝑠(𝛿𝐿 + ) − 𝑠𝑖𝑛(𝛿𝐿)} 

Right Wheel/Rail Contact Point 


𝑥𝑅

= 
1

𝑉
(𝑉 −

𝑟𝑅
𝑟𝑜

+ 𝑎̇) 


𝑦𝑅

=
1

𝑉
(𝑦̇ + 𝑟𝑅̇− 𝑉)𝑐𝑜𝑠(𝛿𝐿 − ) 


𝑠𝑝𝑅

=
1

𝑉
{̇ 𝑐𝑜𝑠(𝛿𝑅 − ) + 𝑠𝑖𝑛(𝛿𝑅)} 

 
 

Figure 2: Two-axle bogie configuration 
 

To prevent derailment of the vehicle operating at a 
velocity higher than a critical speed, a nonlinear flange 
contact force is 

𝐹𝑇 = {
𝐾𝑟(𝑦 − 𝛿)

0
𝐾𝑟(𝑦 + 𝛿)

    

𝑦 > 𝛿
−𝛿 ≤ 𝑦 ≤ 𝛿

𝑦 < −𝛿
 (12) 

in which 𝐾𝑟 is the wheel/rail contact lateral stiffness. 𝛿 
is the flange clearance determined when the first 
abrupt change of rolling radius difference values occurs, 
as indicated in Figure 3, using the semi-analytical 
method [1]. The wheelset is shifted laterally to create 
a contact locus to determine a yaw-angle that satisfies 
the criteria of an equi-vertical distance between each 
pair of left/right wheel and rail profiles. The wheel 
profile is Vidura provided by SRT, while the 54E1 rail 
profile refers to EN13674-1 [2]. 
 

 
 

Figure 3: Determination of flange clearance 
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By substituting Eq. (5) and (6) into Eq. (1) and Eq. (4) 
for normal contact force, the motion equations of the 
wheelset become Eq. (13) and Eq. (14), respectively, 
when further using Eq. (15) and neglecting high-order 
terms.  

𝑚𝑤𝑦̈ +
2𝑓11

𝑉
(𝑦̇ +

𝑟𝐿+𝑟𝑅

2
̇ − 𝑉) + 2𝑓33 (1 −

𝑟𝐿+𝑟𝑅

2𝑅𝑜
) + 2𝑓12 (

̇

𝑉
−

𝛿𝐿−𝛿𝑅

2𝑅𝑜
) + 𝑚𝑤𝑔 (

𝛿𝐿−𝛿𝑅

2
+ ) =

𝐹𝑠,𝑦 − 𝐹𝑇 
(13) 

  

𝐼𝑤𝑧̈ + (𝐼𝑤𝑦 − 𝐼𝑤𝑥)
𝑉

𝑅𝑜
̇ +

2𝑎𝑓33

𝑅𝑜

𝑟𝐿−𝑟𝑅

2
−

2𝑓12

𝑉
(𝑦̇ +

𝑟𝐿+𝑟𝑅

2
̇ − 𝑉) +

2𝑎2𝑓33

𝑉
̇− 2𝑓22

𝛿𝐿−𝛿𝑅

2𝑅𝑜
−

𝑎𝑚𝑤𝑔
𝛿𝐿+𝛿𝑅

2
+

2𝑓22

𝑉
̇ = 𝑀𝑠,𝑧 

(14) 

  

𝛿𝐿 = 𝛿𝑅 = ,
1

2
(𝑟𝐿 − 𝑟𝑅) = 𝑦,

1

2
(𝑟𝐿 + 𝑟𝑅) = 𝑟0, = 

𝑦

𝑑
  (15) 

The linearized differential equations of wheelsets 
when 𝑖 = 1  represents the front axle and 𝑖 = 2   
represents the rear axle are Eq. (16) and (17). 

𝑚𝑤𝑦̈𝑖 +
2𝑓11

𝑉
[(1 + 𝑟𝑜



𝑑
) 𝑦̇𝑖 − 𝑉

𝑖] +
2𝑓12

𝑉
̇

𝑖
+ 𝑊𝐴



𝑑
𝑦𝑖 

 = 𝐹𝑠,𝑦𝑖 − 𝐹𝑇𝑖  
(16) 

−
2𝑓12

𝑉
[(1 + 𝑟𝑜



𝑎
) 𝑦̇𝑖 − 𝑉

𝑖
] +

2𝑑2𝑓33

𝑉
̇

𝑖
− 𝑎𝑊𝐴𝑖

 

+
2𝑓12

𝑉
̇

𝑖
= 𝑀𝑠,𝑧𝑖  

(17) 

The governing differential equations of the motion 
of the bogie frame for lateral and yaw movement are 
𝑚𝑡𝑦̈𝑡 = −𝐹𝑠𝑦1 − 𝐹𝑠𝑦2 − 2𝐾𝑡𝑦𝑦𝑡 − 2𝐶𝑡𝑦𝑦̇𝑡 (18) 

 

𝐼𝑤𝑧̈𝑡
= −2𝐾𝑤𝑦[𝑦1 − 𝑦𝑡 + 𝑙1𝑡

]𝑙1 

                +2𝐾𝑤𝑦[𝑦2 − 𝑦𝑡 − 𝑙1𝑡
]𝑙1 

                −2𝐶𝑤𝑦[𝑦̇1 − 𝑦̇𝑡 + 𝑙2̇𝑡
]𝑙2 

                +2𝐶𝑤𝑦[𝑦̇2 − 𝑦̇𝑡 − 𝑙2̇𝑡
]𝑙2 

                −2𝐾𝑡𝑥𝑏3
2

𝑡
− 2𝐶𝑡𝑥𝑏4

2̇
𝑡
 

                +2𝐾𝑤𝑥𝑏1
2(

1
+ 

2
− 2

𝑡
) 

                +2𝐶𝑤𝑥𝑏2
2(

1
+ 

2
− 2̇

𝑡
) 

(19) 

Eq. (16)-(19) complete the 6-DOF system of motion for 
the two-axle bogie on a straight track considered in this 
paper. Table 2 provides the nomenclatures and operative 
values of system parameters. 

 

Table 2: Nomenclature and system parameters used for numerical analysis [10] 
Parameter Symbol [10] SRT Unit 

Half of the track gauge 𝑎 0.7176 0.5000 𝑚 
Lateral rail stiffness 𝐾𝑟  1.617E7 1.617E7 𝑁/𝑚 

Flange clearance 𝛿 0.00923 0.00740 𝑚 

Wheel radius 𝑟𝑜  0.5330 0.4255 𝑚 

Wheel conicity  0.0500 0.0536 - 

Wheelset mass 𝑚𝑤  1800 1542 𝑘𝑔 

Moment of inertia of the wheelset – roll component 𝐼𝑤𝑥  625.7 272.2 𝑘𝑔 ∙ 𝑚2 
Moment of inertia of the wheelset – pitch component 𝐼𝑤𝑦 133.90 73.15 𝑘𝑔 ∙ 𝑚2 
Moment of inertia of the wheelset – yaw component  𝐼𝑤𝑧 625.7 272.2 𝑘𝑔 ∙ 𝑚2 
Total bogie mass 𝑚 - 5500 𝑘𝑔 

Axle load 𝑊𝐴 38492 42620 𝑁 

Mass of bogie frame 𝑚𝑡  4255.6 2439.0 𝑘𝑔 

Moment of inertia of bogie frame in yaw 𝐼𝑡𝑧 10314 1998 𝑘𝑔 ∙ 𝑚2 
Primary suspension - Lateral stiffness 𝐾𝑤𝑦  8.67E4 1.87E5 𝑁/𝑚 

Primary suspension - Lateral damping coefficient 𝐶𝑤𝑦 2.10E4 - 𝑁 ∙ 𝑠/𝑚 

Primary suspension – Longitudinal yaw spring stiffness 𝐾𝑤𝑥  8.67E4 1.87E5 𝑁/𝑚 

Primary suspension - Longitudinal yaw damping coefficient 𝐶𝑤𝑥  1.92E4 - 𝑁 ∙ 𝑠/𝑚 

Secondary suspension - Lateral stiffness  𝐾𝑡𝑦 1.532E5 8.0E5 𝑁/𝑚 

Secondary suspension - Lateral damping coefficient 𝐶𝑡𝑦 5.254E4 2.5E4 𝑁 ∙ 𝑠/𝑚 

Secondary suspension - Longitudinal yaw spring stiffness 𝐾𝑡𝑥  2.189E5 8.0E5 𝑁/𝑚 

Secondary suspension - Longitudinal yaw damping coefficient 𝐶𝑡𝑥 6.129E5 2.5E5 𝑁 ∙ 𝑠/𝑚 

Half of the primary longitudinal yaw spring arm 𝑏1 1.0000 0.7875 𝑚 

Half of the primary longitudinal yaw damper arm 𝑏2 1.2700 0.7875 𝑚 

Half of the secondary longitudinal yaw spring arm 𝑏3 0.7940 0.7875 𝑚 

Half of the secondary longitudinal yaw damper arm 𝑏4 0.889 1.095 𝑚 

Half of the longitudinal distance of the lateral secondary spring 𝑙1 1.295 1.15 𝑚 

Half of the longitudinal distance of the lateral secondary dampers 𝑙2 1.295 1.15 𝑚 
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B. Sensitivity Analysis Using Standardized Regression 
Coefficient (SRC) [3] 

Sensitivity analysis is typically implemented to 
assess model input factor’s relative importance. To the 
first intuition, sensitivity can be evaluated by computing 
partial derivatives of an output variable concerning 
other dependent parameters. A parameter giving a 
higher value of the derivative shows more the extent 
of output change per unit change of the input when 
other variables are constant. The principle represents 
local sensitivity that is independent of the factor’s 
uncertainty. The sensitivity analysis can be performed 
in a deterministic or probabilistic way. A type of 
sensitivity analysis performed in the context of 
stochastic analysis provides information regarding the 
distribution of random variables. A better measure for 
such an analysis is considering the factor’s standard 
deviation according to Eq. (20). Due to the calculation, 
assumptions must be made about the range of 
variation of the element; thus, Eq. (20) is a hybrid local-
global measure. 

𝑆𝑥
𝑦

=
𝜎𝑥

𝜎𝑦

𝜕𝑦

𝜕𝑥
 (20) 

where 𝑆𝑥
𝑦  is the sensitivity of output 𝑦 to the factor 

parameter 𝑥 , 𝜎𝑗  is the standard deviation of the 
parameter. The suspension parameters of interest are 
those mentioned in the last sections. To express their 
sensitivity to critical velocity, we assume a normal 
distribution of each parameter with a standard 
deviation of 10% of its operating design value. Also, to 
consider the influence of uncertainty, the standard 
deviation of 𝐾𝑤𝑥 varies at 5%, 10% and 20%. Normally, 
Eq. (20) is commonly not used for sensitivity analysis 
because the coefficients, 𝜕𝑦

𝜕𝑥
, are dimensioned. As a 

result, the practice is to compute the standardized 
regression coefficients, SRC (𝛽𝑥), defined in a regression 
model as: 

𝑦̃ =
𝑦 − 𝑦̅

𝜎𝑦

= 𝛽𝑥

𝑥 − 𝑥̅

𝜎𝑥

; (21) 

in which 𝑦̃ is the vector of regression model prediction. 
Eq. (21) insinuates that 𝛽𝑥 = 𝑆𝑥

𝑦 under the linear model 
assumption. 
 

III. RESULTS AND DISCUSSION 
A. Numerical Analysis of the Critical Speed of the Two-
axle Bogie 

We solved the eigenvalue problems numerically to 
determine the critical velocity of the bogie. The state- 
space equations of the motion are transformed in the 
form of Eq. (22)–(23) below 

𝑋̇ = 𝐴(𝑉)𝑋 + 𝐹(𝑋) (22) 

in which 𝐴(𝑉)𝑋 represents the linear term and 𝐹(𝑋) 
represent the nonlinear term. 𝑋(𝑡)  is a 12-column 
matrix of state variables describing the lateral and yaw 
motion of the wheelsets and bogie frame. 

𝑋 = {𝑦1, 𝑦̇1,1
, ̇

1
, 𝑦2, 𝑦̇2,2

, ̇
2
, 𝑦𝑡, 𝑦̇𝑡,𝑡

, ̇
𝑡
}
𝑡 (23) 

At different velocities, an eigenvalue and eigenvector 
problem of 𝐴(𝑉) is solved repeatedly. The system 
becomes unstable when at least one resolved 
eigenvalue is a positive real number. However, it is 
undetermined when a pair of the eigenvalues is 
imaginary. Consequently, the critical velocity (𝑉𝑐) is the 
highest velocity at which all the eigenvalues associated 
with the matrix are negative real numbers. The 
numerical method results in Figure 4, in which the dot 
marker represents the critical velocity at 43.3 m/s with 
the contact conicity of 0.0536. The conicity was 
calculated from the contact pair profile configuration 
of the Vidura wheel profile and 54E1 rail profile. When 
using the same parameters presented by Mehdi and 
Shaopu [4], we obtain the same critical velocity of the 
bogie is 32.8 m/s at a conicity of 0.05.  

For demonstrating the hunting phenomena of the 
vehicle, Eq. (16)–(19) are solved numerically using the 
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4th order Runge-Kutta integration scheme [5]. Lateral 
displacements of each wheelset (𝑦1, 𝑦2 ) and of the 
truck (𝑦𝑡) oscillating with time are presented in Figure 5a) 
at the velocity of 40 m/s located in undamped regime 
and in Figure 5b) at the velocity of 45 m/s located on 
the other side. Initial lateral displacement of the front 
wheelset (𝑦1) is set to be 5 mm, while all other initial 
values are zeros. 
 

 
 

Figure 4: Numerical calculation of  𝑉𝑐 versus  
 

At velocities less than 𝑉𝑐 , the amplitudes of lateral 
displacements asymptotically vanish in the absence of 
track irregularity. The dynamic behavior is an underdamped 
system where the magnitude of the negative real part 
of system eigenvalues specifies the decay rate. Upon 
increasing the velocities above 𝑉𝑐 , the vehicle vibrates 
as an undamped system but is limited by the wheel 
flange constraint with the rail. The amplitude of 
wheelset displacement is greater than 7.4 mm possessing 
a risk of a flange climb. Preventing a flange climb that 
leads to derailment is paramount for safe operations. 
Consequently, a derailment ratio is denoted as 𝑌/𝑄 in 
which 𝑌 and 𝑄 are the lateral and vertical forces in the 
flange contact, respectively. According to Nadal’s 
theory in UIC 518 regulation, 𝑌/𝑄 is limited to 0.8 when 
the flange angle is 65o when using the coefficient of 
friction of 0.5. 

 
 

Figure 5: Time response of lateral displacement  
a) 40 m/s b) 45 m/s 

 

B. The Relationship of Each Suspension System Parameter 
on the Critical Velocity 

Suspension systems of the two-axle bogie usually 
consist of two-stage primary and secondary suspension. 
The main components are springs and dampers arranged 
to secure a stable running behavior and safety. Springs 
and dampers between the bogie frame and the 
wheelset are of primary suspension. The lateral motion 
of the wheelset is controlled by two pairs of springs 
and dampers on both sides. The other two pairs, 
oriented in a longitudinal direction, assist in securing 
the yaw motion of the wheelset. The car body is 
connected to the bogie via the secondary suspension 
system, in which two pairs of springs and dampers 
orient in the lateral and longitudinal directions. 

Figure 6 exhibits stability diagrams for spring stiffness 
and the damping coefficient of springs and dampers in 
the primary suspension. Two regions separated by the 
resulting curves are typically recognized. When operating 
in the left region of the curve, the vehicle is in subcritical 
bifurcation phenomena with vanishing displacement 
amplitude with time. However, when operating in the 
right area, the vehicle exhibits supercritical Hopf 
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bifurcation and oscillates till constrained by flange 
contact forces. 𝐾𝑤𝑦   and 𝐾𝑤𝑥   increase with the critical 
velocity about the operating stiffness. If the spring 
stiffness is greater than 4.5E5 N/m, the critical velocity 
decreases with increasing 𝐾𝑤𝑦. It should be noted that 
our range of consideration may be unrealistically wide 
but just for an intuitive point. For comparison, each 
figure has a filled dot representing the operating physical 
parameter (Table 2) and its corresponding critical velocity.  

Figure 7 demonstrates the monotonic relationship 
of the secondary suspension parameters with critical 
velocity. Increasing 𝐾𝑡𝑦 , 𝐶𝑡𝑦, 𝐾𝑡𝑥 , 𝐶𝑡𝑥 increases the critical 
velocity. However, the correlations become obscure in 
the comparative aspects of the parameters.  

 

 
 

Figure 6: The effect of primary suspension parameters on 
limited speed 

 

 
 

Figure 7: The effect of secondary suspension parameters on 
limited speed 

C. Sensitivity Analysis of Two-axle Bogie’s Stability 
To classify the relative importance, we perform a 

Monte Carlo experiment on the model for sensitivity 
analysis to create scatter plots of the normalized 
critical velocity versus normalized physical parameters 
of each component in Figure 8–Figure 10. The model 
parameters are generated in a column matrix for 10000 
data sets according to their distribution before being 
substituted into the mathematical model to compute 
critical velocity. The number of data sets is large enough 
to provide meaningful statistical results without too 
much loading on our computational resources. The 
normal distribution of calculated critical velocity 
obtained after substituting the random parameter 
matrix into the dynamic model is shown in Figure 11. 
Averaged critical velocity is 43.44 m/s with a standard 
deviation of 2.28. 

𝐾𝑤𝑥  is recognized immediately in Figure 8a as the 
most influential factor when compared to 𝐾𝑤𝑦  in Figure 
8b and 𝐾𝑡𝑦 , 𝐶̃𝑡𝑦, 𝐾𝑡𝑥 , 𝐶̃𝑡𝑥 in Figure 9. The aggregated data 
in circular-like bounded shapes on the x-y plane 
characterize weak correlations in contrast to the case 
in which the scattered data are bound in the tilted 
band. Nevertheless, the local dependency of 𝐾𝑤𝑦  in 
Figure 6b and 𝐾𝑡𝑦 , 𝐶𝑡𝑦 , 𝐾𝑡𝑥, 𝐶𝑡𝑥 in Figure 7 are smeared 
out due to the variation of the measured data. The 
other strong influence similar to 𝐾𝑤𝑥  is also observed 
for the conicity in Figure 10, but in negative correlation, 
i.e., the increase of the conicity reduces the critical 
velocity. This qualitative recognition is invaluable for 
understanding the system but hard to be implemented 
as an input to commercial probability safety 
assessment programs if numeric values are required. 
When the quantitative sense is necessary, the stiffness 
value should be paid to control vehicle safety and 
performance. The important factor of both primary and 
secondary suspension elements, including conicity, are 
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determined quantitatively using the linear regression 
method of the distributed data according to Eq. (20).  

 

 
 

Figure 8: Scatter plot of 𝑦̃ versus 𝑉̃𝑐 using 𝜎𝑥 = 10% 
 

 
 

Figure 9: Scatter plot of 𝑦̃ versus 𝑉̃𝑐 using 𝜎𝑥 = 10% 
 

 
 

Figure 10: Scatter plots for ̃ versus 𝑉̃𝑐 using 𝜎𝑥 = 10% 

 
 

Figure 11: Output distribution from a Monte Carlo simulation of 
10000 experiments, employing nine input parameters with 

individual 𝜎𝑥 = 10% 
 

Error! Reference source not found. 3 summarizes 
the results from the SRC sensitivity analysis method. 
The sign in front of the SRC indicates each element 
positive or negative influences. According to the table, 
primary suspension – longitudinal yaw stiffness (𝐾𝑤𝑥 ) 
appears to have the most substantial on increasing the 
critical speed. Bigoni et al. [6] indicated the same result, 
while Gao et al. [7] suggested the importance of the 
secondary lateral damper of a Chinese railway bogie. 
Global sensitivity analysis showed that the rear 
wheelset’s stiffness is more significant than that of the 
front wheelset. Unfortunately, the primary suspension 
parameters are not considered variables in the work of 
Mehdi and Shaopu (1998) [4]. Of primary suspension 
parameters are 𝐾𝑤𝑥 that have more impact than 𝐾𝑤𝑦 . 
 

Table 3: SRC of each suspension parameter and conicity 

Parameter 𝑲𝒘𝒚 𝑲𝒘𝒙 𝑲𝒕𝒚 𝑪𝒕𝒚 

SRC (𝛽𝑥) 0.06311 0.60140 0.01177 0.06703 

Parameter  𝐾𝑡𝑥 𝐶𝑡𝑥 

SRC (𝛽𝑥) - 0.76400 0.03967 0.21501 
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The variation of 𝐾𝑡𝑥  in the secondary suspension is 
insignificant to the system’s dynamic behaviors. We 
found a strong influence of longitudinal dampers over 
the lateral damper in the secondary suspension system. 
The impact is also recognized by Mehdi and Shaopu [4]. 
The knowledge that the yaw dampers stabilize the 
vehicles is common to railway engineers. We enlist 
them as our significant parameters. However, the 
parameter is not considered essential [8] due to the 
selected probability distribution. The uncertainty is 
significant to both hybrid-global and global analysis. At 
different standard deviation values of 5%, 10%, and 20% 
on 𝐾𝑤𝑥  alone, the calculated SRC increases with 
uncertainty. The SRC values of 𝐾𝑤𝑥  are 0.3219, 0.60140, 
and 0.8213, respectively. More precise measurements 
can dramatically change the result. This concept allows 
maintenance engineers to mitigate the sensitive 
components’ risk values by measuring their parameters 
more precisely and accurately. 

In addition to the above analysis, we examine SRC 
of the equivalent conicity. Its highest value substantiates 
railway engineers’ recognition of the limited value of 
the conicity when considering safety issues. 

 
IV. CONCLUSION 

This study presents the effect of suspension 
parameters and conicity on the critical velocity for a 
linearized model of a two-axle bogie. The numerical 
method in solving the derived eigenvalue problem 
indicates that the velocity locates at the bifurcation 
point, beyond which lateral displacement of the 
vehicle rigorously oscillates until limited by flange 
contact forces. The hybrid-global sensitivity analysis 
using SRC is implemented to screen for the essential 
parameters. Specifying the significance of the parameter 
will assist involved engineers in improving the hunting 
behaviors of the vehicle. Longitudinal yaw stiffness of 

the primary suspension is critical to preventing 
excessive flange contact on a tangent track leading to 
flange wear and derailment. Other less important 
parameters are 𝐾𝑤𝑦 of primary suspension and 𝐾𝑡𝑦, 𝐶𝑡𝑦, 
𝐾𝑡𝑥 , 𝐶𝑡𝑥  of secondary suspension. In addition to 
suspension parameters, we found the most decisive 
influence of conicity on the value of critical velocity. 
These findings guided us to design suspension systems 
and rail systems better when the right-most attention 
was paid only to the essential parameters that matter 
to safety and maintenance issues. 
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