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Abstract

Navigation systems and online maps, Mobile application, and other platforms, are becoming increasingly
important due to increasing users and providers. Place names or geonames (geographic names) are essential
sources of information that users tend to use as keywords in their searches. Including storing these data in different
categories. This research aims to create a model capable of extracting geonames and automatically categorizing
them from the social media source of Twitter, one of the popular platforms in Thailand. It is a fast and always up-
to-date information source, providing the opportunity to discover new geographic locations and helpful in gathering
geospatial information without needing a field survey. Named-entity recognition standard tool cannot be used
directly because of the classification of name entities that are not categorized by geographic names. As for the
model, the conditional random field algorithm is applied to linguistic features such as place prepositions (near, far,
next, next to, etc.) and prefixes, for instance, school, market, temples, villages, etc. This study, the Corpus was
created from 28,082 Twitter messages, representing 80 percent of the 22,445 training set and 20 percent of the
test set of 5,617 messages. According to the algorithm used to word tokenize, the experiment was designed into
two main groups. The study result of the model with the highest overall accuracy (F1) was 0.946, which provided

sufficient overall accuracy for relevant applications both on the web browser.

Keywords: Geoinformatics, Machine learning, Natural language processing
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futfesun feduldifies quadieram fuitemeudadmu
Aelne [19]

4.6.7) pruantsy 9 uenwileananauTAfina A
TuthasuuddslinaautAdu o Mhanlffsduliun an
817789U84A1 (word length) JULUUYBIAT (word shape)

' =

wu daqavusenauluan Tn1503UY899195813149A0

o o 4

deyanued

o

P

il
Woual dn1wilvenauiuniwidngy n1si
gnuseiivay 59U Slufineusie q Usenausgludisig

wanasiegeilandunaandRnuangIen 2

A13197 2 @ aguiegnsileaidunaananldlunide

Feature Function Return of function
POS-tags <NCMN>,... , etc.
Preposition word, False
Prefix word, False
Suffix word, False
gazetteer word, False
N-gram word, False
Space True, False
Word length 28
Word shape Eeedd TTTTTT

INANT1IN 2 wanstegrevesilesnduanandivay

o i 1A

fegeA e duAunn Tnud1nsu POS-tagss aglunas

#1&991n PyThaiNLP §afiue1 POS-tagss yaamluguLuy

Orchid corpus, HaAFUYNUMBFIATUNYUT AUFT N-gram

°

Handuazauauwdusany waninlaidideulyfvuali

Aurndu False wu winddfiagly set vaardssiolull

set(('ag', o', e, TUfe, undie dant ving  vdu \leq
fald a0’ w5990, aseaiu’, seinuny',..... Re' Rany,

v

19, 19t Traumnduandumdinuly set 4198y way
anvineAeilsidunuantasu 9 loud ameludfidosing
150l ANUEIVBIAN WU A1 “@unutu” avAuAu Ty
AAVUNUAILTIIUAIDNYITVOIAIAD 7 UazTUTIeuead
geluiidlie Usznoulufemdnusmundanguiluguie

FL8n, Fonysa wling, daw T98931958nINsnYs

' | o 1

y3aly 19U A1 “51u Coffeebeans @8nun1s1nau” i

1Y

ugu
7 udu

Nudlen 319U09ANRLAUAITY “ Eeeeceeeeee
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4.7) n30slenldlun suseaana
Tuideiandnlasazluduvosnwlsunsy ads
deild sadmdnennslunisuszanana
4.7.1) nrwlUsunsuuazedsdidailtlunimmaass T
udseildmwlwsowduntwngn Tnefinnsldadadds

910 scikit-learn wag sklearn-crfsuite WBAS19LUUINADY

CRF 57u83A89A149970 pythanlp ieUszaianatoaiu
\esduuassad (tokenization)

4.7.2) w30ellenl#lunisuszuaaa Wu gaming laptop
dell inspiron 7559; ram 16 g¢b; gpu nvidia geforce gtx

960m; LIAMMIIUNSENNULUUTIABY 3 B4, 30 U

‘ Tasaudamunly infutaindudnusisusazuutdusme A wiau min 2090500 3 v funsdsinag

l

fAaA1 (Word Tokenization) #1 PosTag 910 Token

Flas '8u, e w170, [(“las’,’PRON’),('Ax’,'VERB’)

e Uand”)  EmsUinng]

5o

(¢ 7 PUNCT ) Caigwssinas’,’ NOUN’)]

67981901591 featurization
def word_feature(word):

features = {

‘bias”: 1.0

‘word’: word,

#2084 feature function \

def prep_listword):

prep_list = Sct([‘ag‘,‘ag‘ﬁ‘,'
47, dhautin)
if word in prep_Llist:
return word
else:

return False

def _shape(word):

o

‘word[-3:)" : word[-3],

‘postag’ : pos}

return features

|
v
o
!il'ayafnmuns‘:mums featurization

[,
{'bias":1.0, word : yu¥al, ‘prefix_hp' am.,
..., ‘postag’ : NCMN3,

/

JUN 2 : uaneiegenisarailandunmudnume (featurization)

9n3U 2 LLﬂﬂd@f’JaEJ'N%UG]’?JUﬂ’]iLG]%Em%alI“aLLazﬂ’ﬁ
1 featurization latiesa1nn1sanaluudazUszloacie
newmm 1138 arttacut 910 PyThaiNLP n&sanntiuisia
POS-tagss ﬁ?&lgﬂu‘u‘u%@d Orchid corpus kagAnaaInay
sULUVT84 10B tags niawiiadaguuuuvestoyadililunis

EIﬂBJ‘L!LLﬁ%‘V]G]?{E)‘ULL‘U‘U"S’]@ENEL‘L!EULLU‘U Conll2003 #&$31n

]
o
o

[

AEUANYEU

q

fufsazihdeyaruflefdu afranieuld lag
Kadwsnduneuiiilerh featurization azeenuidudeya
WUy dictionary 3aifiu key 1Judeiladdudild way value
\Judrudifladduldfudnduandauansiiegislilusde

ool 4.6.7
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5) Han133vuazaiuI1eNa
ﬂ’l'ﬁﬁ?’]LLuﬂ‘ﬁE];Jua%aﬂﬁﬂ?ﬁﬁ%@ﬁ]ﬂﬁ]’]ﬂ%’aﬂﬂﬂﬂEJS[,GZIJLL‘U‘U
avsneuRtULoaLTUnNTaALUMaanSluNTILUNDEN
\HunguaunudnvaziuunliuozdinasdeUszansam
YDILUUINADY
5.1) MIUssiulssansn ImyasuUTIaed
TumAseidenldumng 3 ¢ Ao Anuuaiug (precision),
ANUATUIIL (recall) waz Anmgndedlagsiu (F1) ely
n1sUseifiuvavUszifiuainanugnaeslusedudl (phrase

o

level) wiouviaiinnugnsadlusedu token wandliniugiu

LwiiJisﬁm%mW%%mummgﬂé}'aﬂuizﬁuﬁ%ﬁwé’ﬂ



TP
Precision = (1)
TP+FP
TP
Recall = 2)
TP+FN

Precision*Recall

F1-Score = 2% (3)

Precision+Recall
Tay TP fe S1ududeyaiiuuudiassainoonunlinsaiu
URHGIWT
FP o Suaudeyailaildfinisiiuliuduuudass
anneani
FN Ao Saudeyafimsiiuliwsivuudiaediannsa
afineanula
dmiunsusziudszaniameie Fl-Token Lilgaag

v i3 o A

LaignAvsasufIutinig

Y

Aeansiazaiaveniimaninidessnuiaindeainululy

o

TEeRN 2931NNNSASIHUUTIAD T
WieauAdIulndUNTveaTe Feg1aguy MsAN F1-Token
Useleadn “Tualihlvauasnutaegaay dyauiin” wand

Mog1nugUn 3

NUIEITDIAT FfirL AT

7 O B-NAT FP
waivh B-NAT B-NAT TP
a9 FNAT o FN
UATNU B-ADMIN B-ADMIN | TP
&gl 0] O

HAR o] o)

o o} o)

AFAUNIN o} o)

JUN 3 : wanedeg 19N sMIAn F1-Token

9N3UT 3 A F1-Token il TP = 2, FP = 1, FN
= 1 Precission = 2/(2+1), Recall = 2/(2+1), F1 = 2*[(0.67*
0.67)/(0.67+0.67)] = 0.34 ward1miu F1-Phrase Joya

) &

#1i1 2 token Wuargnl

o

Ay 1 tag LAED TInTaIUnTs
d1ulnvad token RalulnainAnaunlaannLuuIIaoIin
W (i1, B-NAT), (24, I-NAT), (WASWU, B-ADMIN) 3%

593 token kag tag LUy waidnlvs, NAT way uasNUY,
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ADMIN ?fiqmﬂgﬂﬁ 3 daunfudiiaitles wuusiaodld
fmau token gavheRindadioiuuudtasddismeuiiislu
n5dli 91ndheEeriduan F1-Phrase 1§01 TP = 1, FP
=1, FN = 1, Precission = 1/(1+1), Recall = 1/(1+1), F1 =
2*[(0.5*0.5)/(0.5+0.5)] = 0.25 31NF19819919A UL NUI
AISRITUTISERU F1-Phrase 11031 Wlosannwadns

gANeveILUUINRRWBNlMansIATUANY Tl

5.2) YszansmmveauvyTaesaintegimansanten

Tnouanaadnsaumssd 2 Fapnnduiuasiitiugu
9gUULUUIIRDY CRF d7lerivu optimizer Aa LBFGS dn1s
IgtanduamuanyazAnivnl Anuvas 3Us1evesi uax
wihfivesd (POS-tags) tneraninnsduuniunuddouds

sanfunquauilsidunadnuazeaall

a ™~ = ' v ' s
AT 3 : LLﬁ(ﬂQﬂ'ﬁL‘UﬁEJ‘UL‘1/1EJ‘Uﬂ?ﬂ?ﬂﬂgﬂm@ﬂiﬁﬂi?ﬂi%%??Q‘W\‘iﬂ“ﬁ‘u

AadnvarluwuuIaes CRF

Tokenize Gram Gazetteer F1- F1-
Library Token Phrase
newmm 3 - 0.909 0.881
newmm 3 4 0.91 0.882
newmm a - 0.908 0.885
newmm 4 4 0.908 0.885
attacut 3 - 0.95 0.938
attacut 3 4 0.956 0.946
attacut 4 - 0.951 0.941
attacut 4 4 0.956 0.946

91nA15797 3 NQUUBILUUTIAeIzLUean Y 2 ngu
3INgane3NuNlAndn Ae newmm wag attacut lnenudn
wuudaesdild attacut iWusdadlienanugndadagsa

o

Tusgsiuzgandt newmm fe 0.946 @3u newmm fig 0.885
Tneuuusaesldasiam newmm thumudn wuushaesiild
4 gram 3¢l gazetteer \unadnvarnsoly Alvie F1-
Phrase wiituita 2 wuu fe 0.885 wavdmiunguiildn
AU attacut WU3N 3 gram %se 4 gram LAYAINUUUITIADS
Alvinnugndedassingeiian wanimanugnioses

mﬁ%mmwammﬂsxmmm%aqﬁmam% AUAITIIN 4
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M50 4 ; waneseaBeansiuunTegiimansauviinuesaniud

TAG AURUY Precision | Recall F1

ACP anufinw 0.946 0.946 | 0.946
ADMIN YDULYHNITUNATDY 0.964 0.951 0.958
BSN 1ATdTNIY 0.913 0.808 | 0.857
DEP WeasTnauA- v lng 0.949 0.903 | 0.925
FPLACE | anuiifioguentssmelng 0956 | 0.869 | 0.91
GOV dineu denuitssnis 1.0 0.84 | 0.913
HP A0UNLIUA 1.0 0.958 | 0.979
MKT nan 1.0 1.0 1.0

MON | ayan33d 2adeu 1.0 1.0 1.0

NAT aonuiinusssued 0.909 | 0.909 | 0.909
RCT AIUAD1TUL ﬁiuﬁ‘l‘éﬂ ﬁ‘lﬂﬂJﬁ‘W'] amu‘ﬁ'ﬁuwmmwm 9 0.87 0.909 0.889
RES annuiiinende 0.964 0.9 | 00931
ROAD | auu %0 0979 | 0903 | 0.94
RP aonuiiddynieeaun 0.962 0.98 | 0971
RT Fuoms 0.946 0.953 | 0.95
STORE | $uAvuingen 1.0 0.917 | 0.957
TRAN aonilyudanavu isa aandsalyl salaih vise 0.925 0.949 | 0.937
OTHER | anufidu 9 1.0 10 | 10

1y
by

21nA137497 4 amgnifesiaesaudsdmiunisaiia
na1e F1-Phrase Wigsagnafien esanifunmsadndi
asufuudioonunanusglen vestegiimaniiidu nan
oya33¢ veanuiidu 4 fimnugniadassiniigennndi

v
[

Fudoyadu F1 Ae 1.0 iia1aiilonin naradindamin

4

uiume “natn” Wunudnuasfivudaiwenoenain

&

[RGB
Y

2D,

wliiny durinvesannuiiiien F1 desiidn Aoo1A1s

e

o w

d11ne1u (BSN) e 0.857 visdlenvaziiiosannifuied
ARUYIEAMUTAINTAIEKAEININTENINBUARAS TIUD

OB DIANTHAN 9 DYNVIALADT

5.3) Transition Score and Feature Learns

) o v X < \ &

%aiuwamauazLﬂumiaqﬂﬁW‘Wiamaﬂmmm%L‘Uumaa
wuudnaedlunisviiue tag vestenliAmans imind tag
Tnuifian transition geagiansimuuinedlenmanizadey
auluusiay tag Huuazdiuves feature learns agtdunis
WARINAYBIAEN YT A INAADUTE AN N UBILUUTIABY
Taglusiidedazuandlu 30 d1dunsnvesnuanyvued

WUUTIABASEUIUARIRNATNT 5 6 uag 7

106

T8 nm15197 5 tag Ailian Likely transition q&ﬁqm I-
MKT -> -MKT &0y tag Miludiugosnuneaiuisie
Aa1n nuEeandastu MKT 7ilen F1 = 1.0 w3e 100%
WagdIRUA 2 AU 3 Ao B-TRAN -> I-TRAN Wag B-RES -> |-
RES Tme) TRAN waz RES lien F1 18u 0.937 waz 0.931
AUAGIU

9nA5197 7 Fududruvesnudnvasiuuudiass
Fousls wuinlu 30 Suduusndadunavinfunuudiass
fazfundnuasidu ngram uazdiu o Tnewuindu
freunth 3 M (word[-3)) 1nflgn sesasnAenounii
2 #1 (word[-2]) Lﬁaaiﬂmﬂ M1314 feature learns F9NU
n-gram WUV quadigram TWnauaniuAimnuihaziduves
wuuinassgeiian wazdnnudnuvaguisiadladio sUsh

Ao

Y99A1 %30 HeAdu shape word wuinlinafffiu tag ¥

\8u B-ADMIN waz B-ROAD Fsdufiugiuladn Fevauiun

o
o

ANSUNASEY LUU F9WIA 81LN8 NIDAIUA UNITUONYTLD

v

WMTUEINUAILN 19U D.nunsy’ Wanuileiduilagl

ARty TTTTTTT Weuuudraesvenuanvuzifudilale

o

e3uIndu ADMIN 5979 tag MUuauuds Snaziduas
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aavinevsalludiulsenausg nelud Wy ‘aauaiansin 60° AN5197 6 : UARITIUAZIBEAYBIAN transition Rlladasauiy (e)

doruilaidugussvesiasfuandu TTT. dd | Tes Target tag A1 transition
2 v O [-STORE -6.451
Wunu
O |-DEP -6.699
o o . oA o O |-RP -6.713
M99 5 ; LEAITIEaELBEAUDIAN transition NARDEAINAL
: . O [-BSN -6.822
Tag Target tag A1 transition
O [-ROAD -6.985
[-MKT I-MKT 7.166
O |-RT -8.325
B-TRAN [-TRAN 6.979
B-RES I-RES 6.927 . ‘
A15197 7 ; wansS1EavidunRMaNYEALUUT AR auS
[-NAT [-NAT 6.713 : b
Tag Feature Feature
B-GOV -GOV 6.633
score
[-ACP I-ACP 6.603
B-RCT word: 3111 4.449
B-MKT |-MKT 6.599 —
B-ROAD -LwordIasalaanania 3.342
[-ADMIN |I-ADMIN 6.516
O word/[-3:]: 3.329
B-DEP |-DEP 6.491
O BOS 3.284
[-OTHER [-OTHER 6.478
B-RP word[-3:]:11% 3.254
[-GOV -GOV 6.472
B-RCT word[-3::119 3.202
B-HP |-HP 6.391 "
B-TRAN word:aunudunauLling 3.058
[-TRAN [-TRAN 6.379
O word: 3.015
B-ACP I-ACP 6.321
0 word.shape_word(): 3.015
B-RT I-RT 6.316 -
B-DEP word/[-3:]:gna 2911
[-RCT |-RCT 6.304
B-ADMIN word:NNi 2.789
[-RP |-RP 6.291
B-ADMIN word.shape_word():T. 2.750
[-RES I-RES 6.278 — -
B-RT word:Unuisuena 2.733
[-STORE [-STORE 6.239 - ’
B-ACP word[-3:]:913 2.642
o o . LA w o B-DEP word[-3:]:nou 2.634
A51991 6 : KANISIPALLDEAVBIAN transition NldadpenuiY
. — B-DEP word/[-2:]:bk 2.632
Tag Target tag A1 transition -
B-DEP word:t8uAI15555 2.619
[-BSN I-RT -1.809
B-DEP -2:word:Afin 2.600
[-ROAD B-ROAD -2.241
B-ROAD word.shape_word(): d 2.589
I-MON -3.078 -
O word/[-2:]:55 2.578
O |I-OTHER -3.975
B-ADMIN word/[-3:]:uri 2.562
O -MKT -4.825
B-ADMIN word.shape_word():T. 2.542
O I-NAT -4.919 -
0 word-1[anti 2.536
O |I-ADMIN -5.694 :
0 word.prep_list(:gjsuii 2.536
O [-TRAN -5.789 - :
B-ACP word/[-3:]:9#3 2.529
O |-GOV -5.989
B-ROAD word[-3:au 2.518
O I-ACP -6.024
B-DEP -Lword-a@euauaIs 2,504
O |-FPLACE -6.125
0 word.shape word():TTTT..... T 2.492
O I-RES -6.165 -
B-FPLACE word/[-3:]: 41U 2.479
(0] [-RCT -6.272
B-RCT word:@Iuanang 2.473
O |-HP -6.385 :
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5.4) MsFguLigunusUUTIAeNaY
\WesanuuudiaesdunsondesiloMmIuninsgiu
MNINUNIT3ITeLaNE (standard ner tools) lail@idinsuus

a

Usgnnuesdegimansiinuduauidedidiaiunse
anldlaviud dsdugidedainoinuanvaeiiuuiiaes
Juldmniduuwuusiass CRF wilauiu wazihaotnenssy
v 3 a 6 v I 1 =
pSouvanIsdmesuntemnidulasangUssa ey tae
1111910 thai-ner CRF 483 PyThaiNLP , Bi-LSTM Wag Bi-

LSTM-CRF [15] Wanafeeemaumsnsi 8

M1599 8 : waneTIEMTUSEUiuAIAUgNFRdlAETINYeN

WUUDI@89 CRF+attacut+4 gram AULUUTIAD9DY

Model Detail F1-Token F1-Phrase
1 CRF+attacut+4 gram 0.956 0.946
2 CRF (PyThaiNLP) 0.894 0.80
3 Bi-LSTM 0.91 0.827
il Bi-LSTM-CRF [15] 0.92 0.87

31A15197 8 n1siTeuliisuAInugndeslag sy

138 F1 nUdn 3 LUU91809 tAgdlkuud1asd CRF ¥84

'
=

PyThaiNLP, Wuui1aas Bi-LSTM wag Bi-LSTM-CRF [15] &

dm¥unuusassdl 2 CRF 989 PyThaiNLP duldfleridu

[

Audnuueine Audnvazvas n-gram THTu bi-gram
mmaa‘ud’]Lﬂuﬁwnwﬂﬂnaﬁgwuw%lﬁ, Aoy,
Forinenelud, 1uduaansely uavgavineds POS-tags
T¥ein F1-phrase ogfi 0.8 dmuuvudnaesd 3 dudu Bi-
LSTM ‘ﬁ?uiéfjj word embeddings 910 Thai2vec [4] &

s o

W’]S’]ﬁl,maimﬁ 143U neuron 256 neuron, drop out 0.3,
adam optimize, IuulunsEnruLUUTIa8 50 epochs
T¥ein F1-phrase ogfl 0.827 uavgavneuuusiassii 4 Bi-
LSTM-CRF 3381933aa18menssuann [15] Tneidunisld
word embeddings 910 Thai2vec 39uAUN15Y1 character
embeddings fiwsnfiwmessil $1uau neuron 256 neuron,
drop out 0.5, adam optimize, 371uaulun 158 nelu

WuUIIaes 50 epochs 1A F1-phrase agﬂ 0.87

6) @3una

v
i %

ULLUY

q

plimaninndennuniwineiieguudedinuesulatiatig

TuanAdy lunisadanuuiasiieaindeyade
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ninwes Ingainn1sdidana3iiu CRF unldaunuinla
Anugndaslunisainieenegiimanseonuilaiiniig

neosdaanunsatn lulduls waznisswunvlaveade

e

A& oY va v S v = &
anunfhladanugniesaduvatetudeya (>0.9) Fetu

v =

YBUAN
Y

'
a

fdguruinnintrutoyadume BSN 13991015

Y
v

g 1esndnuaznisnstevesniulnelalating
pes Tavsenafinnuimufuieansuuudu fide
99ANT W3oUAAA LW “1a1 1We 33u” wnlull gazetteer
\dusvaglunsimuanadnvureisalianusoadade
a1mseanundaauls uimn@ewdu “e1nsiantl
i azansoadatoyasenuiliiosninimglassadi

1%

GRMN

@ '

AUy
Y

“91A15” \JunudnuuLAi FauITeliing

v =

VBDUAY

U

1A v

AMFNYMNENTauNRgIvIEAIZaU

giimans lnga1nnsiinsgidsinuudassdoudnui
flerduiduynunildssysiumidinaidauiniuma
thazifuvesnuudiaes CRF Alvidaugndoslassind
fgplurAdel suielaidusuios

NNSLUSIUTBUUTEANS NI NVRIWUUI1aDd CRF A1

a

A1 F1 fngaluauideiiuwuuiiassduis CRF v09

a v

PyThaiNLP AU CRF Tua1uidy

¥
av aa v

IPYUNNTTET

Uninisasenuanuey

iy agluany Naudnyrlagidunteya

a a

Fegfienansuuudinziadumanadiviliaunsausuld

Audeyaviaiilifnitvaeiuuudtaesduasravuiionsly

41U NER lnenald wardnusensvilsadsdeyaluanided

foualdlugunvinlinnslduuudiaes CRF Tinafinna

=) Y a o Y ] a ‘1! a
vselnalfsiuiulasaiigussamiiieudalusuranmind
mafiususudeyafinnntuetsasinavilinan1s3desg

Tuandl

v
a '

UNUI

a s

NNUITY nsafadeyavegieansianizly

Awlnedudndunazdeaiinisadresilaidunudneuey

q

FN124318TVNUNIIUTlagRNIE WU Ynung

o

Funts JUS1903A0 viednusunsy (gazetteer) wliiu

o =

gUb

17

o & ¢ =
& psnlulanganignisdsiu

£ [ % a

TNANNUVDUAN

Y

nilslunnanuue

UIARNINIIN T4 Hounlngdu niedinig

[ ' 1Y

AEUIINNU

7

GhGRIONOIET lasangUsEamiion v3ens
111 transfer learning 11 BERT unldeiue1avinlalaonaans

aa X
PhunIulusunan
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