
Performance Improvement of Tree Algorithm Using Adaptive
Splitting Algorithms

Warakorn Srichavengsup1* Kanticha Kittipeerachon2

1*,2Computer Engineering Robotics and Technology Research Laboratory : CERT,

Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand

*Corresponding Author. E-mail address: warakorn@tni.ac.th

Received: 22 December 2021; Revised: 22 July 2022; Accepted: 14 September 2022
Published online: 22 December 2022

Abstract
In this paper, we propose the Adaptive Splitting Type-1 and Adaptive Splitting Type-2 algorithms that can be

used in conjunction with the existing tree algorithms. binary tree and ternary tree algorithms divide users involved
in a collision into a constant number of groups. Splitting users into a fixed number of groups without taking into
account the number of collision-related users results in lower channel utilization. Therefore, the proposed
algorithms are designed to improve the performance of tree algorithms by adjusting the number of groups to be
split to match the number of users involved in the collision. It can be observed from the results that Adaptive
Splitting Type-1 and Adaptive Splitting Type-2 algorithms perform better binary tree and ternary tree algorithms in
terms of average delay, which indicates that the proposed algorithms can be used to enhance the efficiency of
the tree algorithms. In particular, the Adaptive Splitting Type-2 algorithm offers the best performance.

Keywords: Adaptive splitting algorithms, Contention resolution, Tree algorithm

57

Journal of Engineering and Digital Technology (JEDT)
Vol.10 No.2 July - December 2022

I. INTRODUCTION
In the era of high-speed communication, there is a

quickly growing demand for large data transmissions.
One problem in transmitting large and continuous data
is a data collision. Data collisions occur when multiple
users would like to transmit data at the same time. In
order to alleviate the collision problem, several MAC
protocols have been proposed. MAC protocols can be
broadly classified into two types: contention-free MAC
protocols and contention-based MAC protocols. In
contention-free MAC protocols, a channel is allocated
equally to each user. Therefore, there is no collision of
data. Examples of contention-free MAC protocols
include: Time Division Multiple Access (TDMA) [1], [2],
Frequency Division Multiple Access (FDMA) [3], [4] and
Code Division Multiple Access (CDMA) [5], [6]. One
limitation of contention-free MAC protocols is in the
event that the user has no data to send. A channel that
is reserved for the user will be wasted because other
users cannot use that channel. In contrast, contention-
based MAC protocols are suitable for situations where
there are many users in the system and each user may
have different transmission requirements. Examples of
contention-based MAC protocols are as follows: ALOHA
protocol and its variants [7], [8], Carrier Sense Multiple
Access (CSMA) protocols [9], [10] and tree-based
algorithms [11]–[13]. Tree-based algorithms can support
a large number of users and are able to resolve data
collisions very well.

The principle of solving the data collision of tree-
based algorithms can be described in detail as follows.
When a collision occurs, the users involved in the
collision are divided into subgroups. If another collision
occurs in a subgroup, the users involved in that
collision are divided again into subgroups. The collision-
resolving process continues until all users successfully
access the channel. The tree-based algorithm has a
weakness in that the users involved in collisions are

always split into a fixed number of subgroups regardless
of the number of users involved in collisions. For
example, in the case of two users involved in a collision,
the appropriate number of subgroups is 2. Dividing the
users into 3 or more subgroups will cause the idle slot
and inefficient access to the channel. Therefore in this
paper we introduce the Adaptive Splitting algorithms to
enhance the performance of the well-known tree
algorithm.

This paper is structured as follows: Section II, we
describe the process of solving the collision of known
tree algorithms. The Adaptive Splitting algorithms are
explained in Section III. The results and discussion will
be illustrated in Section IV and followed by a
conclusion in Section V.

II. REVIEW OF EXISTING TREE-BASED ALGORITHMS
In this section, we will describe the collision

resolution mechanisms of binary tree and ternary tree
algorithms.
A. Binary Tree Algorithm

Binary tree algorithm was developed by Capetanakis
in 1979 [14] and Tsybakov and Mikhailov in 1978 [15].
For the binary tree, when a collision occurs all relevant
users are randomly split into two groups. Fig. 1 shows
an example of the collision resolution mechanism of
binary tree algorithm. From the figure, we can see that
in the first slot, there are 3 users accessing the same
slot, resulting in data collision. The users involved in
the collision are divided into 2 groups. We found that
another collision occurred in 3rd slot. The users
involved in the collision are divided into 2 groups, and
the collision resolution will continue until all users
have completed access to the channel. We can see
from the figure that the total number of slots used is
14 slots.

58

Vol.10 No.2 July - December 2022
Journal of Engineering and Digital Technology (JEDT)

8

14

11

32

10

9

1

D,E,F,G

A B,C D,E,F

D

3 4 5 6 7 8 9 10 11 12 13 141 2

G

A,B,C,D,E,F,G

A,B,C

B,C B,C B C D,E,F,G D,E,F D E,F E F GA,B,C A

E,F

1312

E F

54

B,C

76

B C

Figure 1: Collision resolution mechanism of binary tree algorithm.

B. Ternary Tree Algorithm
Binary tree algorithm has a significant degradation in

performance when there are too many users in the
system. This is because even if collision-related users
are split into two groups, there is still a high chance of
a collision in each group. In order to solve the collision
problem in the event of a large number of users, an
algorithm that divides the users into 3 groups is
proposed. This algorithm is called ternary tree
algorithm [16]. Fig. 2 displays an example of the
collision resolution mechanism of ternary tree
algorithm. The contention resolution mechanism of
ternary tree algorithm is almost the same as the binary
tree except that for every collision all involved users
are split into new 3 groups. From the figure, the total
number of slots used is 12 slots.

121142 3 6 7 8

9

10

1

D,E F,G

A C D E F

5

3 4 5 6 7 8 9 10 11 121 2

G

A,B,C,D,E,F,G

A,B,C

B C D,E D E F,G F GA,B,C A

B

Figure 2: Collision resolution mechanism of ternary tree algorithm.

III. ADAPTIVE SPLITTING ALGORITHMS
In this section, we shall explain the collision

resolution mechanisms of the proposed algorithms.

A. Adaptive Splitting Type-1 Algorithm
The Adaptive Splitting Type-1 algorithm has a

collision resolution mechanism similar to the ternary
tree algorithm. The difference is that when the number
of remaining users in the system is equal to 2, the users
involved in the collision are split into 2 groups instead
of 3. For example, in 9th slot of Fig. 3, there is a collision
between last 2 users. These 2 users are divided into 2
groups.

1142 3 6 7 8

9

10

1

D,E F,G

A C D E F

5

3 4 5 6 7 8 9 10 111 2

G

A,B,C,D,E,F,G

A,B,C

B C D,E D E F,G F GA,B,C A

B

Figure 3: Collision resolution mechanism of Adaptive Splitting
Type-1 algorithm.

The pseudo code of Adaptive Splitting Type-1 algorithm is given
in Algorithm 1.

Algorithm 1 : Adaptive Splitting Type-1 algorithm

while the number of remaining users in the system is more than 0
if number of remaining users is equal to 2

users involved in the collision are split into 2 groups else
users involved in the collision are split into 3 groups

subtract the number of successful users from the number of
remaining users
end while

B. Adaptive Splitting Type-2 Algorithm
The Adaptive Splitting Type-2 differs from Adaptive

Splitting Type-1 as follows: In the case of Adaptive
Splitting Type-1, users are split into 2 groups only if the
collision occurs between the last 2 users. While in all
cases of collision between two users, Adaptive Splitting
Type-2 always divides the user involved in the collision
into 2 groups. For example, in 5th and 8th slots of Fig.
4, there are collision between 2 users. The users
involved in the collision are divided into 2 groups.

59

Journal of Engineering and Digital Technology (JEDT)
Vol.10 No.2 July - December 2022

1042 3 6 7

8

9

1

D,E F,G

A C D E F

5

3 4 5 6 7 8 9 101 2

G

A,B,C,D,E,F,G

A,B,C

B C D,E D E F,G F GA,B,C A

B

Figure 4: Collision resolution mechanism of Adaptive Splitting
Type-2 algorithm.

The pseudo code of Adaptive Splitting Type-2 algorithm is given
in Algorithm 2.

Algorithm 2 : Adaptive Splitting Type-2 algorithm

while the number of remaining users in the system is more than 0
if number of users involved in the collision is equal to 2

users involved in the collision are split into 2 groups else
users involved in the collision are split into 3 groups

subtract the number of successful users from the number of
remaining users
end while

IV. RESULTS AND DISCUSSION

In this section, we shall first investigate the
performance of tree algorithms with different number
of split groups under light loads. Let the variable Q
represent the number of groups divided. As can be
seen in Fig. 5, the average delay increases with the
number of users in the system. This is because the
more users in the system, the higher the chance of the
collisions and it will take more time to resolve the
collision. Furthermore, binary tree provides the best
performance when the number of users in the system
is less than or equal to 2. Whereas ternary tree gives
the best results when the number of users in the
system is greater than or equal to 3.

When increasing the number of split groups to 4 and
5, poor performance is observed. This is because
splitting the users into too many groups will significantly
increase the idle slots, resulting in lower performance.

Number of users (N)

1 2 3 4 5 6 7 8

A
v
e
ra

g
e

 d
e
la

y
 (
s
lo

ts
)

0

5

10

15

20

25

Q = 2

Q = 3

Q = 4

Q = 5

Figure 5: The average delay vs the number of users with varied
number of split groups in case of light loads.

Fig. 6, demonstrates the performance comparison
of tree algorithms with different number of split groups
under heavy loads. It is found that the average delay
tends to increase with an increase of the number of
users. This decrease in performance is due to the
increased number of collisions caused by a large
number of user attempts to access the channel. It can
be noticed that the result is similar to the case of light
loads with the following details: Ternary tree gives the
best results. Moreover, dividing users into 2 and 4
groups provide similar performance. While dividing
users into 5 groups gives low performance.

Number of users (N)

20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 d
e
la

y
 (
s
lo

ts
)

50

100

150

200

250

300

350

Q = 2

Q = 3

Q = 4

Q = 5

Figure 6: The average delay vs the number of users with varied
number of split groups in case of heavy load loads.

Now we would like to turn our attention to investigate
the effects of the number of split groups on the number

60

Vol.10 No.2 July - December 2022
Journal of Engineering and Digital Technology (JEDT)

of idle slots and the number of collision slots. Figs. 7
and 8 display the relation between the number of idle
slots and the number of users with different number of
split groups under light and heavy load respectively. As
we can see, the number of idle slots increases with the
number of split groups. This is because in the case of
the same number of users, the greater the number of
split groups, the more idle slots are likely to occur.

Figs. 9 and 10 illustrate the relation between the
number of collision slots and the number of users
under light and heavy load respectively. As we can see,
the number of collision slots decreases with the number
of split groups. This is because when the number of split
groups is large, there is a low chance of the collision.

Considering the total number of collision and idle
slots as shown in Figs. 11 and 12, it can be noticed that
when the number of users is less than or equal to 2
splitting the users involved in a collision into 2 groups
provides the best performance. However, when the
number of users involved in a collision is greater than
or equal to 3, splitting users involved in a collision into
3 groups offers superior performance. From the results,
we can conclude that the number of split groups has a
significant effect on the performance of the system.
Therefore, the number of split groups should be
carefully chosen to match the number of users
involved in the collision.

Number of users (N)

1 2 3 4 5 6 7 8

A
ve

ra
g

e
 n

u
m

b
e
r

o
f
id

le
 s

lo
ts

0

2

4

6

8

10

12

Q = 2

Q = 3

Q = 4

Q = 5

Number of users (N)

20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 n
u
m

b
e
r
 o

f
id

le
 s

lo
ts

0

50

100

150

Q = 2

Q = 3

Q = 4

Q = 5

Figure 7: The average number of idle slots vs the number of
users with varied number of split groups in case of light loads

Figure 8: The average number of idle slots vs the number of
users with varied number of split groups in case of heavy loads.

Number of users (N)

1 2 3 4 5 6 7 8

A
ve

ra
g

e
 n

u
m

b
e
r

o
f
c
o
lli

s
io

n
 s

lo
ts

0

1

2

3

4

5

6

7

8

9

10

Q = 2

Q = 3

Q = 4

Q = 5

 Number of users (N)

20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 n
u
m

b
e
r
 o

f
c
o
lli

s
io

n
 s

lo
ts

0

50

100

150

Q = 2

Q = 3

Q = 4

Q = 5

Figure 9: The average number of collision slots vs the number of
users with varied number of split groups in case of light loads.

Figure 10: The average number of collision slots vs the number of
users with varied number of split groups in case of heavy loads.

61

Journal of Engineering and Digital Technology (JEDT)
Vol.10 No.2 July - December 2022

Number of users (N)

1 2 3 4 5 6 7 8

A
v
e
ra

g
e

 n
u
m

b
e
r
 o

f
c
o
lli

s
io

n
 a

n
d

 id
le

 s
lo

ts

0

5

10

15

Q = 2

Q = 3

Q = 4

Q = 5

Figure 11: The average number of collision and idle slots vs the
number of users with varied number of split groups in case of

light loads.

Number of users (N)

20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 n
u
m

b
e
r
 o

f
c
o
lli

s
io

n
 a

n
d

 id
le

 s
lo

ts

20

40

60

80

100

120

140

160

180

200

220

Q = 2

Q = 3

Q = 4

Q = 5

Figure 12: The average number of collision and idle slots vs the
number of users with varied number of split groups in case of

heavy loads.

Now we would to compare the performance of
binary tree, ternary tree, Adaptive Splitting Type-1 and
Adaptive Splitting Type-2 algorithms. For the Adaptive
Splitting Type-1 algorithm, the users involved in a
collision are divided into 2 groups when the number of
remaining users in the system is 2. Whereas the users
involved in a collision are divided into 3 groups when
the number of remaining users in the system is greater
than or equal to 3. For the Adaptive Splitting Type-2
algorithm, the users involved in a collision are divided

into 2 groups if the collision occurs between 2 users.
The users involved in a collision are divided into 3
groups when the collision occurs between 3 or more
users.

Figs. 13 and 14 illustrate the performance comparison
among binary tree, ternary tree, Adaptive Splitting
Type-1 and Adaptive Splitting Type-2 algorithms under
light and heavy loads respectively. It is revealed that
when there is one or two users in the system, the binary
tree, Adaptive Splitting Type-1 and Adaptive Splitting
Type-2 algorithms have the same performance. This is
because all three algorithms divide the number of users
involved in the collision into 2 groups. Whereas a
ternary tree which divides 2 collision-related users into
3 groups gives lower performance due to more idle
slots. Moreover, when the number of users in the
system increases, the Adaptive Splitting Type-2
algorithm offers the best performance. This is because
it can effectively reduce idle slots with small increase
in collision slots. While binary tree algorithm gives the
lowest performance because even if a large number of
users are divided into 2 groups, each group still has a
large number of users, causing frequent collisions.

Number of users (N)

1 2 3 4 5 6 7 8

A
v
e
ra

g
e

 d
e
la

y
 (
s
lo

ts
)

2

4

6

8

10

12

14

16

18

20

22

Q = 2

Q = 3

Type-1

Type-2

Figure 13: The average delay vs the number of users for binary
tree, teranary tree, Adaptive Splitting Type-1 and Adaptive

Splitting Type-2 algorithms in case of light loads.

62

Vol.10 No.2 July - December 2022
Journal of Engineering and Digital Technology (JEDT)

Number of users (N)

20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 d
e
la

y
 (
s
lo

ts
)

50

100

150

200

250

300

Q = 2

Q = 3

Type-1

Type-2

Figure 14: The average delay vs the number of users for binary
tree, teranary tree, Adaptive Splitting Type-1 and Adaptive

Splitting Type-2 algorithms in case of heavy loads.

Figs. 15 and 16, show the average number of collision

slots for the system with light and heavy loads
respectively. When comparing all algorithms, it is found
that in the event that there are more than 2 users in
the system, binary tree algorithm has the highest
number of collisions. This is because the number of
users in the system is relatively much higher than the
number of split groups, so there is a high probability of
collisions. Furthermore, it can be observed that the
Adaptive Splitting Type-1 and Adaptive Splitting Type-2
algorithms have the higher average number of collision
slots than ternary tree. This is because Adaptive
Splitting Type-1 and Adaptive Splitting Type-2
algorithms divide users into 2 or 3 groups depending on
the number of users involved in the collision. When
users are divided into 2 groups, there is a greater chance
of collision.

Figs. 17 and 18 demonstrate the relation between
the average number of idle slots and the number of
users under light and heavy loads. It is apparent that
ternary tree algorithm has the highest number of idle
slots. This is because Tree algorithm definitely divides
the users into 3 groups while binary tree divides the
users into 2 groups and Adaptive Splitting Type-1 and

Adaptive Splitting Type-2 algorithms divide users into 2
or 3 groups. The larger the number of split groups, the
greater the idle slots are also more likely to occur. In
addition, it is found that the Adaptive Splitting Type-1
algorithm can help reduce idle slots slightly compared
to ternary tree algorithm while the Adaptive Splitting
Type-2 algorithm can greatly reduce idle slots.

Number of users (N)

1 2 3 4 5 6 7 8

A
v
e
ra

g
e

 n
u
m

b
e
r

o
f
c
o
lli

s
io

n
 s

lo
ts

0

1

2

3

4

5

6

7

8

9

10

Q = 2

Q = 3

Type-1

Type-2

Figure 15: The average number of collision slots vs the number
of users for binary tree, teranary tree, Adaptive Splitting Type-1
and Adaptive Splitting Type-2 algorithms in case of light loads.

Number of users (N)

20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 n
u
m

b
e
r
 o

f
c
o
lli

s
io

n
 s

lo
ts

0

50

100

150

Q = 2

Q = 3

Type-1

Type-2

Figure 16: The average number of collision slots vs the number
of users for binary tree, teranary tree, Adaptive Splitting Type-1
and Adaptive Splitting Type-2 algorithms in case of heavy loads.

63

Journal of Engineering and Digital Technology (JEDT)
Vol.10 No.2 July - December 2022

Number of users (N)

1 2 3 4 5 6 7 8

A
v
e
ra

g
e

 n
u
m

b
e
r
 o

f
id

le
 s

lo
ts

0

1

2

3

4

5

6

Q = 2

Q = 3

Type-1

Type-2

Number of users (N)

20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 n
u
m

b
e
r
 o

f
id

le
 s

lo
ts

0

10

20

30

40

50

60

70

80

90

Q = 2

Q = 3

Type-1

Type-2

Figure 17: The average number of idle slots vs the number of
users for binary tree, teranary tree, Adaptive Splitting Type-1
and Adaptive Splitting Type-2 algorithms in case of light loads.

Figure 18: The average number of idle slots vs the number of
users for Binary tree, teranary tree, adaptive Splitting Type-1 and

Adaptive Splitting Type-2 algorithms in case of heavy loads.

Number of users (N)

1 2 3 4 5 6 7 8

A
v
e
ra

g
e

 n
u
m

b
e
r

o
f
c
o
lli

s
io

n
 a

n
d

 id
le

 s
lo

ts

0

2

4

6

8

10

12

14

Q = 2

Q = 3

Type-1

Type-2

Number of users (N)

20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 n
u
m

b
e
r
 o

f
c
o
lli

s
io

n
 a

n
d

 id
le

 s
lo

ts

20

40

60

80

100

120

140

160

180

200

Q = 2

Q = 3

Type-1

Type-2

Figure 19: The average number of collision and idle slots vs
the number of users for binary tree, teranary tree, Adaptive
Splitting Type-1 and Adaptive Splitting Type-2 algorithms in

case of light loads.

Figure 20: The average number of collision and idle slots vs the
number of users for binary tree, teranary tree, Adaptive Splitting
Type-1 and Adaptive Splitting Type-2 algorithms in case of heavy

loads.

Figs. 19 and 20 illustrate the average number of

collision and idle slots as a function of the number of
users. These Figures reveal that Adaptive Splitting Type-
2 has the best efficiency in reducing wasted slots and
thus providing the superior system performance.

V. CONCLUSION

In this paper, we have proposed Adaptive Splitting
algorithms to improve the performance of existing tree
algorithms. From the results, it can be seen that the

number of split groups is a significant factor that affects
the performance of the system, hence must be chosen
cautiously. When comparing among binary tree, ternary
tree, Adaptive Splitting Type-1 and Adaptive Splitting
Type-2 in terms of delay performance, we found that
both Adaptive Splitting Type-1 and Adaptive Splitting
Type-2 algorithms perform better than binary tree and
ternary tree algorithms. In particular, the Adaptive
Splitting Type-2 algorithm obviously outperforms other
algorithms. Especially, in the case of heavy loads

64

Vol.10 No.2 July - December 2022
Journal of Engineering and Digital Technology (JEDT)

Adaptive Splitting Type-2 algorithm gives a delay of 10–
20% better than other algorithms. This is because it can
adjust the number of split groups to suit the number of
users involved in collisions. In case of collision between
two users, the number of subgroups divided should be
2, but in case of collision between more than 2 users,
the number of subgroups divided should be 3.

REFERENCES

[1] T. Zhang and Q. Zhu, “EVC-TDMA: An enhanced TDMA
based cooperative MAC protocol for vehicular networks,”
J. Commun. Netw., vol. 22, no. 4, pp. 316–325, Aug. 2020.

[2] J. Lee, H. Noh, and J. Lim, “TDMA-based cooperative MAC
protocol for multi-hop relaying networks,” IEEE Commun.
Lett., vol. 18, no. 3, pp. 435–438, Mar. 2014.

[3] J. Zhang, L. Yang, L. Hanzo, and H. Gharavi, “Advances in
cooperative single-carrier FDMA communications: Beyond
LTE-advanced,” IEEE Commun. Surv. Tut., vol. 17, no. 2,
pp. 730–756, May 2015.

[4] M. Geles, A. Averbuch, O. Amrani, and D. Ezri, “Performance
bounds for maximum likelihood detection of single carrier
FDMA,” IEEE Trans. Commun., vol. 60, no. 7, pp. 1945–1952,
Jul. 2012.

[5] B. Smida, S. Affes, K. Jamaoui, and P. Mermelstein, “A
multicarrier CDMA space–time receiver with full-interference-
suppression capabilities,” IEEE Trans. Veh. Technol., vol. 57,
no. 1, pp. 363–379, Jan. 2008.

[6] X. Peng, K. Png, Z. Lei, F. Chin, and C. C. Ko, “Two-layer
spreading CDMA: An improved method for broadband
uplink transmission,” IEEE Trans. Veh. Technol., vol. 57,
no. 6, pp. 3563–3577, Nov. 2008.

[7] H. Noh, J. Lee, and J. Lim, “ANC-ALOHA: Analog network
coding ALOHA for satellite networks,” IEEE Commun. Lett.,
vol. 18, no. 6, pp. 957–960, Jun. 2014.

[8] H. Baek, J. Lim, and S. Oh, “Beacon-based slotted ALOHA
for wireless networks with large propagation delay,” IEEE
Commun. Lett., vol. 17, no. 11, pp. 2196–2199, Nov. 2013.

[9] J. Tong, L. Fu, and Z. Han, “Throughput enhancement of
full-duplex CSMA networks using multiplayer bandits,” IEEE
Internet Things J., vol. 8, no. 15, pp. 11807–11821, Aug. 2021.

[10] A. Maatouk, M. Assaad, and A. Ephremides, “Energy efficient
and throughput optimal CSMA scheme,” IEEE/ACM Trans.
Netw., vol. 27, no. 1, pp. 316–329, Feb. 2019.

[11] W. Srichavengsup, K. Kittipeerachon, and C. Thongwan,
“Improving the performance of IEEE 802.11 DCF with constant
contention window by reducing the wasted time slots,” J.
Eng. Digit. Technol. (JEDT), vol. 8, no. 2, pp. 39–47, Dec. 2020.

[12] Y. C. Lai and L. Y. Hsiao, “General binary tree protocol for
coping with the capture effect in RFID tag identification,”
IEEE Commun. Lett., vol. 14, no. 3, pp. 208–210, Mar. 2010.

[13] A. J. E. M. Janssen and M. J. M. de Jong, “Analysis of contention
tree algorithms,” IEEE Trans. Inform. Theory, vol. 46, no. 6,
pp. 2163–2172, Sep. 2000.

[14] J. I. Capetanakis, “Tree algorithms for packet broadcast
channels,” IEEE Trans. Inform. Theory, vol. 25, no. 5, pp.
505–515, Sep. 1979.

[15] B. S. Tsybakov and B. A. Mikhailov, “Random multiple packet
access: Part-and-try algorithm,” Problems Inform. Transmiss.,
vol. 16, no. 4, pp. 65–79, Oct. 1980.

[16] P. Mathys and P. Flajolet, “Q-ary collision resolution
algorithms in random-access systems with free or blocked
channel access,” IEEE Trans. Inform. Theory, vol. 31, no. 3,
pp. 217–243, Mar. 1985.

65

Journal of Engineering and Digital Technology (JEDT)
Vol.10 No.2 July - December 2022

