

An Algorithm for the All-pair Shortest Path Problem
on Circular Trapezoid Graphs

Hirotoshi Honma1* Yoko Nakajima2 Tsendsuren Urangoo3 Yuto Tamori4

1*,2 Department of Creative Engineering, National Institute of Technology, Kushiro College, Japan

3,4 Department of Information Engineering, National Institute of Technology, Kushiro College, Japan

*Corresponding Author. E-mail address: honma@kushiro-ct.ac.jp

Received: 8 April 2020; Revised: 7 May 2020; Accepted: 22 May 2020
Published online: 25 June 2020

Abstract
The shortest path problem involves finding a path between two vertices in a graph such that the sum of the

weights of its constituent edges is minimized. This is a fundamental and important problem in graph theory, and it
has been applied for solving numerous problems such as the minimum connected dominating set, minimum-
weight circle-cover, and minimum cardinality Steiner set problems. The single-source shortest path problem
involves finding the shortest paths between a given vertex and all other vertices. The all-pair shortest path problem
involves the determination of the shortest graph distances between every pair of vertices in a given graph. In
general, it is known that efficient sequential or parallel algorithms can be developed by restricting the classes of
graphs. Numerous studies have been conducted on the shortest path problems on several intersection graphs. A
circular trapezoid graph is a proper superclass of trapezoid graphs and circular-arc graphs. In this study, we present
an O(n2) time algorithm to solve the all-pair shortest path problem on circular trapezoid graphs.

Keywords: design and analysis of algorithms, shortest path, intersection graphs, circular trapezoid graphs

TNI Journal of Engineering and Technology
Vol.8 No.1 January - June 2020

1

I. INTRODUCTION
The shortest path problem involves finding a path

between two vertices in a graph such that the sum of
the weights of its constituent edges is minimized. This
is a fundamental and important problem in graph
theory, and it has been applied for solving numerous
problems such as the minimum connected dominating
set, minimum-weight circle-cover, and minimum
cardinality Steiner set problems.

The single-source shortest path (SSSP) problem
involves finding the shortest paths between a given
vertex and all other vertices. A well-known solution to
the SSSP problem was discovered by Dijkstra [1]. A
sophisticated implementation can be found in [2]. The
all-pair shortest path (APSP) problem involves the
determination of the shortest graph distances between
every pair of vertices in a given graph. A well-known
algorithm for solving the APSP problem was developed
by Floyd [3], who obtained the result based on a
theorem proposed by Warshall [4]. The all-pair shortest
path query problem does not find all pairs of shortest
paths; instead, it is described as follows: First, a faster
preprocessing algorithm is applied and a data structure
is constructed. Then, a query on the length of the
shortest path between any two vertices can be
answered quite rapidly using the data structure. For
other recent studies related to the shortest path
problems, please refer to [5]-[8].

In general, it is known that efficient sequential or
parallel algorithms can be developed by restricting the
classes of graphs. Numerous studies have been
conducted on the shortest path problems on several
intersection graphs. For example, Hsu et al. developed
an O(n) time algorithm for the SSSP problem on interval
and circular-arc graphs [9]. Ibarra and Zheng
demonstrated an optimal parallel algorithm for the
SSSP problem for permutation graphs. The algorithm
runs in O(log n) time using O(n/log n) processors [10].

Mondal et al. presented an O(n2) time algorithm for the
APSP problem on trapezoid graphs [11]. Barman et al.
presented an efficient algorithm for the next-to-
shortest path problem on trapezoid graphs; the
algorithm runs in O(n2) time [12].

Lin [13] introduced a circular trapezoid graph (CTG),
which is a proper superclass of trapezoid graphs and
circular-arc graphs. They showed that the maximum
weighted independent set can be found in O(n2 log log
n) time on a CTG [13]. In this study, we present an O(n2)
time algorithm to solve the APSP problem on a CTG.

The rest of this paper is organized as follows:
Section 2 defines CTGs and models and introduces the
extended circular trapezoid model that is constructed
from a circular trapezoid model. Moreover, we
provide the definitions and notations used in this paper.
Section 3 presents the properties of the shortest path
on a CTG, which are useful for efficiently solving the
APSP problem. Moreover, we describe our algorithm for
solving the APSP problem and its complexity. Section 4
provides the benchmark experimental results. Finally,
Section 5 concludes the paper.

II. DEFINITIONS
A. Circular Trapezoid Model and Graph

We describe a circular trapezoid model (CTM)
before defining a circular trapezoid graph (CTG). A CTM
consists of inner and outer circles, C1 and C2, with radii
r1 and r2, respectively, where r1 < r2. Each circle is
arranged counterclockwise with consecutive integer
values 1, 2,..., 2n, where n is the number of trapezoids.
Consider two arcs, A1 and A2, on C1 and C2, respectively.

TNI Journal of Engineering and Technology
Vol.8 No.1 January - June 2020

2

Figure 2 Circular trapezoid graph
G
Table 1 Detail of the CTM M

Points a and b represent the first points encountered
when traversing arc A1 counterclockwise and clockwise,
respectively. Similarly, points c and d represent the first
points encountered when traversing arc A2
counterclockwise and clockwise, respectively. A
trapezoid is the region in circles C1 and C2 that lies
between two non-crossing chords, ac and bd.
Trapezoid CTi is defined by four corner points, [ai, bi, ci,
di]. Without loss of generality, we assume that each
trapezoid contains four corner points and all corner
points are distinct. Each trapezoid, CTi, is numbered in
the ascending order of its corner points, ai, i.e., i < j if ai
< aj. The geometric representation described above is
referred to as a CTM. Figure 1 illustrates an example of
a CTM M, with twelve trapezoids.

An example of the use of a CTM is for cities
consisting of cityscapes that spread radially around
facilities such as stations and rotaries. In this case, the
CTM visually represents the relationships among
communities (linkage of transportation networks,
sharing of infrastructure facilities, etc.) and is applied to
the optimization of city planning and facility
arrangement. Table 1 shows the details of M as
depicted in Figure 1.

Consider a fictitious line, p, that connects the points
placed between 1 and 2n of C1 and C2. A trapezoid that
intersects p is referred to as a feedback trapezoid. In
Figure 1, CT2 and CT5 are feedback trapezoids. If a
fictitious line, p', that connects a point on C1 and a point
on C2 does not intersect any trapezoid in the CTM, a
model obtained by opening the CTM along p' is
equivalent to a normal trapezoid model. Then, the
APSP problem can be solved by applying Mondal's
algorithm [11] because it is the same as that of normal
trapezoid graphs. We assume that any fictitious line, p',
that connects a point on C1 and a point on C2 intersects
at least one trapezoid.

A graph, G, is a CTG if it can be represented by the

following CTM M: each vertex of the graph corresponds
to a trapezoid, and two vertices are adjacent in G if and
only if their corresponding trapezoids intersect. Figure
2 illustrates the CTG, G, corresponding to the CTM M,
shown in Figure 1.

B. Extended Circular Trapezoid Model

Next, we introduce an extended circular trapezoid
model (ECTM) constructed from the CTM. Let n be the

Figure 1 Circular trapezoid model M

I. INTRODUCTION
The shortest path problem involves finding a path

between two vertices in a graph such that the sum of
the weights of its constituent edges is minimized. This
is a fundamental and important problem in graph
theory, and it has been applied for solving numerous
problems such as the minimum connected dominating
set, minimum-weight circle-cover, and minimum
cardinality Steiner set problems.

The single-source shortest path (SSSP) problem
involves finding the shortest paths between a given
vertex and all other vertices. A well-known solution to
the SSSP problem was discovered by Dijkstra [1]. A
sophisticated implementation can be found in [2]. The
all-pair shortest path (APSP) problem involves the
determination of the shortest graph distances between
every pair of vertices in a given graph. A well-known
algorithm for solving the APSP problem was developed
by Floyd [3], who obtained the result based on a
theorem proposed by Warshall [4]. The all-pair shortest
path query problem does not find all pairs of shortest
paths; instead, it is described as follows: First, a faster
preprocessing algorithm is applied and a data structure
is constructed. Then, a query on the length of the
shortest path between any two vertices can be
answered quite rapidly using the data structure. For
other recent studies related to the shortest path
problems, please refer to [5]-[8].

In general, it is known that efficient sequential or
parallel algorithms can be developed by restricting the
classes of graphs. Numerous studies have been
conducted on the shortest path problems on several
intersection graphs. For example, Hsu et al. developed
an O(n) time algorithm for the SSSP problem on interval
and circular-arc graphs [9]. Ibarra and Zheng
demonstrated an optimal parallel algorithm for the
SSSP problem for permutation graphs. The algorithm
runs in O(log n) time using O(n/log n) processors [10].

Mondal et al. presented an O(n2) time algorithm for the
APSP problem on trapezoid graphs [11]. Barman et al.
presented an efficient algorithm for the next-to-
shortest path problem on trapezoid graphs; the
algorithm runs in O(n2) time [12].

Lin [13] introduced a circular trapezoid graph (CTG),
which is a proper superclass of trapezoid graphs and
circular-arc graphs. They showed that the maximum
weighted independent set can be found in O(n2 log log
n) time on a CTG [13]. In this study, we present an O(n2)
time algorithm to solve the APSP problem on a CTG.

The rest of this paper is organized as follows:
Section 2 defines CTGs and models and introduces the
extended circular trapezoid model that is constructed
from a circular trapezoid model. Moreover, we
provide the definitions and notations used in this paper.
Section 3 presents the properties of the shortest path
on a CTG, which are useful for efficiently solving the
APSP problem. Moreover, we describe our algorithm for
solving the APSP problem and its complexity. Section 4
provides the benchmark experimental results. Finally,
Section 5 concludes the paper.

II. DEFINITIONS
A. Circular Trapezoid Model and Graph

We describe a circular trapezoid model (CTM)
before defining a circular trapezoid graph (CTG). A CTM
consists of inner and outer circles, C1 and C2, with radii
r1 and r2, respectively, where r1 < r2. Each circle is
arranged counterclockwise with consecutive integer
values 1, 2,..., 2n, where n is the number of trapezoids.
Consider two arcs, A1 and A2, on C1 and C2, respectively.

TNI Journal of Engineering and Technology
Vol.8 No.1 January - June 2020

3

number of trapezoids in CTM M. Consider a fictitious
line, p, that connects the points placed between 1 and
2n of C1 and C2. First, the CTM is cut along fictitious line
p and C1 and C2 are expanded into parallel horizontal
lines (referred to as the top and bottom channels).
Hereafter, to prevent confusion, we denote a trapezoid
in the CTM and ECTM by CTi and Ti, respectively. The
above process is followed to construct an ECTM from
the CTM. This process can be executed in O(n) time [14].
Figure 3 illustrates the ECTM EM, constructed from the
CTM M, shown in Figure 1. Table 2 shows the details of
EM.

Honma et al. presented a procedure that constructs
EM from M [14].

Lemma 1. [14] An ECTM EM, corresponding to a given
CTM M, is constructed in O(n) time. □

Efficient algorithms have been developed to

address various problems concerning noncircular
intersection graphs (interval, permutation, trapezoid,
etc). However, in general, the problems for circular
intersection graphs tend to be more difficult than those
for noncircular intersection graphs. One of the reasons
for this difficulty is that we cannot uniquely determine
the starting position of an algorithm for circular
intersection graphs owing to the existence of feedback
elements. However, this position can be determined for
noncircular intersection graphs. For several problems,
we can develop the circular versions of existing
algorithms by constructing the extended intersection
models (such as the ECTM) of the problems. We can
uniquely determine the starting position of an
algorithm and partially apply the algorithms of
noncircular versions using these models. For instance,
this method has been utilized to develop efficient
algorithms for the shortest path query problem [9], [15]
and articulation vertex problem [16] in circular-arc

graphs, the maximum clique and chromatic number
problems [17], spanning forest problem [18], and
articulation problem [19] in circular permutation graphs,
and the spanning tree problem [14] and hinge vertex
problem [20] in CTGs.

C. Definitions

We introduce the definitions and notations that are
used in our algorithm. Let G be a CTG corresponding to
CTM M and EM be an ECTM constructed from M.

We define rt(i), rb(i), lt(i), and lb(i) as follows: Here,
the set (including i) of all trapezoids that intersect Ti in
EM is denoted by N[i].

● rt(i) = k such that bk = max{ bj | j ∈ N[i] },
● rb(i) = k such that dk = max{ dj | j ∈ N[i] },
● lt(i) = k such that ak = min{ aj | j ∈ N[i] },
● rb(i) = k such that ck = min{ cj | j ∈ N[i] }.

TABLE 2 shows the details of rt(i), rb(i), lt(i), and rb(i),
and the ECTM is illustrated in Figure 3.

Let tp1 < tp2 be the coordinates on the top channel
and bp1 < bp2 be the coordinates on the bottom
channel in EM. We define sets A[tp1, tp2], C[bp1, bp2],
B[tp1, tp2], and D[bp1, bp2] as follows:

● A[tp1, tp2] = { k | tp1 < ak < tp2 },
● C[bp1, bp2] = { k | bp1 < ck < bp2 },
● B[tp1, tp2] = { k | tp1 < bk < tp2 },
● D[bp1, bp2] = { k | bp1 < dk < bp2 }.

r-tree(i) is a tree with root i, and it represents the
shortest path when visiting all vertices from i to the
right on EM. Similarly, l-tree(i) is a tree with root i, and
it represents the shortest path when visiting all vertices
from i to the left on EM. disr(i, j) and disl(i, j) are the
distances from root i to vertex j on r-tree(i) and l-tree(i),
respectively.Figures 4 and 5 show the examples of r-
tree(6) and l-tree(6), respectively. In this example, we
have disr(6, 5) = 5 and disl(6, 5) = 3.

TNI Journal of Engineering and Technology
Vol.8 No.1 January - June 2020

4

III. RESEARCH METHODOLOGY
A. Useful Properties

In this section, we present some useful properties
for constructing an algorithm for computing the
shortest path lengths between the all-pair vertices of
CTG G. We describe a few lemmas that are useful for
constructing the algorithm for the APSP problem in
CTGs.

Lemma 2. r-tree(i) and l-tree(i), 1 ≤ i ≤ n, can be
constructed in O(n2) time using Mondal's algorithm
[11] when the corresponding ECTM is given as an
input. □

Mondal's algorithm [11] can solve the APSP problem
of a normal trapezoid graph in O(n2) time by
constructing shortest path trees. The ECTM is
constructed from the CTM, and it is a geometric figure
model similar to the trapezoid model. We can obtain
r-tree(i) and l-tree(i), 1 ≤ i ≤ n, in O(n2) time by applying
Mondal's algorithm to the ECTM.

Lemma 3. For any pair of vertices, i and j, on CTG G,
distance dis(i, j) is obtained from min{ disr(i, j), disl(i,
j) }.

We assume two nonintersecting trapezoids, CTi and
CTj, on the CTM. There are two paths from CTi to CTj
on the CTM. One follows a trapezoid counterclockwise
from CTi to CTj, and the other follows a trapezoid

Figure 3 Extended circular trapezoid model EM

Table 2 Detail of the ECTM EM

Figure 4 Example of r-tree(6)

Figure 5 Example of l-tree(6)

number of trapezoids in CTM M. Consider a fictitious
line, p, that connects the points placed between 1 and
2n of C1 and C2. First, the CTM is cut along fictitious line
p and C1 and C2 are expanded into parallel horizontal
lines (referred to as the top and bottom channels).
Hereafter, to prevent confusion, we denote a trapezoid
in the CTM and ECTM by CTi and Ti, respectively. The
above process is followed to construct an ECTM from
the CTM. This process can be executed in O(n) time [14].
Figure 3 illustrates the ECTM EM, constructed from the
CTM M, shown in Figure 1. Table 2 shows the details of
EM.

Honma et al. presented a procedure that constructs
EM from M [14].

Lemma 1. [14] An ECTM EM, corresponding to a given
CTM M, is constructed in O(n) time. □

Efficient algorithms have been developed to

address various problems concerning noncircular
intersection graphs (interval, permutation, trapezoid,
etc). However, in general, the problems for circular
intersection graphs tend to be more difficult than those
for noncircular intersection graphs. One of the reasons
for this difficulty is that we cannot uniquely determine
the starting position of an algorithm for circular
intersection graphs owing to the existence of feedback
elements. However, this position can be determined for
noncircular intersection graphs. For several problems,
we can develop the circular versions of existing
algorithms by constructing the extended intersection
models (such as the ECTM) of the problems. We can
uniquely determine the starting position of an
algorithm and partially apply the algorithms of
noncircular versions using these models. For instance,
this method has been utilized to develop efficient
algorithms for the shortest path query problem [9], [15]
and articulation vertex problem [16] in circular-arc

graphs, the maximum clique and chromatic number
problems [17], spanning forest problem [18], and
articulation problem [19] in circular permutation graphs,
and the spanning tree problem [14] and hinge vertex
problem [20] in CTGs.

C. Definitions

We introduce the definitions and notations that are
used in our algorithm. Let G be a CTG corresponding to
CTM M and EM be an ECTM constructed from M.

We define rt(i), rb(i), lt(i), and lb(i) as follows: Here,
the set (including i) of all trapezoids that intersect Ti in
EM is denoted by N[i].

● rt(i) = k such that bk = max{ bj | j ∈ N[i] },
● rb(i) = k such that dk = max{ dj | j ∈ N[i] },
● lt(i) = k such that ak = min{ aj | j ∈ N[i] },
● rb(i) = k such that ck = min{ cj | j ∈ N[i] }.

TABLE 2 shows the details of rt(i), rb(i), lt(i), and rb(i),
and the ECTM is illustrated in Figure 3.

Let tp1 < tp2 be the coordinates on the top channel
and bp1 < bp2 be the coordinates on the bottom
channel in EM. We define sets A[tp1, tp2], C[bp1, bp2],
B[tp1, tp2], and D[bp1, bp2] as follows:

● A[tp1, tp2] = { k | tp1 < ak < tp2 },
● C[bp1, bp2] = { k | bp1 < ck < bp2 },
● B[tp1, tp2] = { k | tp1 < bk < tp2 },
● D[bp1, bp2] = { k | bp1 < dk < bp2 }.

r-tree(i) is a tree with root i, and it represents the
shortest path when visiting all vertices from i to the
right on EM. Similarly, l-tree(i) is a tree with root i, and
it represents the shortest path when visiting all vertices
from i to the left on EM. disr(i, j) and disl(i, j) are the
distances from root i to vertex j on r-tree(i) and l-tree(i),
respectively.Figures 4 and 5 show the examples of r-
tree(6) and l-tree(6), respectively. In this example, we
have disr(6, 5) = 5 and disl(6, 5) = 3.

TNI Journal of Engineering and Technology
Vol.8 No.1 January - June 2020

5

clockwise. r-tree(i) and l-tree(i) are the shortest path
trees that can be obtained when moving from CTi to
another trapezoid in the counterclockwise and
clockwise directions, respectively.

Therefore, the shortest path length between
vertices i and j is min{ disr(i, j), disl(i, j) }.

Figure 6 shows an example of the shortest path
from vertex 6 to 5 on the CTG. In this example, < 6,
11, 10, 12, 2, 5 > is the shortest counterclockwise path
from vertex 6 on the CTM, and we obtain the length,
disr(6, 5) = 5, from r-tree(6) shown in Figure 4. Similarly,
< 6, 7, 3, 5 > is the shortest clockwise path from vertex
6 on the CTM, and we obtain the length, disl(6, 5) = 3,
from l-tree(6) shown in Figure 5. Therefore, the shortest
path length from 6 to 5 on this CTG is 3.

B. Algorithm APSP-CTG and Its Complexity

In this section, we present the APSP-CTG algorithm
for computing the shortest path lengths between the
all-pair vertices of a CTG, G. In this algorithm, we define
a function for normalization, nor(i), which is expressed
as

for a trapezoid, Ti, in the ECTM. The value of nor(i) is
the vertex number in the CTG corresponding to the
copy of trapezoid Ti in the ECTM. For the example
shown in Figure 3, we have nor(-4)=10 and nor(17)=5.

Now, we concisely describe the outline of our
algorithm (Algorithm APSP-CTG) and analyze its
complexity.

Algorithm~APSP-CTG considers a CTM M, as an input.
In Step 1, we construct an ECTM EM, from M using
Honma's algorithm [14] (Figure 2). This step can be
performed in O(n) time. In Step 2, we compute rt(i), rb(i),
lt(i), and lb(i), for 1-n ≤ i ≤ 2n, using prefix computation
[21]. This process can execute in O(n) time. Steps 3 and

4 construct r-tree(i) and l-tree(i), for 1 ≤ i ≤ n,
respectively. These steps can be executed in O(n2) time
using Mondal's algorithm [11]. Figures 4 and 5 show the
examples of r-tree(6) and l-tree(6), respectively. Step 5

TNI Journal of Engineering and Technology
Vol.8 No.1 January - June 2020

6

Figure 6 Shortest path from vertex 6 to 5

constructs APSP matrix D. From Lemma 3, the distance,
dis(i, j), is computed using min{ disr(i, j), disl(i, j) }. This
step can be executed in O(n2) time.

Thus, we obtain the following theorem:

Theorem 1. Algorithm APSP-CTG computes the all-pair
shortest path for a CTG in O(n2) time by considering its
CTM M, as an input. □

IV. RESULTS AND DISCUSSION
We actually implemented the program and

performed a benchmark test of the execution speed. In
the APSP problem, we compared our well-known
Floyd-Warshall method with our method. Ten graphs
each with 5,000 and 10,000 nodes were created and
averaged for each processing time. In processing time
benchmarks, graph samples with node sizes of 5,000
and 10,000 are considered adequate. Moreover, in
order to absorb the deviation of the shape of graph and
the number of edges, the average of 10 samples was
calculated.

Table 3 shows the benchmark experimental results.
The time complexty of Floyd-Warshall is O(n3), while
the complexity of our algorithm is O(n2). The
benchmark values show that our algorithm achieves
significant speedup.

Floyd-Warshall Algorithm solves the APSP problem
using dynamic programming. As often practiced in
dynamic programming, the problem is divided into
smaller subproblems which are then solved to obtain
intermediate results to be used in the overall solution.
In the Floyd-Warshall algorithm, it uses the adjacent
matrix of the graph given as input and requires O(n3)
computation time. On the other hand, our algorithm
uses the intersection model as an input and holds the
shortest distance between verticess in a tree structure,
so that the computational complexity can be
suppressed to O(n2).

V. CONCLUSION
In this study, we proposed Algorithm APSP-CTG,

which operates in O(n2) time to compute the APSP
problem in a CTG. Our algorithm partially uses Mondal's
[11] and Honma's algorithms [14]. The APSP problem is
a fundamental problem that is used to solve numerous
problems in graph theory. For this reason, we believe
that this paper has merits from a theoretical and
algorithmic point of view. Reducing the complexity of
the algorithm and extending the results to other graphs
will be addressed in future work.

Table 3 Benchmark Results

Size Genaral Algorithm Our Algorithm
5,000 58.91 [sec] 1.44 [sec]

10,000 502.46 [sec] 6.02 [sec]
Processor: Intel Core i7-8700 3.2GHz

Memory: 32GB, Compiler: Borland C++ 5.5.1

clockwise. r-tree(i) and l-tree(i) are the shortest path
trees that can be obtained when moving from CTi to
another trapezoid in the counterclockwise and
clockwise directions, respectively.

Therefore, the shortest path length between
vertices i and j is min{ disr(i, j), disl(i, j) }.

Figure 6 shows an example of the shortest path
from vertex 6 to 5 on the CTG. In this example, < 6,
11, 10, 12, 2, 5 > is the shortest counterclockwise path
from vertex 6 on the CTM, and we obtain the length,
disr(6, 5) = 5, from r-tree(6) shown in Figure 4. Similarly,
< 6, 7, 3, 5 > is the shortest clockwise path from vertex
6 on the CTM, and we obtain the length, disl(6, 5) = 3,
from l-tree(6) shown in Figure 5. Therefore, the shortest
path length from 6 to 5 on this CTG is 3.

B. Algorithm APSP-CTG and Its Complexity

In this section, we present the APSP-CTG algorithm
for computing the shortest path lengths between the
all-pair vertices of a CTG, G. In this algorithm, we define
a function for normalization, nor(i), which is expressed
as

for a trapezoid, Ti, in the ECTM. The value of nor(i) is
the vertex number in the CTG corresponding to the
copy of trapezoid Ti in the ECTM. For the example
shown in Figure 3, we have nor(-4)=10 and nor(17)=5.

Now, we concisely describe the outline of our
algorithm (Algorithm APSP-CTG) and analyze its
complexity.

Algorithm~APSP-CTG considers a CTM M, as an input.
In Step 1, we construct an ECTM EM, from M using
Honma's algorithm [14] (Figure 2). This step can be
performed in O(n) time. In Step 2, we compute rt(i), rb(i),
lt(i), and lb(i), for 1-n ≤ i ≤ 2n, using prefix computation
[21]. This process can execute in O(n) time. Steps 3 and

4 construct r-tree(i) and l-tree(i), for 1 ≤ i ≤ n,
respectively. These steps can be executed in O(n2) time
using Mondal's algorithm [11]. Figures 4 and 5 show the
examples of r-tree(6) and l-tree(6), respectively. Step 5

TNI Journal of Engineering and Technology
Vol.8 No.1 January - June 2020

7

ACKNOWLEDGEMENT
We express many thanks to anonymous referees for

their valuable advices on the theory of our attacks and
their helpful editorial comments. This work was
partially supported by JSPS KAKENHI Grant Number
19K11834 and 17K00324, and Cooperative
Education/Research Project between Toyohashi
University of Technology and National Institute of
Technology.

REFERENCES
[1] E. W. Dijkstra, “A note on two problems in connection

with graphs,” Numerische Mathematlk, vol. 1, pp. 269–
271, 1959.

[2] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and
their uses in improved network optimization algorithms,”
J. ACM, vol. 34, no. 3, pp. 596–615, Jul. 1987.

[3] R. W. Floyd, “Algorithm 97: Shortest path,”
Communications of the ACM, vol. 5, no. 6, pp. 344-348,
Jun. 1962.

[4] S. Warshall, “A theorem on boolean matrices,” J. ACM,
vol. 9, no.1, pp. 11–12, Jan. 1962.

[5] Y. Kobayashi and R. Sako, “Two disjoint shortest paths
problem with non-negative edge length,” Operations
Research Letters, vol. 47, no. 1, pp. 66–69, Jan. 2019.

[6] C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen,
“Disconnected components detection and rooted
shortest-path tree maintenance in networks,” J. Parallel
and Distributed Computing, vol. 132, pp. 299–309, Oct.
2019.

[7] M. Debski, K. J. Szaniawski and Z. Lonc, “Bundling all
shortest paths,” Discrete Applied Mathematics, vol. 277,
pp. 82–91, Apr. 2020.

[8] L. Di Puglia Pugliese, D. Ferone, P. Festa, and F. Guerriero,
“Shortest path tour problem with time windows,”
European Journal of Operational Research, vol. 282, no.
1, pp. 334–344, Apr. 2020.

[9] F. R. Hsu, K. Shan, H. S. Chao, and R. C. Lee, “Some
optimal parallel algorithms on interval and circular-arc
graphs,” J. Inf. Sci. Eng., vol. 21, no. 3, pp. 627–642, May
2005.

[10] O. H. Ibarra and Q. Zheng, “An optimal shortest path
parallel algorithm for permutation graphs,” J. Parallel
and Distributed Computing, vol. 24, no. 1, pp. 94–99, Jan.
1995.

[11] S. Mondal, M. Pal, and T. K. Pal, “An optimal algorithm
for solving all-pairs shortest paths on trapezoid graphs,”
Int. J. Computational Engineering Science, vol. 3, no. 2,
pp. 103–116, 2002.

[12] S. C. Barman, S. Mondal, and M. Pal, “An efficient
algorithm to find next-to-shortest path on trapezoid
graphs,” Advances in Applied Mathematical Analysis,
vol. 2, no. 2, pp. 97–107, 2007.

[13] W. L. Lin, “Circular and circle trapezoid graphs,” J. Sci.
Eng. Tech., vol. 2, no. 2, pp. 11–17, 2006.

[14] H. Honma, Y. Nakajima, Y. Aoshima, and S. Masuyama, “A
lineartime algorithm for constructing a spanning tree on
circular trapezoid graphs,” IEICE Trans. Fundamentals,
vol. E96-A, no. 6, pp. 1051–1058, Jun. 2013.

[15] D. Chen, D. T. Lee, R. Sridhar, and C. Sekharam, “Solving
the all-pair shortest path query on interval and circular-
arc graphs,” Networks, vol. 31, no. 4, pp. 249–258, 1998.

[16] T. W. Kao and S. J. Horng, “Optimal algorithms for
computing articulation points and some related
problems on a circular-arc graph,” Parallel Computing,
vol. 21, no. 6, pp. 953–969, Jun. 1995.

[17] R. D. Lou and M. Sarrafzadeh, “Circular permutation
graph family with applications,” Discrete Applied
Mathematics, vol. 40, no. 3, pp. 433–457, Dec. 1992.

 [18] H. Honma, S. Honma, and S. Masuyama, “An optimal
parallel algorithm for constructing a spanning tree on
circular permutation graphs,” IEICE Transactions on
Information and Systems, vol. E92-D, no. 2, pp. 141–148,
Feb. 2009.

[19] H. Honma, K. Abe, Y. Nakajima, and S. Masuyama, “Linear
time algorithms for finding articulation and hinge vertices
of circular permutation graphs,” IEICE Trans. Inf. & Syst.,
vol. E96-D, no. 3, pp. 419–425, Mar. 2013.

[20] H. Honma, Y. Nakajima, and S. Masuyama, “An algorithm
for hinge vertex problem on circular trapezoid graphs,”
Journal of Information Processing, vol. 25, pp. 945–948,
Dec. 2017.

[21] D. Bera, M. Pal, and T. K. Pal, “An efficient algorithm for
finding all hinge vertices on trapezoid graphs,” Theory of
Computing Systems, vol. 36, no. 1, pp. 17–27, Feb. 2003.

TNI Journal of Engineering and Technology
Vol.8 No.1 January - June 2020

8

