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Abstract 
The shortest path problem involves finding a path between two vertices in a graph such that the sum of the 

weights of its constituent edges is minimized. This is a fundamental and important problem in graph theory, and it 
has been applied for solving numerous problems such as the minimum connected dominating set, minimum-
weight circle-cover, and minimum cardinality Steiner set problems. The single-source shortest path problem 
involves finding the shortest paths between a given vertex and all other vertices. The all-pair shortest path problem 
involves the determination of the shortest graph distances between every pair of vertices in a given graph. In 
general, it is known that efficient sequential or parallel algorithms can be developed by restricting the classes of 
graphs. Numerous studies have been conducted on the shortest path problems on several intersection graphs. A 
circular trapezoid graph is a proper superclass of trapezoid graphs and circular-arc graphs. In this study, we present 
an O(n2) time algorithm to solve the all-pair shortest path problem on circular trapezoid graphs. 
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I. INTRODUCTION 
The shortest path problem involves finding a path 

between two vertices in a graph such that the sum of 
the weights of its constituent edges is minimized. This 
is a fundamental and important problem in graph 
theory, and it has been applied for solving numerous 
problems such as the minimum connected dominating 
set, minimum-weight circle-cover, and minimum 
cardinality Steiner set problems.  

The single-source shortest path (SSSP) problem 
involves finding the shortest paths between a given 
vertex and all other vertices. A well-known solution to 
the SSSP problem was discovered by Dijkstra [1]. A 
sophisticated implementation can be found in [2]. The 
all-pair shortest path (APSP) problem involves the 
determination of the shortest graph distances between 
every pair of vertices in a given graph. A well-known 
algorithm for solving the APSP problem was developed 
by Floyd [3], who obtained the result based on a 
theorem proposed by Warshall [4]. The all-pair shortest 
path query problem does not find all pairs of shortest 
paths; instead, it is described as follows: First, a faster 
preprocessing algorithm is applied and a data structure 
is constructed. Then, a query on the length of the 
shortest path between any two vertices can be 
answered quite rapidly using the data structure. For 
other recent studies related to the shortest path 
problems, please refer to [5]-[8]. 

In general, it is known that efficient sequential or 
parallel algorithms can be developed by restricting the 
classes of graphs. Numerous studies have been 
conducted on the shortest path problems on several 
intersection graphs. For example, Hsu et al. developed 
an O(n) time algorithm for the SSSP problem on interval 
and circular-arc graphs [9]. Ibarra and Zheng 
demonstrated an optimal parallel algorithm for the 
SSSP problem for permutation graphs. The algorithm 
runs in O(log n) time using O(n/log n) processors [10]. 

Mondal et al. presented an O(n2) time algorithm for the 
APSP problem on trapezoid graphs [11]. Barman et al. 
presented an efficient algorithm for the next-to-
shortest path problem on trapezoid graphs; the 
algorithm runs in O(n2) time [12]. 

Lin [13] introduced a circular trapezoid graph (CTG), 
which is a proper superclass of trapezoid graphs and 
circular-arc graphs. They showed that the maximum 
weighted independent set can be found in O(n2 log log 
n) time on a CTG [13]. In this study, we present an O(n2) 
time algorithm to solve the APSP problem on a CTG. 

The rest of this paper is organized as follows: 
Section 2 defines CTGs and models and introduces the 
extended circular trapezoid model that is constructed 
from a circular trapezoid model.    Moreover, we 
provide the definitions and notations used in this paper. 
Section 3 presents the properties of the shortest path 
on a CTG, which are useful for efficiently solving the 
APSP problem. Moreover, we describe our algorithm for 
solving the APSP problem and its complexity. Section 4 
provides the benchmark experimental results. Finally, 
Section 5 concludes the paper. 
 

II. DEFINITIONS 
A. Circular Trapezoid Model and Graph 

We describe a circular trapezoid model (CTM) 
before defining a circular trapezoid graph (CTG). A CTM 
consists of inner and outer circles, C1 and C2, with radii 
r1 and r2, respectively, where r1 < r2. Each circle is 
arranged counterclockwise with consecutive integer 
values 1, 2,..., 2n, where n is the number of trapezoids. 
Consider two arcs, A1 and A2, on C1 and C2, respectively. 
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Figure 2 Circular trapezoid graph 
G 
Table 1 Detail of the CTM M 

Points a and b represent the first points encountered 
when traversing arc A1 counterclockwise and clockwise, 
respectively. Similarly, points c and d represent the first 
points encountered when traversing arc A2 
counterclockwise and clockwise, respectively. A 
trapezoid is the region in circles C1 and C2 that lies 
between two non-crossing chords, ac and bd.  
Trapezoid CTi is defined by four corner points, [ai, bi, ci, 
di]. Without loss of generality, we assume that each 
trapezoid contains four corner points and all corner 
points are distinct. Each trapezoid, CTi, is numbered in 
the ascending order of its corner points, ai, i.e., i < j if ai 
< aj. The geometric representation described above is 
referred to as a CTM. Figure 1 illustrates an example of 
a CTM M, with twelve trapezoids. 

An example of the use of a CTM is for cities 
consisting of cityscapes that spread radially around 
facilities such as stations and rotaries. In this case, the 
CTM visually represents the relationships among 
communities (linkage of transportation networks, 
sharing of infrastructure facilities, etc.) and is applied to 
the optimization of city planning and facility 
arrangement. Table 1 shows the details of M as 
depicted in Figure 1. 

Consider a fictitious line, p, that connects the points 
placed between 1 and 2n of C1 and C2. A trapezoid that 
intersects p is referred to as a feedback trapezoid. In 
Figure 1, CT2 and CT5 are feedback trapezoids. If a 
fictitious line, p', that connects a point on C1 and a point 
on C2 does not intersect any trapezoid in the CTM, a 
model obtained by opening the CTM along p' is 
equivalent to a normal trapezoid model. Then, the 
APSP problem can be solved by applying Mondal's 
algorithm [11] because it is the same as that of normal 
trapezoid graphs. We assume that any fictitious line, p', 
that connects a point on C1 and a point on C2 intersects 
at least one trapezoid. 

 

 
A graph, G, is a CTG if it can be represented by the 

following CTM M: each vertex of the graph corresponds 
to a trapezoid, and two vertices are adjacent in G if and 
only if their corresponding trapezoids intersect. Figure 
2 illustrates the CTG, G, corresponding to the CTM M, 
shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Extended Circular Trapezoid Model 

Next, we introduce an extended circular trapezoid 
model (ECTM) constructed from the CTM. Let n be the 

Figure 1 Circular trapezoid model M 
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number of trapezoids in CTM M. Consider a fictitious 
line, p, that connects the points placed between 1 and 
2n of C1 and C2. First, the CTM is cut along fictitious line 
p and C1 and C2 are expanded into parallel horizontal 
lines (referred to as the top and bottom channels). 
Hereafter, to prevent confusion, we denote a trapezoid 
in the CTM and ECTM by CTi and Ti, respectively. The 
above process is followed to construct an ECTM from 
the CTM. This process can be executed in O(n) time [14]. 
Figure 3 illustrates the ECTM EM, constructed from the 
CTM M, shown in Figure 1. Table 2 shows the details of 
EM.  

Honma et al. presented a procedure that constructs 
EM from M [14]. 

 
Lemma 1. [14] An ECTM EM, corresponding to a given 
CTM M, is constructed in O(n) time.       □

 
Efficient algorithms have been developed to 

address various problems concerning noncircular 
intersection graphs (interval, permutation, trapezoid, 
etc). However, in general, the problems for circular 
intersection graphs tend to be more difficult than those 
for noncircular intersection graphs. One of the reasons 
for this difficulty is that we cannot uniquely determine 
the starting position of an algorithm for circular 
intersection graphs owing to the existence of feedback 
elements. However, this position can be determined for 
noncircular intersection graphs. For several problems, 
we can develop the circular versions of existing 
algorithms by constructing the extended intersection 
models (such as the ECTM) of the problems. We can 
uniquely determine the starting position of an 
algorithm and partially apply the algorithms of 
noncircular versions using these models. For instance, 
this method has been utilized to develop efficient 
algorithms for the shortest path query problem [9], [15] 
and articulation vertex problem [16] in circular-arc 

graphs, the maximum clique and chromatic number 
problems [17], spanning forest problem [18], and 
articulation problem [19] in circular permutation graphs, 
and the spanning tree problem [14] and hinge vertex 
problem [20] in CTGs. 

 
C. Definitions 

We introduce the definitions and notations that are 
used in our algorithm. Let G be a CTG corresponding to 
CTM M and EM be an ECTM constructed from M. 

We define rt(i), rb(i), lt(i), and lb(i) as follows: Here, 
the set (including i) of all trapezoids that intersect Ti in 
EM is denoted by N[i]. 

● rt(i) = k such that bk = max{ bj | j ∈ N[i] }, 
● rb(i) = k such that dk = max{ dj | j ∈ N[i] }, 
● lt(i) = k such that ak = min{ aj | j ∈ N[i] }, 
● rb(i) = k such that ck = min{ cj | j ∈ N[i] }. 

TABLE 2 shows the details of rt(i), rb(i), lt(i), and rb(i), 
and the ECTM is illustrated in Figure 3.  

Let tp1 < tp2 be the coordinates on the top channel 
and bp1 < bp2 be the coordinates on the bottom 
channel in EM. We define sets A[tp1, tp2], C[bp1, bp2], 
B[tp1, tp2], and D[bp1, bp2] as follows: 

● A[tp1, tp2] = { k | tp1 < ak < tp2 }, 
● C[bp1, bp2] = { k | bp1 < ck < bp2 }, 
● B[tp1, tp2] = { k | tp1 < bk < tp2 }, 
● D[bp1, bp2] = { k | bp1 < dk < bp2 }. 

r-tree(i) is a tree with root i, and it represents the 
shortest path when visiting all vertices from i to the 
right on EM. Similarly, l-tree(i) is a tree with root i, and 
it represents the shortest path when visiting all vertices 
from i to the left on EM. disr(i, j) and disl(i, j) are the 
distances from root i to vertex j on r-tree(i) and l-tree(i), 
respectively.Figures 4 and 5 show the examples of r-
tree(6) and l-tree(6), respectively. In this example, we 
have disr(6, 5) = 5 and disl(6, 5) = 3.
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III. RESEARCH METHODOLOGY 
A. Useful Properties 

In this section, we present some useful properties 
for constructing an algorithm for computing the 
shortest path lengths between the all-pair vertices of 
CTG G. We describe a few lemmas that are useful for 
constructing the algorithm for the APSP problem in 
CTGs. 

 
Lemma 2. r-tree(i) and l-tree(i), 1 ≤ i ≤ n, can be 
constructed in O(n2) time using Mondal's algorithm 
[11] when the corresponding ECTM is given as an 
input.                                                          □
 

Mondal's algorithm [11] can solve the APSP problem 
of a normal trapezoid graph in O(n2) time by 
constructing shortest path trees. The ECTM is 
constructed from the CTM, and it is a geometric figure 
model similar to the trapezoid model. We can obtain 
r-tree(i) and l-tree(i), 1 ≤ i ≤ n, in O(n2) time by applying 
Mondal's algorithm to the ECTM. 
 

 
 
 
 

 
Lemma 3. For any pair of vertices, i and j, on CTG G, 
distance dis(i, j) is obtained from min{ disr(i, j), disl(i, 
j) }.                                                       
 

We assume two nonintersecting trapezoids, CTi and 
CTj, on the CTM. There are two paths from CTi to CTj 
on the CTM. One follows a trapezoid counterclockwise 
from CTi to CTj, and the other follows a trapezoid 

Figure 3 Extended circular trapezoid model EM 

Table 2 Detail of the ECTM EM 

Figure 4 Example of r-tree(6) 

Figure 5 Example of l-tree(6) 
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from i to the left on EM. disr(i, j) and disl(i, j) are the 
distances from root i to vertex j on r-tree(i) and l-tree(i), 
respectively.Figures 4 and 5 show the examples of r-
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clockwise. r-tree(i) and l-tree(i) are the shortest path 
trees that can be obtained when moving from CTi to 
another trapezoid in the counterclockwise and 
clockwise directions, respectively.  

Therefore, the shortest path length between 
vertices i and j is min{ disr(i, j), disl(i, j) }. 

Figure 6 shows an example of the shortest path 
from vertex 6 to 5 on the CTG. In this example,  < 6, 
11, 10, 12, 2, 5 > is the shortest counterclockwise path 
from vertex 6 on the CTM, and we obtain the length, 
disr(6, 5) = 5, from r-tree(6) shown in Figure 4. Similarly, 
< 6, 7, 3, 5 > is the shortest clockwise path from vertex 
6 on the CTM, and we obtain the length, disl(6, 5) = 3, 
from l-tree(6) shown in Figure 5. Therefore, the shortest 
path length from 6 to 5 on this CTG is 3. 
 
B. Algorithm APSP-CTG and Its Complexity 

In this section, we present the APSP-CTG algorithm 
for computing the shortest path lengths between the 
all-pair vertices of a CTG, G. In this algorithm, we define 
a function for normalization, nor(i), which is expressed 
as 

 
for a trapezoid, Ti, in the ECTM. The value of nor(i) is 
the vertex number in the CTG corresponding to the 
copy of trapezoid Ti in the ECTM. For the example 
shown in Figure 3, we have nor(-4)=10 and nor(17)=5. 

Now, we concisely describe the outline of our 
algorithm (Algorithm APSP-CTG) and analyze its 
complexity. 

Algorithm~APSP-CTG considers a CTM M, as an input. 
In Step 1, we construct an ECTM EM, from M using 
Honma's algorithm [14] (Figure 2). This step can be 
performed in O(n) time. In Step 2, we compute rt(i), rb(i), 
lt(i), and lb(i), for 1-n ≤ i ≤ 2n, using prefix computation 
[21]. This process can execute in O(n) time. Steps 3 and 

4 construct r-tree(i) and l-tree(i), for 1 ≤  i ≤  n, 
respectively. These steps can be executed in O(n2) time 
using Mondal's algorithm [11]. Figures 4 and 5 show the 
examples of r-tree(6) and l-tree(6), respectively. Step 5 
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Figure 6 Shortest path from vertex 6 to 5 

constructs APSP matrix D. From Lemma 3, the distance, 
dis(i, j), is computed using min{ disr(i, j), disl(i, j) }. This 
step can be executed in O(n2) time. 

Thus, we obtain the following theorem: 
 

Theorem 1. Algorithm APSP-CTG computes the all-pair 
shortest path for a CTG in O(n2) time by considering its 
CTM M, as an input.                  □                                      
 

IV. RESULTS AND DISCUSSION 
We actually implemented the program and 

performed a benchmark test of the execution speed. In 
the APSP problem, we compared our well-known 
Floyd-Warshall method with our method. Ten graphs 
each with 5,000 and 10,000 nodes were created and 
averaged for each processing time. In processing time 
benchmarks, graph samples with node sizes of 5,000 
and 10,000 are considered adequate. Moreover, in 
order to absorb the deviation of the shape of graph and 
the number of edges, the average of 10 samples was 
calculated. 

Table 3 shows the benchmark experimental results. 
The time complexty of Floyd-Warshall is O(n3), while 
the complexity of our algorithm is O(n2). The 
benchmark values show that our algorithm achieves 
significant speedup. 

Floyd-Warshall Algorithm solves the APSP problem 
using dynamic programming. As often practiced in 
dynamic programming, the problem is divided into 
smaller subproblems which are then solved to obtain 
intermediate results to be used in the overall solution. 
In the Floyd-Warshall algorithm, it uses the adjacent 
matrix of the graph given as input and requires O(n3) 
computation time. On the other hand, our algorithm 
uses the intersection model as an input and holds the 
shortest distance between verticess in a tree structure, 
so that the computational complexity can be 
suppressed to O(n2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 
In this study, we proposed Algorithm APSP-CTG, 

which operates in O(n2) time to compute the APSP 
problem in a CTG. Our algorithm partially uses Mondal's 
[11] and Honma's algorithms [14]. The APSP problem is 
a fundamental problem that is used to solve numerous 
problems in graph theory. For this reason, we believe 
that this paper has merits from a theoretical and 
algorithmic point of view. Reducing the complexity of 
the algorithm and extending the results to other graphs 
will be addressed in future work. 

 

Table 3 Benchmark Results 

Size Genaral Algorithm Our Algorithm
5,000 58.91 [sec] 1.44 [sec]

10,000 502.46 [sec] 6.02 [sec]
Processor: Intel Core i7-8700 3.2GHz 

Memory: 32GB, Compiler: Borland C++ 5.5.1 
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