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Abstract

The shortest path problem involves finding a path between two vertices in a graph such that the sum of the
weights of its constituent edges is minimized. This is a fundamental and important problem in graph theory, and it
has been applied for solving numerous problems such as the minimum connected dominating set, minimum-
weight circle-cover, and minimum cardinality Steiner set problems. The single-source shortest path problem
involves finding the shortest paths between a given vertex and all other vertices. The all-pair shortest path problem
involves the determination of the shortest graph distances between every pair of vertices in a given graph. In
general, it is known that efficient sequential or parallel algorithms can be developed by restricting the classes of
graphs. Numerous studies have been conducted on the shortest path problems on several intersection graphs. A
circular trapezoid graph is a proper superclass of trapezoid graphs and circular-arc graphs. In this study, we present

an O(n?) time algorithm to solve the all-pair shortest path problem on circular trapezoid graphs.
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[. INTRODUCTION

The shortest path problem involves finding a path
between two vertices in a graph such that the sum of
the weights of its constituent edges is minimized. This
is a fundamental and important problem in graph
theory, and it has been applied for solving numerous
problems such as the minimum connected dominating
set, minimum-weight circle-cover, and minimum
cardinality Steiner set problems.

The single-source shortest path (SSSP) problem
involves finding the shortest paths between a given
vertex and all other vertices. A well-known solution to
the SSSP problem was discovered by Dijkstra [1]. A
sophisticated implementation can be found in [2]. The
all-pair shortest path (APSP) problem involves the
determination of the shortest graph distances between
every pair of vertices in a given graph. A well-known
algorithm for solving the APSP problem was developed
by Floyd [3], who obtained the result based on a
theorem proposed by Warshall [4]. The all-pair shortest
path query problem does not find all pairs of shortest
paths; instead, it is described as follows: First, a faster
preprocessing algorithm is applied and a data structure
is constructed. Then, a query on the length of the
shortest path between any two vertices can be
answered quite rapidly using the data structure. For
other recent studies related to the shortest path
problems, please refer to [5]-[8].

In general, it is known that efficient sequential or
parallel algorithms can be developed by restricting the
classes of graphs. Numerous studies have been
conducted on the shortest path problems on several
intersection graphs. For example, Hsu et al. developed
an O(n) time algorithm for the SSSP problem on interval
and circular-arc graphs [9]. Ibarra and Zheng
demonstrated an optimal parallel algorithm for the

SSSP problem for permutation graphs. The algorithm

runs in O(log n) time using O(n/log n) processors [10].

Mondal et al. presented an O(n°) time algorithm for the
APSP problem on trapezoid graphs [11]. Barman et al.
presented an efficient algorithm for the next-to-
shortest path problem on trapezoid graphs; the
algorithm runs in O(n°) time [12].

Lin [13] introduced a circular trapezoid graph (CTG),
which is a proper superclass of trapezoid graphs and
circular-arc graphs. They showed that the maximum
weighted independent set can be found in O(n” log log
n) time on a CTG [13]. In this study, we present an O(n®)
time algorithm to solve the APSP problem on a CTG.

The rest of this paper is organized as follows:
Section 2 defines CTGs and models and introduces the
extended circular trapezoid model that is constructed
from a circular trapezoid model. Moreover, we
provide the definitions and notations used in this paper.
Section 3 presents the properties of the shortest path
on a CTG, which are useful for efficiently solving the
APSP problem. Moreover, we describe our algorithm for
solving the APSP problem and its complexity. Section 4
provides the benchmark experimental results. Finally,

Section 5 concludes the paper.

II. DEFINITIONS

A. Circular Trapezoid Model and Graph

We describe a circular trapezoid model (CTM)
before defining a circular trapezoid graph (CTG). A CTM
consists of inner and outer circles, C; and C,, with radii
r, and r,, respectively, where r; < r,. Each circle is
arranged counterclockwise with consecutive integer
values 1, 2,..., 2n, where n is the number of trapezoids.

Consider two arcs, A; and A,, on C; and G, respectively.



Points a and b represent the first points encountered
when traversing arc A; counterclockwise and clockwise,
respectively. Similarly, points ¢ and d represent the first
encountered  when

points traversing arc A,

counterclockwise and clockwise, respectively. A
trapezoid is the region in circles C; and C, that lies
between two non-crossing chords, ac and bd.
Trapezoid CT; is defined by four corner points, [a;, b, ¢,
d]. Without loss of generality, we assume that each
trapezoid contains four cormer points and all corner
points are distinct. Each trapezoid, CT, is numbered in
the ascending order of its corner points, a, i.e., i <jif g;
< a,. The geometric representation described above is
referred to as a CTM. Figure 1 illustrates an example of
a CTM M, with twelve trapezoids.

An example of the use of a CTM is for cities
consisting of cityscapes that spread radially around
facilities such as stations and rotaries. In this case, the
CTM visually represents the relationships among
communities (linkage of transportation networks,
sharing of infrastructure facilities, etc.) and is applied to
the optimization of city planning and facility
arrangement. Table 1 shows the details of M as
depicted in Figure 1.

Consider a fictitious line, p, that connects the points
placed between 1 and 2n of C; and C,. A trapezoid that
intersects p is referred to as a feedback trapezoid. In
Figure 1, CT, and CTs are feedback trapezoids. If a
fictitious line, p', that connects a point on C; and a point
on C, does not intersect any trapezoid in the CTM, a
model obtained by opening the CTM along p' is
equivalent to a normal trapezoid model. Then, the
APSP problem can be solved by applying Mondal's
algorithm [11] because it is the same as that of normal
trapezoid graphs. We assume that any fictitious line, p,
that connects a point on C; and a point on G, intersects

at least one trapezoid.
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Figure 1 Circular trapezoid model M

A graph, G, is a CTG if it can be represented by the
following CTM M: each vertex of the graph corresponds
to a trapezoid, and two vertices are adjacent in G if and
only if their corresponding trapezoids intersect. Figure
2 illustrates the CTG, G, corresponding to the CTM M,

shown in Figure 1.

-

Figure 2 Circular trapezoid graph

Table 1 Detail of the CTM M

¢ |1 2 3 4 5§ 6 T 8 9 10 1 12
gl 2 5 ¢ & B 12 15 16 18 19 23
b |13 4 6 9 10 13 14 21 17 22 20 24
e |2 22 T S5 24 12 R 17 34 I8 Al 19
di |4 2 1B 4 B 15 9% 20096 21 13 23

B. Extended Circular Trapezoid Model
Next, we introduce an extended circular trapezoid

model (ECTM) constructed from the CTM. Let n be the
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number of trapezoids in CTM M. Consider a fictitious
line, p, that connects the points placed between 1 and
2n of C; and C,. First, the CTM is cut along fictitious line
p and C; and G, are expanded into parallel horizontal
lines (referred to as the top and bottom channels).
Hereafter, to prevent confusion, we denote a trapezoid
in the CTM and ECTM by CT; and T,, respectively. The

above process is followed to construct an ECTM from

the CTM. This process can be executed in O(n) time [14].

Figure 3 illustrates the ECTM EM, constructed from the
CTM M, shown in Figure 1. Table 2 shows the details of
EM.

Honma et al. presented a procedure that constructs

EM from M [14].

Lemma 1. [14] An ECTM EM, corresponding to a given
CTM M, is constructed in O(n) time. O
Efficient algorithms have been developed to

address various problems concerning noncircular
intersection graphs (interval, permutation, trapezoid,
etc). However, in general, the problems for circular
intersection graphs tend to be more difficult than those
for noncircular intersection graphs. One of the reasons
for this difficulty is that we cannot uniquely determine
the starting position of an algorithm for circular
intersection graphs owing to the existence of feedback
elements. However, this position can be determined for
noncircular intersection graphs. For several problems,
we can develop the circular versions of existing
algorithms by constructing the extended intersection
models (such as the ECTM) of the problems. We can
uniquely determine the starting position of an
algorithm and partially apply the algorithms of
noncircular versions using these models. For instance,
this method has been utilized to develop efficient
algorithms for the shortest path query problem [9], [15]

and articulation vertex problem [16] in circular-arc

graphs, the maximum clique and chromatic number
problems [17], spanning forest problem [18], and
articulation problem [19] in circular permutation graphs,
and the spanning tree problem [14] and hinge vertex

problem [20] in CTGs.

C. Definitions

We introduce the definitions and notations that are
used in our algorithm. Let G be a CTG corresponding to
CTM M and EM be an ECTM constructed from M.

We define rt(i), rb(i), (t(i), and (b(i) as follows: Here,
the set (including /) of all trapezoids that intersect T in
EM is denoted by NIi].

e (i) = k such that b, = max{ b; | j€ NI/l },
e rb() = k such that d, = max{ d; | je NIil },
e [t(i) = k such that a, = min{ a; | j € NIi] },

e rb() = k such that ¢, = min{ ¢; | j€ N[/ }.

TABLE 2 shows the details of rt(i), rb(i), (t(i), and rb(7),
and the ECTM is illustrated in Figure 3.

Let tp; < tp, be the coordinates on the top channel
and bp, < bp, be the coordinates on the bottom
channel in EM. We define sets Altp,, tp,l, Clbp;, bp,l,
Bltp, tp,], and Dlbp,, bp,] as follows:

o Altpy, tol ={k|tpy<ar<tp,},
e Clbp,, bp,] =1k |bp; <c,<bp,},
o Bltp, tp,]l ={k|tp; < by < tp, },
e Dlbp,, bp,l ={k|bp, <d,<bp,}

r-tree(i) is a tree with root j, and it represents the
shortest path when visiting all vertices from i to the
right on EM. Similarly, -tree(i) is a tree with root /, and
it represents the shortest path when visiting all vertices
from i to the left on EM. dis(i, j) and dis(i, j) are the
distances from root i to vertex j on r-tree(/) and l-tree(/),
respectively.Figures 4 and 5 show the examples of r-
tree(6) and l-tree(6), respectively. In this example, we

have dis(6, 5) = 5 and dis(6, 5) = 3.
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Figure 3 Extended circular trapezoid model £EM

Table 2 Detail of the ECTM EM

i -1 -10 32 -1 0|1 2 3 4 § 6 7 8 9 10 11 12113 14 15 16 23 24
a; 23 22 -8 -6 -5 -1 2 5 7 8 11 12 15 16 18 19 23 ['25 26 29 31 43 47
bi 21 =20 -7 -2 -4 0|3 4 6 9 10 13 14 21 17 22 20 24|27 28 30 33 44 48
[ -22 26 -0 6 -13 5|2 -2 7 5 0 12 8 17 14 18 11 19 126 22 31 29 35 43
di -2 -23 -8 3 -1 -1 | 4 1 10 6 3 15 9 20 16 21 13 23|28 25 34 30 37 47
rt(z) -7 -7 -4 0 -2 218 5 5 5 5 11 7 12 8 12;: 168 ¥4 (0% 12 17T 17 22 24
rb(z) | -11 -1l -4 0 -2 2 1 1 3 3 3 9 6 12 8 12. 100 14|13 13 15 15 22 24
It(z) | -11 -11 6 4 6 4|1 0 3 3 3 6 3 8 6 8 6 8 3 12 15 15 18 20
Ib(7) | -10 -10 -1 -1 -1 4+ 2 0 5 5 2 T 3 5 R S 5 | 11 8 14 12 17 17 23 20

IIl. RESEARCH METHODOLOGY

A. Useful Properties

In this section, we present some useful properties
for constructing an algorithm for computing the
shortest path lengths between the all-pair vertices of
CTG G. We describe a few lemmas that are useful for
constructing the algorithm for the APSP problem in
CTGs.

Lemma 2. r-tree(i) and (-tree(i), 1 < i < n, can be
constructed in O(n°) time using Mondal's algorithm
[11] when the corresponding ECTM is given as an
input. O
Mondal's algorithm [11] can solve the APSP problem
of a normal trapezoid graph in O(n?) time by
constructing shortest path trees. The ECTM s
constructed from the CTM, and it is a geometric figure
model similar to the trapezoid model. We can obtain
r-tree(i) and l-tree(i), 1 < i < n, in O(n?) time by applying

Mondal's algorithm to the ECTM.

Figure 5 Example of |-tree(6)

Lemma 3. For any pair of vertices, i and j, on CTG G,
distance dis(i, j) is obtained from min{ dis i, j), dis(,
y

We assume two nonintersecting trapezoids, CT; and
CT,, on the CTM. There are two paths from CT; to CT;
on the CTM. One follows a trapezoid counterclockwise

from CT; to CT, and the other follows a trapezoid
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clockwise. r-tree(i) and |-tree(/) are the shortest path
trees that can be obtained when moving from CT; to
another trapezoid in the counterclockwise and
clockwise directions, respectively.

Therefore, the shortest path length between
vertices i and j is min{ dis (i, j), dis i, j) }.

Figure 6 shows an example of the shortest path
from vertex 6 to 5 on the CTG. In this example, < 6,
11, 10, 12, 2, 5 > is the shortest counterclockwise path
from vertex 6 on the CTM, and we obtain the length,
dis (6, 5) = 5, from r-tree(6) shown in Figure 4. Similarly,
<6,7,3,5>is the shortest clockwise path from vertex
6 on the CTM, and we obtain the length, dis(6, 5) = 3
from |-tree(6) shown in Figure 5. Therefore, the shortest

path length from 6 to 5 on this CTG is 3.

B. Algorithm APSP-CTG and Its Complexity

In this section, we present the APSP-CTG algorithm
for computing the shortest path lengths between the
all-pair vertices of a CTG, G. In this algorithm, we define

a function for normalization, nor(i), which is expressed

as
i—mn ifi>n,
nor(i) = ¢ i+n ifi <1,
) ifl<ign

for a trapezoid, T, in the ECTM. The value of nor(i) is
the vertex number in the CTG corresponding to the
copy of trapezoid T; in the ECTM. For the example
shown in Figure 3, we have nor(-4)=10 and nor(17)=5.
Now, we concisely describe the outline of our
algorithm  (Algorithm  APSP-CTG) and analyze its

complexity.

Algorithm~APSP-CTG considers a CTM M, as an input.

In Step 1, we construct an ECTM EM, from M using
Honma's algorithm [14] (Figure 2). This step can be

performed in O(n) time. In Step 2, we compute rt(/), rb(i),

(t(i), and (b()), for 1-n < i < 2n, using prefix computation

[21]. This process can execute in O(n) time. Steps 3 and

Algorithm 1: APSP-CTG

Input: Corner points a;, b;, ¢;, d; for each trapezoid in a CTM M.
Output: All-pair shortest path matrix D for the CTG G.

(Step 1) /* Construction of EM from M #/
Construct an ECTM EM from M using Honma’s algorithm [10];

(Step 2) /* Preprocessing */
for 1 <i<ndo
| Compute 7¢(i), 7b(), It(i), and Ib(i) on EM;

(Step 3) /* Construction of r-tree(i) */
Note that N[i] is a set {k | T intersects with 7; on EM} :
for 1 <i<ndo
r-tree(?) = 0 ;
for 1 < j < ndovfj]:=
ofi] := 1" ;
for k € N[i] do
r-tree(z) := r-tree(z) U (2, nor(
L v[nor(k)] := ‘1*;

tp1 = bi. tpa 1= brt(x)
bp1 = di, bp2 := by 3
lt = lb =1 %
while there exists j such as v[j] = ‘0° do
for k € Altpy, tpa], v[nor(k)] = ‘0° do
r-tree(z) := r-tree(i) U (#¢, nor(k)) : /* Add an edge */
L v[nor(k)] := ‘1° ;
for k € Clbp1, bpa], v[nor(
r-tree(z) := r-tree(z) U (ip, nor(
L v[nor(k)] := ‘1¢ ;

tpy »=max{ b; | j € Altp1, tpa]} :

k)) :/* Add an edge */

k)] =0 do
k)) : /* Add an edge */

tpy = max{ b; |J € Clbp1, bpa]} ;
bpj = max{ dj | j € Altp1, tpa]} :
bpy :=max{ d; | j € C[bp1, bp)]} H

tpy = tpo, tpo —max{th tply
bp1 := bpa, bpa := max{bp}, bpy } :
it := k such that by = tpa ;

ip := k such that by, = bpo ;

(Step 4) /* Construction of I-tree(i) */
for 1 <i<ndo
I-tree(z) =0 ;
for 1 < j < ndouvfj]:=0":
o] =1 ;
for k € N[i] do
I-tree(z) := I-tree(z) U (z,nor(k)) : /* Add an edge */
L v[nor(k)] := ‘1*;
tpy 1= At (i)» tp2 i=a; ;
bp1 1= cip(a)> bp2 = ¢4
lt = lb =1 5
while there exists j such as v[j] = ‘0* do
for k € B[tp1,tp2], v[nor(k)] = ‘0‘ do
I-tree(z) := I-tree(z) U (74, nor(k)) : /* Add an edge */
L v[nor(k)] :=*1*;
for k € D[bp1,bpa), v[nor(k)] =
I-tree(z) = I-tree(i) U (ip, nor(k))
L v[nor(k)] :=‘1° ;

tpy :=min{ a; | j € Bltp1,tpa]} :

‘0° do
1 /* Add an edge */

tpy :=min{ a; | j € Dibpy, bpo]} ;
bpy :=min{ ¢; | j € Bltp1.tpa]} :

bpy :=min{ ¢; | j € D[bpy, bpa]} :
tp2 1= tp1, tp1 := min{tp}, lP"}
bpa := bp1, bp1 := min{bp], bp

i; := k such that b, = tp; :

ip := k such that by, = bp1 :

(Step 5) /* Construction of APSP matrix D #/
Note that dis, (7, 7) and dis; (i, 7) are the distances from root i to j on
r-tree(7) and I-tree(i), respectively.
for 1 <i<ndo

for 1 < j<ndo
L L D[ 4] == min{disy(4, 5),dis; (7, 5)} :

4 construct r-tree(/) and |-tree(), for 1 < i < n,
respectively. These steps can be executed in O(n?) time
using Mondal's algorithm [11]. Figures 4 and 5 show the

examples of r-tree(6) and |-tree(6), respectively. Step 5



constructs APSP matrix D. From Lemma 3, the distance,
dis(i, j), is computed using min{ dis(i, j), dis(i, j) }. This
step can be executed in O(n?) time.

Thus, we obtain the following theorem:

Theorem 1. Algorithm APSP-CTG computes the all-pair
shortest path for a CTG in O(n°) time by considering its
CTM M, as an input. O

IV. RESULTS AND DISCUSSION
We actually implemented the program and
performed a benchmark test of the execution speed. In
the APSP problem, we compared our well-known
Floyd-Warshall method with our method. Ten graphs
each with 5,000 and 10,000 nodes were created and
averaged for each processing time. In processing time
benchmarks, graph samples with node sizes of 5,000
and 10,000 are considered adequate. Moreover, in
order to absorb the deviation of the shape of graph and
the number of edges, the average of 10 samples was
calculated.

Table 3 shows the benchmark experimental results.
The time complexty of Floyd-Warshall is O(n’), while
the complexity of our algorithm is O(n?). The
benchmark values show that our algorithm achieves
significant speedup.

Floyd-Warshall Algorithm solves the APSP problem
using dynamic programming. As often practiced in
dynamic programming, the problem is divided into
smaller subproblems which are then solved to obtain
intermediate results to be used in the overall solution.
In the Floyd-Warshall algorithm, it uses the adjacent
matrix of the graph given as input and requires O(n®)
computation time. On the other hand, our algorithm
uses the intersection model as an input and holds the
shortest distance between verticess in a tree structure,
so that the computational

complexity can be

suppressed to O(n?).
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Figure 6 Shortest path from vertex 6 to 5
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Table 3 Benchmark Results

Size Genaral Algorithm = Our Algorithm
5,000 58.91 [sec] 1.44 [sec]
10,000 502.46 [sec] 6.02 [sec]

Processor: Intel Core i7-8700 3.2GHz
Memory: 32GB, Compiler: Borland C++ 5.5.1

V. CONCLUSION

In this study, we proposed Algorithm APSP-CTG,
which operates in O(n’) time to compute the APSP
problem in a CTG. Our algorithm partially uses Mondal's
[11] and Honma's algorithms [14]. The APSP problem is
a fundamental problem that is used to solve numerous
problems in graph theory. For this reason, we believe
that this paper has merits from a theoretical and
algorithmic point of view. Reducing the complexity of
the algorithm and extending the results to other graphs

will be addressed in future work.
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