
Abstract- This study involves a method for determining 
parameters for a (R, Q) inventory policy for a single product 
under limited storage space. Most previous research developed 
methods for finding optimal reorder point (R) and order 
quantity (Q) that minimizes total cost including holding cost, 
ordering cost and shortage cost. This study incorporates 
limitation of storage space by adding the cost of overstocking 
to the total cost. A method to find appropriate values of these 
parameters is proposed for the case where a single product is 
subject  to  uncertain  demand  and  lead  time  limited  storage 
space capacity. A numerical example based on real product 
data is used to demonstrate effectiveness of the method.

Keywords- Inventory control; reorder point; overstock 
cost; order quantity; limited storage space

I. INTRODUCTION

	 Effective inventory control that can sufficiently satisfy 
customer needs is one of the most important strategies of 
all businesses. To provide a competitive advantage and 
improved customer service levels, many enterprises have 
to keep excessive inventory and pay additional cost, even 
when capacity of storage space is limited. One of the 
commonly used inventory management policy is the Q, 
R policy, where the key decisions are the replenishment 
order quantity and reorder point. Under this policy, when 
the inventory position falls on or below the reorder point, 
a replenishment order will be placed. Optimal values of 
Q and R are the ones that minimize the total inventory 
management cost.
	 Numerous research has been conducted on inventory 
policies. However, one important aspect of the problem, 
which is the limitation of storage space, has not been 
thoroughly studied. Some research studies on the Q, R 
policy that also consider storage space capacity in inventory 
management problem [1] - [7].
	 Huang [4] developed an inventory policy to find 
retailer’s optimal cycle time and optimal payment time 
under the supplier’s trade credit policy and cash-discount 
policy with space restriction and perishable goods. Roy and 

Maiti [5] presented a fuzzy EOQ inventory model. In 
contrast, the study of Özer and Wei [6] shows an optimal 
policy under fixed cost, planning horizon with advance 
demand information. While Sana [7] developed an EOQ 
model and Hariga [2] concentrated on (R, Q) policy, both 
studies considered storage spaces with respect to two 
types of warehouses: owned warehouse (OW) and rented 
warehouse (RW).
	 However, in those studies, the total cost consists of the 
ordering, holding and shortage costs, without explicitly 
considering the overstock cost for over-capacity units. In 
terms of the total cost, Hariga [1] - [2], and Zhoa et al. [3] 
considered three cost components: production or ordering 
cost, holding cost, and shortage cost; while Maiti [5] and 
Özer and Wei [6] only considered the first two cost compo-
nents, and Huang [4] and Sana [7] considered the last two 
components.
	 When over-capacity units occur, they can be returned 
to the supplier [1], kept at an external rented capacity [2], 
[4], [7], or they are simply not allowed in the system [3], 
[5], [6]. Regarding demand, [1] - [3], [6], [7] considered 
stochastic demand following some distributions, e.g. normal, 
exponential, uniform, lognormal, and Poisson, whereas 
Huang [4] assumed constant demand, and Roy and Maiti 
[5] used the demand-dependent unit price. Similarly, for 
lead time, Hariga [1] - [2] assumed that the lead time follows 
normal distribution, while some researchers assumed 
constant or no lead time [3] - [7].
	 This paper aims at filling research gap in previous 
research studies. The paper concentrates on the Q, R 
inventory policy for managing a single product that has 
varying demand and lead time under limited storage space 
capacity. The objective is to find appropriate values of Q 
and R that minimize the total cost, while explicitly consider 
the overstock cost as a component of the total cost in 
addition to the ordering, holding, and shortage cost.
	 The paper is organized as follows. The problem state-
ment is described in Section 2. Notations and methodology 
is presented in Section 3. An illustrative numerical example 
is provided in Section 4. Finally, conclusion is made in 
Section 5.
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II. PROBLEM STATEMENT

	 The inventory management problem of interest can be 
described as follows.
	 In this system, inventory position of a single item is 
periodically reviewed. An order of size Q is placed if the 
ending inventory position is below the reorder point. When 
the inventory on-hands cannot satisfy demand, shortage will 
occur in the form of lost sales. The storage space for the 
item has a limited capacity. When the inventory on-hands 
exceed the capacity of the storage space, an overstock cost 
will be incurred according to the amount of overstock. The 
system measure of performance is the total inventory 
management cost, consist of four components: (1) cost of 
placing orders, (2) cost of holding inventory, (3) cost of lost 
sales, and (4) cost of overstock. The objective is to determine 
appropriate order quantity (Q) and reorder level (R) that 
minimizes the total cost under limited storage space.

III. NOTATIONS AND METHODOLOGY

A. Notations

The method described in this section uses the following 
notation.
Q	 replenishment order quantity
R	 reorder level
EOQ	 economic order quantity
D	 the demand rate of the item, in units/time period
CP	 fixed reordering cost
CH	 unit inventory carrying cost per time period
CS	 unit shortage cost
d	 demand during the replenishment lead time
p(d)	 probability that demand during lead time is equal 
	 to d
d	 average demand during the replenishment lead time
E{s}R	 expected number of  units short incurred  when the
	 reorder level is set to R
W	 limited capacity of the storage space
TC	 Total cost

B.  Distribution of Demand During Varying Lead Time

	 The distribution of the demand during varying lead 
time forms the basis to evaluate the performance of a 
specified reorder  point.  Specifically,  it  is  used  to  estimate  
the expected amount of shortage for a given reorder point. 
In addition, the distribution can lead to determining the 
reorder point for a given value of service level. Therefore, 
the pre- processing step in the methodology is to formulate 
this distribution.
	 Due to  the uncertainties in demand and replenishment 
lead time, the process of determining the distribution of 
demand during varying lead time must account for both 
uncertainties. First, the empirical distribution of one-period 
demand is constructed from historical demand data. This 
distribution  also  represents  the  distribution  of  demand 
during lead time (DDLT) when the lead time is one period. 
Then, the two-period DDLT distribution is derived by 

tabulating the one-period DDLT distribution with itself. The 
possible values of the two-period DDLT distribution are the 
sum of all possible pairs of one-period DDLT values, and 
the associated probability of each value is the product of 
the probabilities of the one-period DDLT. The process 
repeats until the DDLT distribution of the maximum lead 
time is derived. The final step is then to combine the DDLT 
for all possible values of lead time to obtain the DDLT of 
varying lead time. A short example of deriving the DDLT 
is given next.
	 Suppose  the  distribution  of  one-period  demand  is  
as shown in Table 1. An empirical distribution of demand 
during two-day lead time can be developed by tabulating 
the distribution of  one-day demand.  The  possible values 
are from adding all possible pairs of demand values, and the 
associated probabilities are from multiplying the probability 
of demand values. The resulting DDLT distribution, after 
projecting all possible demand values and combining 
probability of demand for each demand value, is as shown 
in Table 2.

TABLE I
PROBABILITY OF ONE-DAY DEMAND

	 One-day demand	 1	 2	 3
	 Probability	 0.2	 0.5	 0.3 	

TABLE II
DISTRIBUTION OF DDLT, L = 2

	 Demand in	 Demand in Day 2
	 Demand	 Day 2	 Demand
	 in day 1	 1	 2	 3	 in day 1	 1	 2	 3

	 1	 2	 3	 4	 1	 0.04	 0.10	 0.06
	 2	 3	 4	 5	 2	 0.10	 0.25	 0.15
	 3	 4	 5	 6	 3	 0.06	 0.15	 0.09

	 Two-day demand	 2	 3	 4	 5	 6
	 Probability	 0.04 	 0.20 	 0.37 	 0.30 	 0.09 

	 The DDLT distribution for three-day lead time is then 
created by further tabulating the DDLT distributions of 
two- day lead time and of one-day lead time, as shown in 
Table 3.

TABLE III
DISTRIBUTION OF DDLT, L = 3

	 Three-day demand	 3	 4	 5	 6
	 Probability	 0.008	 0.060	 0.186	 0.305
	 Three-day demand	 7	 8	 9
	 Probability	 0.279	 0.135	 0.027	

	 In addition, when the lead time is uncertain, the DDLT 
distribution can be derived by combining both the lead time 
demand distribution and the lead time distribution. Now, 
suppose the lead time distribution follows the empirical 
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distribution is shown in Table 4. Then, the final lead time 
demand distribution is as shown in Table 5. For example, 
the 3-unit demand occurs with the probability of 0.3, 0.2, 
and 0.008, if the lead time is one day, two days, and three 
days, respectively. Therefore, the overall probability of 
3- unit demand would occur with the total probability of 
(0.3×0.7 + 0.2×0.2 + 0.008×0.1) = 0.02508.

TABLE IV
PROBABILITY OF LEAD TIME

	 Lead time	 1	 2	 3
	 Probability	 0.7	 0.2 	 0.1

TABLE V
DISTRIBUTION OF DEMAND DURING VARYING

LEAD TIME

	 Demand	 1	 2	 3	 4	 5
	 Probability	 0.1400	 0.3580	 0.2508	 0.0800	 0.0786

	 Demand	 6	 7	 8	 9
	 Probability 	 0.0485 	 0.0279	 0.0135	 0.0027

C. Iterative Q, R procedure

	 The algorithm for determining Q and R is adopted from 
the iterative method, first introduced by Felter and Dalleck 
(1961). The method combines shortage cost to the EOQ [9]. 
The shortage cost is subject to the expected amount of 
shortage, which depends on R, while R is also a function 
of Q. Thus, the algorithm proceeds iteratively until Q and 
R converge.
	 The method incorporates the following five steps:
	 Step 1 : Compute EOQ as an initial solution for Q,

	 Q =	
2DCP

		  CH

	 Step 2: Compute the probability of shortage,

P(d > R) =	
QCH. Then, find R from the DDLT distribution.

		
DCs

	 Step 3: Estimate the amount of shortage for a given R
	 d max

(from Step 2), E{s}R =	 Σ	(d - R) p(d )
	

d = R + 1

	 Step 4: Update Q =	
2D[CP + CS E{s}R ]

		  CH

	 Step 5: Repeat Step 2 to Step 4 until the values of Q in
Step 4 and R in Step 2 converge.

	 The algorithm begins with an initial solution of Q = 
EOQ in Step 1. In Step 2, the probability of shortage is 
calculated. Then, the value of R that is associated with this 

probability can be found from the DDLT distribution. This 
is done by deriving the cumulative probability distribution 
from the DDLT. Then, look up the cumulative probability 
of the demand that matches the probability of shortage, the 
value of the demand at that point is the appropriate R.
	 Based on the value of R from Step 2, E{s}R can be 
easily computed in Step 3. Step 4 updates Q based on the 
total cost that includes ordering cost, carrying cost, and 
shortage cost. Finally, in Step 5 the algorithm repeats Steps 
2-4 until the values of R and Q converge.
	 At this point, it can be noticed that the algorithm does 
not take  into  account  one  cost  component,  which  is  the 
overstock cost. The values of Q and R will be adjusted to 
take into account the storage space limitation later in Sub- 
section E.

D. Simulation to evaluate the performance of R, Q

	 To evaluate the performance of Q and R, simulation 
of the inventory management process is created. In the 
simulation, periodically (e.g. daily) demand is randomly 
generated from the empirical distribution of one-period 
demand. After the customer demand arrives, the system 
updates the amount of inventory on-hands, inventory 
position, the amount of lost sales (if inventory on-hands is 
insufficient to satisfy demand), and the system determines 
whether a replenishment order Q is needed. If so, then the 
system randomly generated a lead time. At the end of the 
update, the system checks if there is incoming shipment 
from previous order so as to update the inventory on-hands
and position accordingly. At this point, if the inventory 
on- hands exceed the capacity of the storage space, then the 
overstock amount is updated. At the end of the day, the 
system updates the inventory carrying cost based on the 
ending inventory on-hands, and then checks if the simulation 
terminating condition is met. The simulation is set to run 
for T periods. At the end of the simulation, all four costs 
that have incurred are combined to be the total cost. Fig. 1 
shows a flow chart for simulation model of inventory 
management.

Fig. 1  Flow chart of inventory management

TABLE V 
DISTRIBUTION OF DEMAND DURING VARYING LEAD TIME 

Demand 1 2 3 4 5 
Probability 0.1400 0.3580 0.2508 0.0800 0.0786 
Demand 6 7 8 9  
Probability 0.0485 0.0279 0.0135 0.0027  

C. Iterative Q, R procedure   
The algorithm for determining Q and R is adopted from 

the iterative method, first introduced by Felter and Dalleck 
(1961). The method combines shortage cost to the EOQ [9]. 
The shortage cost is subject to the expected amount of 
shortage, which depends on R, while R is also a function of 
Q. Thus, the algorithm proceeds iteratively until Q and R 
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The algorithm begins with an initial solution of Q = EOQ 

in Step 1. In Step 2, the probability of shortage is calculated. 
Then, the value of R that is associated with this probability 
can be found from the DDLT distribution. This is done by 
deriving the cumulative probability distribution from the 
DDLT. Then, look up the cumulative probability of the 
demand that matches the probability of shortage, the value 
of the demand at that point is the appropriate R. 

Based on the value of R from Step 2,  RsE  can be easily 
computed in Step 3. Step 4 updates Q based on the total cost 
that includes ordering cost, carrying cost, and shortage cost. 
Finally, in Step 5 the algorithm repeats Steps 2-4 until the 
values of R and Q converge. 

At this point, it can be noticed that the algorithm does not 
take into account one cost component, which is the 
overstock cost. The values of Q and R will be adjusted to 
take into account the storage space limitation later in Sub-
section E. 

D. Simulation to evaluate the performance of R, Q 
To evaluate the performance of Q and R, simulation of 

the inventory management process is created. In the 
simulation, periodically (e.g. daily) demand is randomly 

generated from the empirical distribution of one-period 
demand. After the customer demand arrives, the system 
updates the amount of inventory on-hands, inventory 
position, the amount of lost sales (if inventory on-hands is 
insufficient to satisfy demand), and the system determines 
whether a replenishment order Q is needed. If so, then the 
system randomly generated a lead time. At the end of the 
update, the system checks if there is incoming shipment 
from previous order so as to update the inventory on-hands 
and position accordingly. At this point, if the inventory on-
hands exceed the capacity of the storage space, then the 
overstock amount is updated. At the end of the day, the 
system updates the inventory carrying cost based on the 
ending inventory on-hands, and then checks if the 
simulation terminating condition is met. The simulation is 
set to run for T periods. At the end of the simulation, all four 
costs that have incurred are combined to be the total cost.  
Fig. 1 shows a flow chart for simulation model of inventory 
management.  
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Fig. 1 Flow chart of inventory management 

E. Adjusting the Inventory Parameters using the Cyclic 
Coordinate Method 

The final step of the methodology is the adjustment of Q 
and R to take into account the limited space restriction. The 
method for adjustment is based on the multidimensional 
search without derivative, called cyclic coordinate method, 
for the unconstrained non-linear optimization [10]. The 
cyclic coordinate method uses the following notations.  

l the allowable final length of the uncertainty, l = 0 
RL(k) (or QL(k))  Lower bound of reorder point (or order 

quantity) at kth iteration in [RL; RU] (or [QL; QU]). 
(k)  Eligible lower bound of reorder point (or order 

quantity) at kth iteration in [RL; RU] (or [QL; QU]).. 
(k)  Eligible upper bound of reorder point (or order 

quantity) at kth iteration in [RL; RU] (or [QL; QU]).. 
RU(k) (QU(k))  Upper bound of reorder point (or order 

quantity) at kth iteration in [RL; RU] (or [QL; QU]). 
TC(k)  The total cost of the eligible lower bound of 

reorder point (or order quantity) at kth iteration. 
TC(k)  The total cost of the eligible upper bound of 

reorder point (or order quantity) at kth iteration. 
In the cyclic coordinate method performed at this step, Q 

and R are treated as the decision variables. The objective 
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function is the total cost that now includes the fourth cost 
component, the overstock cost. To handle the uncertainty in 
the simulation result, the simulation model is run in multiple 
replications, and the average total cost is used as the 
objective function in the cyclic coordinate method.  

This algorithm performs the search in the directions of the 
two decision variables, R and Q, with dR = (1, 0); dQ = (0, 1), 
one direction at a time in a cyclical manner. In the first 
iteration, starting from an initial solution (R0, Q0) from the 
iterative Q, R algorithm, the search is performed along the 
dR direction. The optimal step size is determined by using a 
one-dimensional search, called Golden Section Search 
method. After reaching a new solution, (R(1), Q0), the quality 
of the solution is evaluated using the simulation as described 
in Subsection D. Then, the search continues in the dQ 
direction, and reach the new solution of (R(1), Q(1)), which 
completes the first iteration. The algorithm repeats until the 
solution converges. The steps of cyclic coordinate are as 
shown in Fig. 2. 
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Fig. 2 Flow chart of R and Q adjustment 
 
The golden section search follows these steps. First, 

arbitrarily select l = 0.05 to be used as stopping criterion for 
the length of the interval of uncertainty. Let [1, R0] (or [1, 
Q0]) be the initial interval of uncertainty where the optimal 
R (or Q) lies. These intervals are chosen because R and Q 
must be non-negative and be smaller than the initial Q and R. 
Let (1) = 1 + (1-α)(R0 – 1), (or for finding the optimal Q, (1) 
= 1 + (1-α)(Q0 – 1)) and (1) = 1 + α(R0 – 1) (or (1) = 1 + 
α(Q0 – 1)), where α = 0.618 (a golden ratio). Evaluate 
TC((1)) and TC((1)), let k = 1, and go to next step. 

 

Step 1 If RU(1)-RL(1) (or QU(1)-QL(1)) < 0.05, then stop; the 
optimal solution is in the interval [RL(1), RU(1)] (or, 
[QL(1), QU(1)].  Otherwise, if TC((1)) > TC((1)), go to 
step 2; and if TC((1)) <= TC((1)), go to Step 3.   

 

Step 2 Let RL(k+1) (or QL(k+1)) = (k); 
                RU(k+1) = RU(k) (or QU(k+1) = QU(k)) 

            (k+1) = (k); 
            (k+1) = RL(k+1) + α(RU(k+1) – RL(k+1)) 
            or (k+1) = QL(k+1) + α(QU(k+1) – QL(k+1))) 
And then evaluate TC((k+1)) and go to step 4. 

 

Step 3 Let RL(k+1) = RL(k) (or QL(k+1) = QL(k)); 
            RU(k+1) (or QU(k+1)) = (k); 

(k+1) = RL(k+1) + (1 – α)(RU(k+1) – RL(k+1)),  
or (k+1) = QL(k+1) + (1 – α)(QU(k+1) – QL(k+1))) 
(k+1) = (k). 

    After that evaluate TC((k+1)) and go to step 4. 
 
Step 4 Replace k by k + 1 and go to Step 1 
 

The search will continue until RU(1)-RL(1) (or QU(1)-QL(1)) < 
0.05 at which point the solution convergence occurs (k is 
number of iterations). In the next section, one numerical 
example that illustrates the inventory system model in detail 
will be given. 

IV. NUMERICAL EXAMPLE 
Consider a fast moving item. All demands that occur in 

one day are aggregated to a daily demand. One year of daily 
demand data (294 working days) are used as input data. Cost 
parameters and demand data are obtained from industry. 
They are as shown in Table 6. 

TABLE VI 
COST COMPONENTS 

Ordering cost (THB/order), CP 9.6 
Inventory holding cost (THB/unit/day), CH 0.0118896 
Shortage cost (THB/unit), CS 8 
Average daily demand (unit) 468 
Standard deviation of demand (unit) 465 

 
The demand data are used to fit an empirical distribution 

of one-day demand. Twenty replications of demand data are 
then generated from this distribution. These generated data 
are for solution evaluation purpose through simulation 
model. Replenishment lead time from the supplier is 
variable based on the probability of lead time as shown in 
Table 7. 

TABLE VII 
PROBABILITY OF LEAD TIME 

Lead time (days) Probability 
1 0.7 
2 0.2 
3 0.1 

 
The distribution of demand during varying lead time 

(DDLT) can be constructed as described in Section 3B. The 
iterative approach is applied to find initial R0 and Q0 values. 
Table 8 shows the iteration of the iterative approach until the 
two parameters converge. 

TABLE VIII 
ITERATIVE Q, R PROCEDURE 

Iteration Step 1: Step 2: Step 3: Step 4: 
EOQ P(d>R) R E(s) Q 

1 869 0.00276 3,491 1.36274 1,271 
2  0.00404 3,311 1.96371 1,412 
3  0.00448 3,259 2.18522 1,460 
4  0.00464 3,242 2.26277 1,477 
5  0.00471 3,237 2.28610 1,482 
6  0.00472 3,235 2.29551 1,488 
7  0.00472 3,235 2.29551 1,488 
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E.	 Adjusting the Inventory Parameters using the Cyclic
	 Coordinate Method

	 The final step of the methodology is the adjustment of 
Q and R to take into account the limited space restriction. 
The method for adjustment is based on the multidimensional 
search without derivative, called cyclic coordinate method, 
for the unconstrained non-linear optimization [10]. The 
cyclic coordinate method uses the following notations.
	 l	 the allowable final length of the uncertainty, l = 0
	 RL(k) (or QL(k)) Lower bound of reorder point (or order 
quantity) at kth iteration in [RL; RU] (or [QL; QU]).
	 λ(k)	Eligible lower bound of reorder point (or order 
quantity) at kth iteration in [RL; RU] (or [QL; QU]).
	 µ(k)	Eligible upper bound of reorder point (or order 
quantity) at kth iteration in [RL; RU] (or [QL; QU]).
	 RU(k) (QU(k)) Upper bound of reorder point (or order 
quantity) at kth iteration in [RL; RU] (or [QL; QU]).
	 TCλ(k) The total cost of the eligible lower bound of 
reorder point (or order quantity) at kth iteration.
	 TCµ(k) The total cost of the eligible upper bound of 
reorder point (or order quantity) at kth iteration.
	 In the cyclic coordinate method performed at this step, 
Q and R are treated as the decision variables. The objective 
function is the total cost that now includes the fourth cost 
component, the overstock cost. To handle the uncertainty 
in the simulation result, the simulation model is run in 
multiple replications, and the average total cost is used as 
the objective function in the cyclic coordinate method.
	 This algorithm performs the search in the directions of 
the two decision variables, R and Q, with dR = (1, 0); dQ = 
(0, 1), one direction at a time in a cyclical manner. In the 
first iteration, starting from an initial solution (R0, Q0) from 
the iterative Q, R algorithm, the search is performed along 
the dR direction. The optimal step size is determined by 
using a one-dimensional search, called Golden Section 
Search method. After reaching a new solution, (R(1), Q0), 
the quality of the solution is evaluated using the simulation 
as described in Subsection D. Then, the search continues in 
the dQ direction, and reach the new solution of (R(1), Q(1)), 
which completes the first iteration. The algorithm repeats 
until the solution converges. The steps of cyclic coordinate 
are as shown in Fig. 2.

and Q must be non-negative and be smaller than the initial 
Q and R. Let λ(1) = 1 + (1-α)(R0 - 1), (or for finding the 
optimal Q, λ(1) = 1 + (1-α)(Q0 - 1)) and µ(1) = 1 + α(R0 - 1) 
(or µ(1) = 1 + α(Q0 - 1)), where α = 0.618 (a golden ratio). 
Evaluate TC(λ(1)) and TC(µ(1)), let k = 1, and go to next 
step.

	 Step 1 If RU(1)-RL(1) (or QU(1)-QL(1)) < 0.05, then stop; 
the optimal solution is in the interval [RL(1), RU(1)] 
(or, [QL(1), QU(1)]. Otherwise, if TC(λ(1)) > 
TC(µ(1)), go to step 2; and if TC(λ(1)) <= TC(µ(1)), 
go to Step 3.

	 Step 2  Let	 RL(k+1) (or QL(k+1)) = λ(k);
			   RU(k+1) = RU(k) (or QU(k+1) = QU(k))
			   λ(k+1) = µ(k);
			   µ(k+1) = RL(k+1) + α(RU(k+1) - RL(k+1))
			   or µ(k+1) = QL(k+1) + α(QU(k+1) - QL(k+1)))
		  And then evaluate TC(µ(k+1)) and go to step 4.

	 Step 3  Let	 RL(k+1) = RL(k) (or QL(k+1) = QL(k));
			   RU(k+1) (or QU(k+1)) = µ(k);
			   λ(k+1) = RL(k+1) + (1 - α)(RU(k+1) - RL(k+1)),
		  	 (or λ(k+1) = QL(k+1) + (1 - α)(QU(k+1) - 

QL(k+1)))
			   µ(k+1) = λ(k).

		  After that evaluate TC(λ(k+1)) and go to step 4.

	 Step 4  Replace k by k + 1 and go to Step 1

	 The search will continue until RU(1)-RL(1) (or QU(1)-
QL(1)) < 0.05 at which point the solution convergence occurs 
(k is number of iterations). In the next section, one numer-
ical example that illustrates the inventory system model in 
detail will be given.

IV. NUMERICAL EXAMPLE

	 Consider a fast moving item. All demands that occur 
in one day are aggregated to a daily demand. One year of 
daily demand data (294 working days) are used as input 
data. Cost parameters and demand data are obtained from 
industry. They are as shown in Table 6.

TABLE VI
COST COMPONENTS

	 Ordering cost (THB/order), CP	 9.6
	 Inventory holding cost (THB/unit/day), CH	 0.0118896
	 Shortage cost (THB/unit), CS	 8
	 Average daily demand (unit)	 468
	 Standard deviation of demand (unit)	 465

	 The demand data are used to fit an empirical distribution 
of one-day demand. Twenty replications of demand data 
are then generated from this distribution. These generated 
data are for solution evaluation purpose through simulation 
model. Replenishment lead time from the supplier is variable 
based on the probability of lead time as shown in Table 7.

Fig. 2  Flow chart of R and Q adjustment

	 The golden section search follows these steps. First, 
arbitrarily select l = 0.05 to be used as stopping criterion 
for the length of the interval of uncertainty. Let [1, R0] (or 
[1, Q0]) be the initial interval of uncertainty where the 
optimal R (or Q) lies. These intervals are chosen because R 
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TABLE VII
PROBABILITY OF LEAD TIME

	 Lead time (days)	 Probability

	 1	 0.7
	 2	 0.2
 	 3 	 0.1

	 The distribution of demand during varying lead time 
(DDLT) can be constructed as described in Section 3B. The 
iterative approach is applied to find initial R0 and Q0 values. 
Table 8 shows the iteration of the iterative approach until 
the two parameters converge.

TABLE VIII
ITERATIVE Q, R PROCEDURE

	
Iteration

	 Step 1:	 Step 2:		  Step 3:	 Step 4:
	 	 EOQ	 P(d>R)	 R	 E(s)	 Q

	 1	 869	 0.00276	 3,491	 1.36274	 1,271
	 2		  0.00404	 3,311	 1.96371	 1,412
	 3		  0.00448	 3,259	 2.18522	 1,460
	 4		  0.00464	 3,242	 2.26277	 1,477
	 5		  0.00471	 3,237	 2.28610	 1,482
	 6		  0.00472	 3,235	 2.29551	 1,488
	 7		  0.00472	 3,235	 2.29551	 1,488

	 The iterative procedure starts with computing initial Q 
from EOQ = 869 units. Secondly, compute P(d>R) using 
Q from Step 1 and the cost parameters from Table 6 to 
obtain P(d>R) = 0.00276. Then, find the value of R that is 
associated with P(d>R) from the cumulative probability of 
demand during lead time distribution. After that, the expected 
number of shortage for a given value of R (from Step 2) is 
determined at 1.3627. Finally, Q is updated to be equal to 
1,271 units. In the end of iterative Q, R procedure, R and Q 
parameters converge to R = 3,235 units and Q = 1,488 units.
	 After finding R0 and Q0, the quality of the initial 
solution is evaluated using simulation. The initial inventory 
is set on 6,470 units (two times of R). The process of 
simulation is that when inventory position drops to or below 
3,235 units, then an order of 1,488 units will be placed. If 
the retailer cannot satisfy demand, it counts as lost sales.
	 To incorporate the storage space capacity, the maximum 
allowable of storage space is set to (average inventory 
level + L×SD of inventory level); for example, for L = 0.6, 
the capacity is 3,759 units. The overstock cost of 0.24 THB 
per unit will incur if the inventory level exceeds the space 
capacity. Table 9 shows the results from simulation evalu-
ation.

TABLE IX
TOTAL COST OF ITERATIVE METHOD

	 Number of order	 114
	 Number of shortage (units)	 1,044
	 Average inventory level (units/day)	 3,308

	 Ordering cost (THB)	 1,094
	 Shortage cost (THB)	 8,352
	 Inventory holding cost (THB)	 14,356
	 Overstock cost (THB)	 9,110

	 Total cost (THB)	 32,912

	 After evaluating performance of R0 and Q0, the cyclic 
coordinate method is applied to adjust these parameters. 
The length of the interval of uncertainty, l, is set to 0.05. 
The initial boundary for the golden section search is [1, R0] 
= [1, 3,235]. The iterations of the golden section in the R 
and Q directions are shown in Table 10 and Table 11, 
respectively.
	 From Table 10, it showed that the golden section search 
is terminated in the 21st iteration. Each TC is computed, 
while holding Q at Q0 = 1,488. The first two new solutions 
are positioned at λ(1) = 1,236 units; µ(1) = 1,999 units. 
TC(λ(1)), including ordering cost, shortage cost, inventory 
on hand, and overstock cost combinations at λ(1) = 1,236 
units, is 210,031.7 THB, while TC(µ(1)) is 72,378.8 THB. 
It can be easily seen that because TC(λ(1)) > TC(µ(1)), in 
Step 2 RL(2) = λ(1) = 1,236 units; RU(2) = RU(1) = 3,235 units;  
λ(2) = µ(1) =1,999 units; and µ(2) = RL(2) + 0.618 (RU(2) – 
RL(2)) = 2,472 units. At the end of the golden section search, 
the interval of uncertainty is [2,982; 2,982], the optimal R1 
is therefore 2,982 and the total cost is equal to 30,720.62 
THB, which is a 7% cost reduction.

TABLE X
SUMMARY OF THE ITERATIONS ALONG DIRECTION

(1, 0) FOR CHANGING R

	 k	 RL(k)	 λ(k)	 µ(k)	 RU(k)	 TC(λ(k))	 TC(µ(k))

	 1	 1.00	 1,236.4	 1,999.6	 3,235.0	 210,031.7	 72,378.8
	 2	 1,236.4	 1,999.6	 2,471.5	 3,235.0	 72,378.8	 42,291.9
	 3	 1,999.6	 2,471.5	 2,763.1	 3,235.0	 42,291.9	 33,437.2
	 4	 2,471.5	 2,763.1	 2,943.4	 3,235.0	 33,437.2	 31,017.9
	 5	 2,763.1	 2,943.4	 3,054.7	 3,235.0	 31,017.9	 31,065.4
	 6	 2,763.1	 2,874.5	 2,943.4	 3,054.7	 31,427.2	 31,017.9
	 7	 2,874.5	 2,943.4	 2,985.9	 3,054.7	 31,017.9	 30,775.3
	 8	 2,943.4	 2,985.9	 3,012.2	 3,054.7	 30,775.3	 30,894.8
	 9	 2,943.4	 2,969.6	 2,985.9	 3,012.2	 30,938.4	 30,775.3
	 10	 2,969.7	 2,985.9	 2,995.9	 3,012.2	 30,775.3	 30,890.1
	 11	 2,969.7	 2,979.7	 2,985.9	 2,995.9	 30,768.2	 30,775.3
	 12	 2,969.7	 2,975.8	 2,979.7	 2,985.9	 30,920.4	 30,768.2
	 13	 2,975.9	 2,979.7	 2,982.0	 2,985.9	 30,768.2	 30,720.6
	 14	 2,979.7	 2,982.0	 2,983.5	 2,985.9	 30,720.6	 30,733.1
	 15	 2,979.7	 2,981.2	 2,982.0	 2,983.5	 30,775.1	 30,720.6
	 16	 2,981.2	 2,982.0	 2,982.6	 2,983.5	 30,720.6	 30,720.6
	 17	 2,981.2	 2,981.7	 2,982.0	 2,982.6	 30,775.1	 30,720.6
	 18	 2,981.7	 2,982.0	 2,982.3	 2,982.6	 30,720.6	 30,720.6
	 19	 2,981.7	 2,981.9	 2,982.0	 2,982.3	 30,775.1	 30,720.6
	 20	 2,981.9	 2,982.0	 2,982.1	 2,982.3	 30,720.6	 30,720.6
	 21	 2,981.9	 2,982.0	 2,982.0	 2,982.1	 30,720.6	 30,720.6
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TABLE XI
SUMMARY OF THE ITERATIONS ALONG

DIRECTION (1, 0) FOR CHANGING Q

	 k	 QL(k)	 λ(k)	 µ(k)	 QU(k)	 TC(λ(k))	 TC(µ(k))

	 1	 1.0	 569.0	 920.0	 1,488.0	 73,249.0	 34,479.7
	 2	 569.0	 920.0	 1,137.0	 1,488.0	 34,479.7	 30,801.5
	 3	 920.0	 1,137.0	 1,271.0	 1,488.0	 30,801.5	 30,202.7
	 4	 1,137.0	 1,271.0	 1,353.9	 1,488.0	 30,202.7	 30,128.4
	 5	 1,271.0	 1,353.9	 1,405.1	 1,488.0	 30,128.4	 30,737.3
	 6	 1,271.0	 1,322.2	 1,353.9	 1,405.1	 30,304.8	 30,128.4
	 7	 1,322.2	 1,353.9	 1,373.5	 1,405.1	 30,128.4	 30,644.2
	 8	 1,322.2	 1,341.8	 1,353.9	 1,373.5	 30,314.9	 30,128.4
	 9	 1,341.8	 1,353.9	 1,361.4	 1,373.5	 30,128.4	 30,330.1
	 10	 1,341.8	 1,349.3	 1,353.9	 1,361.4	 30,124.0	 30,128.4
	 11	 1,341.8	 1,346.4	 1,349.3	 1,353.9	 30,320.7	 30,124.0
	 12	 1,346.4	 1,349.3	 1,351.0	 1,353.9	 30,124.0	 30,509.6
	 13	 1,346.4	 1,348.2	 1,349.3	 1,351.0	 30,190.3	 30,124.0
	 14	 1,348.2	 1,349.3	 1,350.0	 1,351.0	 30,124.0	 30,188.8
	 15	 1,348.2	 1,348.9	 1,349.3	 1,350.0	 30,066.0	 30,124.0
	 16	 1,348.2	 1,348.6	 1,348.9	 1,349.3	 30,039.8	 30,066.0
	 17	 1,348.2	 1,348.4	 1,348.6	 1,348.9	 30,173.7	 30,039.8
	 18	 1,348.4	 1,348.6	 1,348.7	 1,348.9	 30,039.8	 30,061.9
	 19	 1,348.4	 1,348.5	 1,348.6	 1,348.7	 30,068.7	 30,039.8
	 20	 1,348.5	 1,348.6	 1,348.6	 1,348.7	 30,039.8	 30,089.3
	 21	 1,348.5	 1,348.6	 1,348.6	 1,348.6	 30,058.7	 30,039.8
	 22	 1,348.6	 1,348.6	 1,348.6	 1,348.6	 30,039.8	 30,051.8
	 23	 1,348.6	 1,348.6	 1,348.6	 1,348.6	 30,045.3	 30,039.8

	 After finding R, it is fixed at 2,982, and the cyclic 
coordinate turns to the Q direction. The results from the 
golden section search from Table 11 shows the optimal Q1 
= 1,349.  The cyclic coordinate method keeps searching 
cyclically until R and Q converge. Iteration results from the 
cyclic coordinate method are shown in Table 12.
	 After seven iterations, the optimal solution converges 
at R = 3,191, a reduction of 1.4%, and Q = 1,105, a reduction 
of 26%.  Note that both R and Q are rounded to the nearest 
integer.  The performance measures of the final solution 
are shown in Table 13.  Overall, the number of order and 
shortage increase, while the average inventory and overstock 
decrease. This lead to the final total cost of 28,331 THB, or 
a cost reduction of 13.92%. The average inventory on-hands 
reduced by 8.59%.

TABLE XII
SUMMARY OF THE CYCLIC COORDINATE METHOD

	 K	 R(k)	 Q(k)	 j	 d(j)	 R(j+1)	 Q(j+1)
	 TC 

								        (THB)
	 1	 3235	 1488	 1	 1	 0	 2,982.0	 1,488.0	 30,720.6
				    2	 0	 1	 2,982.0	 1,348.6	 30,041.0
	 2	 2982.0	 1348.6	 1	 1	 0	 3,058.4	 1,348.6	 29,738.2
				    2	 0	 1	 3,058.4	 1,254.3	 29,189.6
	 3	 3058.4	 1254.3	 1	 1	 0	 3,119.5	 1,254.3	 28,949.4
			    	 2	 0	 1	 3,119.5	 1,203.6	 28,694.8
	 4	 3119.5	 1203.6	 1	 1	 0	 3,139.8	 1,203.6	 28,701.2
				    2	 0	 1	 3,139.8	 1,104.2	 28,211.9
	 5	 3139.8	 1104.2	 1	 1	 0	 3,190.2	 1,104.2	 28,103.3
		   		  2	 0	 1	 3,190.2	 1,104.3	 28,110.2
	 6	 3190.2	 1104.3	 1	 1	 0	 3,190.5	 1,104.3	 28,091.4
				    2	 0	 1	 3,190.5	 1,104.3	 28,091.4
	 7	 3190.5	 1104.3	 1	 1	 0	 3,190.5	 1,104.3	 28,091.4
				    2	 0	 1	 3,190.5	 1,104.3	 28,091.4 

TABLE XIII
TOTAL COST OF CYCLIC COORDINATE METHOD

	 Number of order	 154
	 Number of shortage (units)	 1,437
	 Average inventory level (units/day)	 3,034
	 Average number of overstock (units/day) 	 25

	 Ordering cost (THB)	 1,478
	 Shortage cost (THB)	 11,496
	 Inventory holding cost (THB)	 13,167
	 Overstock cost (THB) 	 2,190
	 Total cost (THB) 	 28,331

V. CONCLUSIONS

	 This article considers the inventory management 
problem with the Q, R policy under storage space limitation. 
A two- stage method featuring iterative Q, R method to find 
initial solution without considering storage space limitation, 
and cyclic coordinate method to adjust the solution for space 
limitation is proposed.  A numerical example that illustrates 
the effectiveness of the method is provided.  For future work, 
further test of the method on other products with various 
characteristics will be conducted.
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