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Abstract- This study involves a method for determining
parameters for a (R, Q) inventory policy for a single product
under limited storage space. Most previous research developed
methods for finding optimal reorder point (R) and order
quantity (Q) that minimizes total cost including holding cost,
ordering cost and shortage cost. This study incorporates
limitation of storage space by adding the cost of overstocking
to the total cost. A method to find appropriate values of these
parameters is proposed for the case where a single product is
subject to uncertain demand and lead time limited storage
space capacity. A numerical example based on real product
data is used to demonstrate effectiveness of the method.
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I. INTRODUCTION

Effective inventory control that can sufficiently satisfy
customer needs is one of the most important strategies of
all businesses. To provide a competitive advantage and
improved customer service levels, many enterprises have
to keep excessive inventory and pay additional cost, even
when capacity of storage space is limited. One of the
commonly used inventory management policy is the Q,
R policy, where the key decisions are the replenishment
order quantity and reorder point. Under this policy, when
the inventory position falls on or below the reorder point,
a replenishment order will be placed. Optimal values of
Q and R are the ones that minimize the total inventory
management cost.

Numerous research has been conducted on inventory
policies. However, one important aspect of the problem,
which is the limitation of storage space, has not been
thoroughly studied. Some research studies on the Q, R
policy that also consider storage space capacity in inventory
management problem [1] - [7].

Huang [4] developed an inventory policy to find
retailer’s optimal cycle time and optimal payment time
under the supplier’s trade credit policy and cash-discount
policy with space restriction and perishable goods. Roy and

Maiti [5] presented a fuzzy EOQ inventory model. In
contrast, the study of Ozer and Wei [6] shows an optimal
policy under fixed cost, planning horizon with advance
demand information. While Sana [7] developed an EOQ
model and Hariga [2] concentrated on (R, Q) policy, both
studies considered storage spaces with respect to two
types of warehouses: owned warehouse (OW) and rented
warchouse (RW).

However, in those studies, the total cost consists of the
ordering, holding and shortage costs, without explicitly
considering the overstock cost for over-capacity units. In
terms of the total cost, Hariga [1] - [2], and Zhoa et al. [3]
considered three cost components: production or ordering
cost, holding cost, and shortage cost; while Maiti [5] and
Ozer and Wei [6] only considered the first two cost compo-
nents, and Huang [4] and Sana [7] considered the last two
components.

When over-capacity units occur, they can be returned
to the supplier [1], kept at an external rented capacity [2],
[4], [7], or they are simply not allowed in the system [3],
[5], [6]. Regarding demand, [1] - [3], [6], [7] considered
stochastic demand following some distributions, ¢.g. normal,
exponential, uniform, lognormal, and Poisson, whereas
Huang [4] assumed constant demand, and Roy and Maiti
[5] used the demand-dependent unit price. Similarly, for
lead time, Hariga [ 1] - [2] assumed that the lead time follows
normal distribution, while some researchers assumed
constant or no lead time [3] - [7].

This paper aims at filling research gap in previous
research studies. The paper concentrates on the Q, R
inventory policy for managing a single product that has
varying demand and lead time under limited storage space
capacity. The objective is to find appropriate values of Q
and R that minimize the total cost, while explicitly consider
the overstock cost as a component of the total cost in
addition to the ordering, holding, and shortage cost.

The paper is organized as follows. The problem state-
ment is described in Section 2. Notations and methodology
is presented in Section 3. An illustrative numerical example
is provided in Section 4. Finally, conclusion is made in
Section 5.



II. PROBLEM STATEMENT

The inventory management problem of interest can be
described as follows.

In this system, inventory position of a single item is
periodically reviewed. An order of size Q is placed if the
ending inventory position is below the reorder point. When
the inventory on-hands cannot satisfy demand, shortage will
occur in the form of lost sales. The storage space for the
item has a limited capacity. When the inventory on-hands
exceed the capacity of the storage space, an overstock cost
will be incurred according to the amount of overstock. The
system measure of performance is the total inventory
management cost, consist of four components: (1) cost of
placing orders, (2) cost of holding inventory, (3) cost of lost
sales, and (4) cost of overstock. The objective is to determine
appropriate order quantity (Q) and reorder level (R) that
minimizes the total cost under limited storage space.

III. NOTATIONS AND METHODOLOGY
A. Notations

The method described in this section uses the following
notation.

(0] replenishment order quantity

R reorder level

EOQ  economic order quantity

D the demand rate of the item, in units/time period

CP fixed reordering cost
CH  unit inventory carrying cost per time period
CcS unit shortage cost

d demand during the replenishment lead time

p(d)  probability that demand during lead time is equal
tod

d average demand during the replenishment lead time

E{s}p expected number of units short incurred when the

reorder level is set to R
w limited capacity of the storage space
c Total cost

B. Distribution of Demand During Varying Lead Time

The distribution of the demand during varying lead
time forms the basis to evaluate the performance of a
specified reorder point. Specifically, it is used to estimate
the expected amount of shortage for a given reorder point.
In addition, the distribution can lead to determining the
reorder point for a given value of service level. Therefore,
the pre- processing step in the methodology is to formulate
this distribution.

Due to the uncertainties in demand and replenishment
lead time, the process of determining the distribution of
demand during varying lead time must account for both
uncertainties. First, the empirical distribution of one-period
demand is constructed from historical demand data. This
distribution also represents the distribution of demand
during lead time (DDLT) when the lead time is one period.
Then, the two-period DDLT distribution is derived by
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tabulating the one-period DDLT distribution with itself. The
possible values of the two-period DDLT distribution are the
sum of all possible pairs of one-period DDLT values, and
the associated probability of each value is the product of
the probabilities of the one-period DDLT. The process
repeats until the DDLT distribution of the maximum lead
time is derived. The final step is then to combine the DDLT
for all possible values of lead time to obtain the DDLT of
varying lead time. A short example of deriving the DDLT
is given next.

Suppose the distribution of one-period demand is
as shown in Table 1. An empirical distribution of demand
during two-day lead time can be developed by tabulating
the distribution of one-day demand. The possible values
are from adding all possible pairs of demand values, and the
associated probabilities are from multiplying the probability
of demand values. The resulting DDLT distribution, after
projecting all possible demand values and combining
probability of demand for each demand value, is as shown
in Table 2.

TABLE I
PROBABILITY OF ONE-DAY DEMAND

One-day demand 1 2 3
Probability 0.2 0.5 0.3

TABLE 11
DISTRIBUTION OF DDLT, L =2

Demand in Demand in Day 2

Demand Day 2 Demand
inday1 [ 1 2 3 in day 1 1 2 3

1 2 3 4 1 0.04 0.10 0.06

2 3 4 5 2 0.10 0.25 0.15

3 4 5 6 3 0.06 0.15 0.09
Two-day demand 2 3 4 5 6
Probability 0.04 020 037 030 0.09

The DDLT distribution for three-day lead time is then
created by further tabulating the DDLT distributions of
two- day lead time and of one-day lead time, as shown in
Table 3.

TABLE 111
DISTRIBUTION OF DDLT, L =3

Three-day demand 3 4 5 6
Probability 0.008 0.060 0.186 0.305
Three-day demand 7 8 9
Probability 0.279  0.135  0.027

In addition, when the lead time is uncertain, the DDLT
distribution can be derived by combining both the lead time
demand distribution and the lead time distribution. Now,
suppose the lead time distribution follows the empirical
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distribution is shown in Table 4. Then, the final lead time
demand distribution is as shown in Table 5. For example,
the 3-unit demand occurs with the probability of 0.3, 0.2,
and 0.008, if the lead time is one day, two days, and three
days, respectively. Therefore, the overall probability of
3- unit demand would occur with the total probability of
(0.3x0.7 +0.2x0.2 + 0.008x0.1) = 0.02508.

TABLE IV
PROBABILITY OF LEAD TIME

Lead time 1 2 3
Probability 0.7 0.2 0.1
TABLE V
DISTRIBUTION OF DEMAND DURING VARYING
LEAD TIME
Demand 1 2 3 4 5
Probability 0.1400 0.3580 0.2508 0.0800 0.0786
Demand 6 7 8 9
Probability 0.0485 0.0279 0.0135 0.0027

C. Iterative Q, R procedure

The algorithm for determining Q and R is adopted from
the iterative method, first introduced by Felter and Dalleck
(1961). The method combines shortage cost to the EOQ [9].
The shortage cost is subject to the expected amount of
shortage, which depends on R, while R is also a function
of Q. Thus, the algorithm proceeds iteratively until Q and
R converge.

The method incorporates the following five steps:

Step 1 : Compute EOQ as an initial solution for Q,

~ [2DCp
Q=—cm

Step 2: Compute the probability of shortage,

C
P({d>R) = Q Then, find R from the DDLT distribution.
DCs

Step 3: Estimate the amount of shortage for a given R

d max

(from Step 2), E{s}p = ) ER: {d -R)p(d)

2D[Cp+ CGE
Step 4: Update Q =\/ [Cr CHS (s/r]

Step 5: Repeat Step 2 to Step 4 until the values of Q in
Step 4 and R in Step 2 converge.

The algorithm begins with an initial solution of O =
EOQ in Step 1. In Step 2, the probability of shortage is
calculated. Then, the value of R that is associated with this

probability can be found from the DDLT distribution. This
is done by deriving the cumulative probability distribution
from the DDLT. Then, look up the cumulative probability
of the demand that matches the probability of shortage, the
value of the demand at that point is the appropriate R.

Based on the value of R from Step 2, E{s}r can be
easily computed in Step 3. Step 4 updates O based on the
total cost that includes ordering cost, carrying cost, and
shortage cost. Finally, in Step 5 the algorithm repeats Steps
2-4 until the values of R and Q converge.

At this point, it can be noticed that the algorithm does
not take into account one cost component, which is the
overstock cost. The values of O and R will be adjusted to
take into account the storage space limitation later in Sub-
section E.

D. Simulation to evaluate the performance of R, Q

To evaluate the performance of Q and R, simulation
of the inventory management process is created. In the
simulation, periodically (e.g. daily) demand is randomly
generated from the empirical distribution of one-period
demand. After the customer demand arrives, the system
updates the amount of inventory on-hands, inventory
position, the amount of lost sales (if inventory on-hands is
insufficient to satisfy demand), and the system determines
whether a replenishment order Q is needed. If so, then the
system randomly generated a lead time. At the end of the
update, the system checks if there is incoming shipment
from previous order so as to update the inventory on-hands
and position accordingly. At this point, if the inventory
on- hands exceed the capacity of the storage space, then the
overstock amount is updated. At the end of the day, the
system updates the inventory carrying cost based on the
ending inventory on-hands, and then checks if the simulation
terminating condition is met. The simulation is set to run
for 7 periods. At the end of the simulation, all four costs
that have incurred are combined to be the total cost. Fig. 1
shows a flow chart for simulation model of inventory
management.

Customer
Demand on-|

Order 0
Quantity

'

Generate LT

Update IP,
OH

Overstock

Fig. 1 Flow chart of inventory management



E. Adjusting the Inventory Parameters using the Cyclic
Coordinate Method

The final step of the methodology is the adjustment of
Q and R to take into account the limited space restriction.
The method for adjustment is based on the multidimensional
search without derivative, called cyclic coordinate method,
for the unconstrained non-linear optimization [10]. The
cyclic coordinate method uses the following notations.

[ the allowable final length of the uncertainty, /=0

Ry (or Oy ) Lower bound of reorder point (or order
quantity) at kth iteration in [R;; Ry/] (or [Q;; Opl).

A Eligible lower bound of reorder point (or order
quantity) at kth iteration in [R;; Ry/] (or [O;; Opl).

ugy Eligible upper bound of reorder point (or order
quantity) at kth iteration in [R;; Ry/] (or [O;; Opl).

Ry (Quay) Upper bound of reorder point (or order
quantity) at kth iteration in [R;; Ry/] (or [O;; Opl).

TCy 4 The total cost of the eli%ible lower bound of
reorder point (or order quantity) at k™ iteration.

TC, 4 The total cost of the eli%ible upper bound of
reorder point (or order quantity) at k™ iteration.

In the cyclic coordinate method performed at this step,
QO and R are treated as the decision variables. The objective
function is the total cost that now includes the fourth cost
component, the overstock cost. To handle the uncertainty
in the simulation result, the simulation model is run in
multiple replications, and the average total cost is used as
the objective function in the cyclic coordinate method.

This algorithm performs the search in the directions of
the two decision variables, R and Q, with dp = (1, 0); dQ =
(0, 1), one direction at a time in a cyclical manner. In the
first iteration, starting from an initial solution (R, Q) from
the iterative Q, R algorithm, the search is performed along
the dR direction. The optimal step size is determined by
using a one-dimensional search, called Golden Section
Search method. After reaching a new solution, (R(y), Op),
the quality of the solution is evaluated using the simulation
as described in Subsection D. Then, the search continues in
the d, direction, and reach the new solution of (R;), O)),
which completes the first iteration. The algorithm repeats
until the solution converges. The steps of cyclic coordinate
are as shown in Fig. 2.

Initial R
and 0

Adjust R
and 0

v

Cyclic
Coordinate

v

Simulation

Yes| Final R
and Q

—» Converge

Fig. 2 Flow chart of R and Q adjustment

The golden section search follows these steps. First,
arbitrarily select 1 = 0.05 to be used as stopping criterion
for the length of the interval of uncertainty. Let [1, R] (or
[1, Qp]) be the initial interval of uncertainty where the
optimal R (or Q) lies. These intervals are chosen because R

Journal of Engineering and Technology
Vol.4 No.1 January - June 2016

and Q must be non-negative and be smaller than the initial
O and R. Let Ay = 1 + (1-a)(R, - 1), (or for finding the
optimal O, Ay =1+ (1-a)(Qy - 1)) and pjy =1 + a(R- 1)
(or upy =1+ a(Qy - 1)), where a = 0.618 (a golden ratio).
Evaluate 7C(%(})) and TC(ny)), let k£ =1, and go to next
step.

Ste[; 1 IfRU(l)_RL(l) (or QU(I)_QL(I)) < 005, then stop;
the optimal solution is in the interval [Ry 1), Ryy1)]
(or, [QL(])’ QU(])] Otherwise, if TC(}\‘(I)) >
TC(p(1y), go to step 2; and if TC(A ;) <= TC(pyyy),
go to Step 3.
Step 2 Let Ry gy (or Oreny) = My
Ruer 1y = Ruy (08 Que+1y = Quy
Mi+1y = Mgy
nkt1) = Ryes gy + oRyges 1y - Rpges 1)
or W1y = Qe+ 1y T M Quik+1) - Q1)
And then evaluate TC(p 1)) and go to step 4.

Step 3 Let Ryg+p) = Ry (or Qrgerry = Qs
Ryer 1y (0 Ouges 1)) = Py
vy = Rpgerny (- ) Ryes 1y - Riger 1)
(or Mgev1y = Orgerny T (- Qg y -
Ore+1))
R+ = X(k)-

After that evaluate TC(A)) and go to step 4.
Step 4 Replace k£ by £+ 1 and go to Step 1

The search will continue until Ryyy-Rp1) (or Oy
Oy <0.05 at which point the solution convergence occurs
(k is number of iterations). In the next section, one numer-
ical example that illustrates the inventory system model in
detail will be given.

IV. NUMERICAL EXAMPLE

Consider a fast moving item. All demands that occur
in one day are aggregated to a daily demand. One year of
daily demand data (294 working days) are used as input
data. Cost parameters and demand data are obtained from
industry. They are as shown in Table 6.

TABLE VI
COST COMPONENTS
Ordering cost (THB/order), Cp 9.6
Inventory holding cost (THB/unit/day), C;  0.0118896
Shortage cost (THB/unit), Cg 8
Average daily demand (unit) 468
Standard deviation of demand (unit) 465

The demand data are used to fit an empirical distribution
of one-day demand. Twenty replications of demand data
are then generated from this distribution. These generated
data are for solution evaluation purpose through simulation
model. Replenishment lead time from the supplier is variable
based on the probability of lead time as shown in Table 7.
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TABLE VII
PROBABILITY OF LEAD TIME

Lead time (days) Probability
1 0.7
2 0.2
3 0.1

The distribution of demand during varying lead time
(DDLT) can be constructed as described in Section 3B. The
iterative approach is applied to find initial R and Q, values.
Table 8 shows the iteration of the iterative approach until
the two parameters converge.

TABLE VIII
ITERATIVE Q, R PROCEDURE

. Step 1:  Step 2: Step 3:  Step 4:
Iteration EOQ P@>R) R E@s) 0

1 869  0.00276 3,491 136274 1,271
2 0.00404 3,311 1.96371 1,412
3 0.00448 3,259 2.18522 1,460
4 0.00464 3,242 226277 1,477
5 0.00471 3,237 2.28610 1,482
6 0.00472 3,235 2.29551 1,488
7 0.00472 3,235 2.29551 1,488

The iterative procedure starts with computing initial Q
from EOQ = 869 units. Secondly, compute P(d>R) using
QO from Step 1 and the cost parameters from Table 6 to
obtain P(d>R) = 0.00276. Then, find the value of R that is
associated with P(d>R) from the cumulative probability of
demand during lead time distribution. After that, the expected
number of shortage for a given value of R (from Step 2) is
determined at 1.3627. Finally, Q is updated to be equal to
1,271 units. In the end of iterative O, R procedure, R and Q
parameters converge to R = 3,235 units and O = 1,488 units.

After finding R, and O, the quality of the initial
solution is evaluated using simulation. The initial inventory
is set on 6,470 units (two times of R). The process of
simulation is that when inventory position drops to or below
3,235 units, then an order of 1,488 units will be placed. If
the retailer cannot satisfy demand, it counts as lost sales.

To incorporate the storage space capacity, the maximum
allowable of storage space is set to (average inventory
level + LxSD of inventory level); for example, for L = 0.6,
the capacity is 3,759 units. The overstock cost of 0.24 THB
per unit will incur if the inventory level exceeds the space
capacity. Table 9 shows the results from simulation evalu-
ation.
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TABLE IX
TOTAL COST OF ITERATIVE METHOD

Number of order 114
Number of shortage (units) 1,044
Average inventory level (units/day) 3,308
Ordering cost (THB) 1,094
Shortage cost (THB) 8,352
Inventory holding cost (THB) 14,356
Overstock cost (THB) 9,110
Total cost (THB) 32,912

After evaluating performance of R, and Q,, the cyclic
coordinate method is applied to adjust these parameters.
The length of the interval of uncertainty, /, is set to 0.05.
The initial boundary for the golden section search is [1, R]
=[1, 3,235]. The iterations of the golden section in the R
and Q directions are shown in Table 10 and Table 11,
respectively.

From Table 10, it showed that the golden section search
is terminated in the 21% iteration. Each 7C is computed,
while holding Q at O = 1,488. The first two new solutions
are positioned at X(l) = 1,236 units; By = 1,999 units.
TC(X)), including ordering cost, shortage cost, inventory
on hand, and overstock cost combinations at X(l) =1,236
units, is 210,031.7 THB, while TC(ny)) is 72,378.8 THB.
It can be easily seen that because TC(A(;)) > TC(uy)), in
Step 2 Ry 5= A1y = 1,236 units; Ry = Ryy) = 3,235 units;
A2y = K1y =1,999 units; and pp) = Ry 5y + 0.618 (Ryo) —
RL(2))=2,472 units. At the end of the golden section search,
the interval of uncertainty is [2,982; 2,982], the optimal R1
is therefore 2,982 and the total cost is equal to 30,720.62
THB, which is a 7% cost reduction.

TABLE X
SUMMARY OF THE ITERATIONS ALONG DIRECTION
(1, 0) FOR CHANGING R

ko Ry Mo o Mag Rugg  TCO)  TClrg
1 100 1,2364 19996 32350 210,031.7 72,378.8
2 12364 1,999.6 24715 32350 723788 42,2919
319996 24715 27630 32350 422919 334372
4 24715 27630 29434 32350 334372 31,017.9
S 27631 29434 30547 32350 31,0179 31,0654
6 27631 28745 29434 30547 314272 31,0179
7 28745 29434 29859 30547 31,0179 30,7753
8 20434 29859 30122 30547 30,7753 30,8948
9 29434 2969.6 29859 30122 309384 30,775.3
10 29697 29859 29959 30122 30,7753 30,890.1
11 29697 29797 29859 29959 30,768.2 30,7753
12 29697 29758 29797 29859 309204 30,768.2
13 29759 29797 29820 209859 307682 30,720.6
14 29797 29820 29835 209859 30,720.6 30,733.1
15 29797 29812 29820 29835 30,7751 30,720.6
16 29812 20820 2982.6 29835 30,720.6 30,720.6
17 29812 29817 29820 29826 307751 30,720.6
18 29817 209820 29823 2982.6 30,720.6 30,720.6
19 29817 29819 29820 29823 30,7751 30,720.6
20 29819 29820 2,982.1 29823 30,720.6 30,720.6
21 29819 29820 29820 29821 30,720.6 30.720.6



TABLE XI
SUMMARY OF THE ITERATIONS ALONG
DIRECTION (1, 0) FOR CHANGING Q

ko Ouw Moy B  Quay TClhgy TClugy
1 1.0 569.0 920.0 1,488.0 73,249.0 34,479.7
2 569.0 920.0 1,137.0 1,488.0 34,479.7 30,801.5
3 920.0 1,137.0 1,271.0 1,488.0 30,801.5 30,202.7
4 1,137.0 1,271.0 1,353.9 1,488.0 30,202.7 30,1284
5 1,271.0 1,353.9 1,405.1 1,488.0 30,1284 30,737.3
6 1,271.0 1,322.2 1,353.9 1,405.1 30,304.8 30,128.4
7 1,322.2  1,353.9 1,373.5 1,405.1 30,128.4 30,644.2
8 1,322.2  1,341.8 1,353.9 1,373.5 30,3149 30,1284
9 1,341.8 1,353.9 1,361.4 1,373.5 30,1284 30,330.1
10 1,341.8 1,349.3 1,353.9 1,361.4 30,124.0 30,128.4
11 1,341.8 1,346.4 1,349.3 1,353.9 30,320.7 30,124.0
12 1,346.4 1,349.3 1,351.0 11,3539 30,124.0 30,509.6
13 1,346.4 1,348.2 1,349.3 1,351.0 30,190.3 30,124.0
14 1,348.2 1,349.3 1,350.0 1,351.0 30,124.0 30,188.8
15 1,348.2 11,3489 1,349.3 1,350.0 30,066.0 30,124.0
16 1,348.2 1,348.6 1,348.9 11,3493  30,039.8 30,066.0
17 1,348.2 1,348.4 1,348.6 1,348.9 30,173.7 30,039.8
18 1,348.4 1,348.6 1,348.7 1,348.9 30,039.8 30,061.9
19 1,348.4 1,348.5 1,348.6 1,348.7  30,068.7 30,039.8
20 1,348.5 1,348.6 1,348.6 1,348.7 30,039.8 30,089.3
21 1,348.5 1,348.6 1,348.6 1,348.6  30,058.7 30,039.8
22 1,348.6 1,348.6 1,348.6 1,348.6  30,039.8 30,051.8
23 1,348.6 1,348.6 1,348.6 1,348.6  30,045.3 30,039.8

After finding R, it is fixed at 2,982, and the cyclic
coordinate turns to the Q direction. The results from the
golden section search from Table 11 shows the optimal O,
= 1,349. The cyclic coordinate method keeps searching
cyclically until R and Q converge. Iteration results from the
cyclic coordinate method are shown in Table 12.

After seven iterations, the optimal solution converges
at R=3,191, areduction of 1.4%, and Q= 1,105, a reduction
0f26%. Note that both R and Q are rounded to the nearest
integer. The performance measures of the final solution
are shown in Table 13. Overall, the number of order and
shortage increase, while the average inventory and overstock
decrease. This lead to the final total cost 0f 28,331 THB, or
a cost reduction of 13.92%. The average inventory on-hands
reduced by 8.59%.

TABLE XII
SUMMARY OF THE CYCLIC COORDINATE METHOD

K Ry  Qwm J dy  Rey Qg (T{L,CB)
13235 1488 1 1 0 29820 14880 30,7206
2 0 1 29820 13486 30,0410
2 29820 13486 1 1 0 30584 13486 297382
2 0 1 30584 12543 29,1896
330584 12543 1 1 0 3,195 12543 289494
2 0 1 31195 12036 28,6948
4 31195 12036 1 1 0 31398 12036 287012
2 0 1 31398 1,1042 282119
5 31398 11042 1 1 0 31902 1,1042 28,1033
20 1 31902 1,043 28,110.2
6 31902 11043 1 1 0 31905 1,1043 28,0914
2 0 1 3,195 11043 28,0914
7 31905 11043 1 1 0 31905 1,1043 28,0914
2 0 1 31905 11043 28,0914
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TABLE XIII
TOTAL COST OF CYCLIC COORDINATE METHOD

Number of order 154
Number of shortage (units) 1,437
Average inventory level (units/day) 3,034
Average number of overstock (units/day) 25
Ordering cost (THB) 1,478
Shortage cost (THB) 11,496
Inventory holding cost (THB) 13,167
Overstock cost (THB) 2,190
Total cost (THB) 28,331

V. CONCLUSIONS

This article considers the inventory management
problem with the O, R policy under storage space limitation.
A two- stage method featuring iterative O, R method to find
initial solution without considering storage space limitation,
and cyclic coordinate method to adjust the solution for space
limitation is proposed. A numerical example that illustrates
the effectiveness of the method is provided. For future work,
further test of the method on other products with various
characteristics will be conducted.
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