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Abstract—This paper presents the optimization model for an
electrical accuracy of the AC single phase electromechanical
meter. It is aimed to improve the electrical accuracy of the
meter. Electrical accuracy of the electromechanical meter is
important to the determination of electricity energy usages
charged to the electricity consumers. The Response Surface
Methodology, Box-Behnken Design, has been used to identify
and determine the factors that affect electrical accuracy of an
electromechanical meter. The experimental design starts
with the identification of seven factors of interest. Eventually,
four factors are proven to have effect on the electrical
accuracy of an electromechanical meter. The optimal setting
for each factor has been specified and the electrical accuracy
has been raised to the required level.

It’s has been found that the electrical accuracy is
depending on an error of meter’s disk rotation speed
comparing to the specified revolution of meter. Improving
the electrical accuracy can be achieved by reducing the error
of meter’s disk rotation speed. The four identified factors are
1) the released screw distances to adjust electromagnetic
fields, 2) the current coil diameter, 3) the winding cycles, and
4) the voltage coil winding cycles. The appropriate setting of
these four selected factors can reduce errors of meter’s disk
rotation speed significantly. The optimal settings for screw
position 1, 2, 3 and 4 released distance levels should be -0.3,
0.2, 1 and -1, respectively. The current coil diameter level
should be set at level -1. The winding cycle level should be set
at level 1 and the voltage coil winding cycle level should be set
at level 0.

Keywords— Optimization, Electrical Accuracy, AC Single
Phase Electromechanical Meter, Box-Behnken Design

[. INTRODUCTION

Electromechanical meter has been widely used in
various countries a long time ago. Electromechanical
meter is known well in term of withstanding in various
climates. Its lifetime is about 5 — 10 years depending on
using conditions. Nowadays in Thailand this meter type is
still widely used as an electricity energy meter to calculate
of electricity usage charged.

The electromechanical meter design has been utilized
the electromagnetic field theory to be applied. Whenever
the current is supplied through current coils, this can
generate an electromagnetic field around current coils
(Faraday’s law of induction) along with Right Thumb
theory (Heinrich Lenz,’s Law). Then insert an aluminum
disk through electromagnetic field, this will generate an
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eddy current on the disk (Heinrich Lenz,’s Law) [1].
Finally the meter disk can rotate by forces of the eddy
current generated on the disk [2].

This research is related to a study of the electrical
accuracy optimization of an AC electromechanical energy
meter using Box-Behnken experimental design. The
electrical accuracy of the energy meter is an important
quality index to calculate amount of electricity usage
charged for users. Generally accuracy class index of the
electromechanical energy meter is class 2. It means
tolerance of electrical error in this type of meter to be £2%
to £2.5% in accordance with IEC62053-11 [3]. In
production, all meter units must be tested the electrical
accuracy before being delivered to customer.

Box-Behnken experimental design is an effective
statistical technique to analyze a problem which has more
than or equal three factors [4] for fitting response surfaces.
These designs are formed by combining 2k factorials with
incomplete block designs [S]. The objective of this
techniques is to analyze the form of relationship between
desired responses and factor as well as advising the best
level of each factor in order to optimize responses to be
desired level.

II. OBJECTIVES

The main objectives for this research are as following:

(1) To study factors that are influent to the electrical
accuracy of AC single electromechanical energy meter
DD862 type. The desired electrical errors are +0.5%.

(i1) To study the best level of each factor to optimize
the electrical error tolerance to be +0.5%.

(iii) To increase sale revenue of the case study
company.

II. EXPERIMENT AND METHOD
A. Introduction
Problem Identification — electrical accuracy
Response Variables — electrical errors from twelve current
testing points as shown in Table 1. The error of meter is
comparison of the meter’s disk rotation speed and the
specified revolution of the meter.



TABLE 1
RESPONSES FOR THE EXPERIMENTAL MODEL

Responses Testing Power Voltage
current factor (Volt)
(ampere)
Y1 20 1 230
Y2 10 1 230
Y3 5 1 230
Y4 2.5 1 230
Y5 0.5 1 230
Yo 0.25 1 230
Y7 20 0.5 230
Y8 10 0.5 230
Y9 5 0.5 230
Y10 2.5 0.5 230
Y11 1 0.5 230
Y12 0.5 0.5 230

Identified Factors — The four identified factors are the
released screw distances to adjust electromagnetic fields
located in four positions inside the meter to be identified
as factor A, B, C and D respectively. The other three
factors are the current coil diameter and its winding cycles
to be identified as factor E and F. The last factor is voltage
coil winding cycles to be identified as factor G.

B. Experimental Method

This research consists of three operation steps as
following:

1. Material preparation — Prepare experimental
materials along with four identified factors. For the
released screw distances, drive the four screws using a
screw driver. For the current coil dimeter and its winding
cycles, use a specific winding machine as well as the
voltage coil winding, use a specific winding machine as
well. Levels of each experimental factors used in
experiment as summarized as shown in Table II.

TABLE II
RESPONSES FOR THE EXPERIMENTAL MODEL

Factors Levels

1 2 3
A: Released screw distance 1 -1 0 1
B: Released screw distance 2 -1 0 1
C: Released screw distance 3 -1 0 1
D: Released screw distance 4 -1 0 1
E: Current coil diameter -1 0 1
F: Current coil winding cycles -1 0 1
G: Voltage coil winding cycles -1 0 1
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2. Box-Behnken Design — According to Box-Behnken
Design for seven factors and three levels using Minitab 17,
the total runs are 62 runs. All factors shown in Table [ were
proved that they were significant to the electrical accuracy
of AC single phase electromechanical meter. The
experimental design was defined alpha level (-1, 1), six
center points and no replication. The experimental model

was performed as shown in Fig. 1.
|[RunOrder PeTvpe |Block:| A [B[c|D | E| Fl G
1 0 1T JoloJoJoJofo]o
2 2 1 _JaJoliJoflifo]lo
3 2 1 [aJojojofol-1]1
- 0 1 JoloJoJoJololo
5 2 1 Jola|tjofo[1]o
5 2 1 _Jilajof-1Jofo]o
7 2 1 Ji1JoliJoflifolo
B 2 T JololififJolol
s 2 1T Jola|-1]ofol-1]o
10 2 1 _JolaJoJoflifol
11 0 1 JoloJoJoJofolo
12 2 1T JoJol-t]i]olo]
13 2 1 Joli|1]ofo[1]o
14 0 1 JoloJoJoJofo]Jo
15 2 1 _Jolol-1|1fofol
16 2 1 _JolaliJofol-1]0o
17 2 1T Jili]of-1]ofo]o
18 2 1 _JoloJo|afli[1]o
15 2 1 _JoloJofifli[1]o
20 2 1 _JolajoJolilol
21 2 1T [aJoJefofoel1]
22 2 1T _Jolo|i]1]ofol
23 2 1 _Ji1Jol-1joflifo]lo
23 2 1 _JoJolififlofol:
23 2 T Jololi]1]olol
26 2 1T_JoloJoaf-i[-1]o
27 0 1T JoloJoJoJololo
28 2 1T_JalajolifJofolo
29 2 T Jololi]1]olol
30 2 T _Ji]oJoJofol1]
31 2 T JiJoJoJolol1]1
32 2 1T_JaJojoJofloli1]1
33 2 T Jilifo]1]olo]o
34 2 T_Jolt]oJol-i[ol
33 2 T _Joli]oJol-i[ol
36 2 1T_JilojoJolol1[1
37 2 1T _JolaloJol-t[ol1
38 2 T_JiJo|-1]of-1[o]o
39 2 T|-1jof1folo]o
30 2 oJojolali[-1]0
1 2 ol1lojof-t]ol-1
12 2 1T _JoloJoli[1i[1]o
3 2 c[11Jofo[-1]0
33 3 T|oJofofol1]t
%5 0 cloJloJoJolo]lo
36 2 T]ol1Jol-1[0]C
37 2 d]ol-TJofi]o0]a
38 2 olrT|-1Jofol-T]0O
3e 2 CloJof [ T[1]o0
50 2 olojoil-t 0
51 2 cl1[1]o]o 0
52 2 T]ol1Jo[-1]0]0
33 2 T|-1joJi1Jolo]o
5 2 olt]oJoliloll
53 p 1T|olofojo]-1][-t
6 2 -1 ol1Jolo]a
57 2 -1 ol 1Jolo]o
5 2 0 T]oJol 1[0
59 2 O N I N
&0 2 T_J1]o|-1jof-1[0]0
61 2 T_Jolt|ojofi[ofl1
2 2 T_JojoJoJifJi]i]o

Fig. 1 Experimental Plan of the Box-Behnken Design

3. Response optimization — After the experiment, the
result shows that all factors are influent to the errors of
specimen. Each factor has difference of significance to the
errors of some current testing points. Therefore this
research experiment must keep all factors in the model.



Journal of Engineering and Technology
Vol.4 No.2 July - December 2016

Then use the Response Optimizer function in Minitab to
optimize the significant factors in order to select the
optimal condition of each identified factor to optimize the
electrical errors.

4. Confirmation runs — After determining the optimal
condition, five confirmation runs were perform in order to
validate the result of experimental design. The result of
five confirmation runs were somewhat different from the
experimental result but there were still along with
objectives.

IV. RESULT AND DISCUSSION

The experimental results can be divided into 4
sections as following;

1. Results from Box-Behnken Design

A. Check Model Adequacy — The residual plots were
used to check the adequacy of experimental model, check
normal distribution, variance stability and independence
of residual in order to ensure that the experiments were
accurate to be concluded.

B. Normal distribution — According to residual
normality plots shown in Fig. 1. Each residual plot was
distributed in straight line. Therefore the residuals can be
concluded that they were all normal distributed.

Probability Plot of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12
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Fig. 2 Normality Plots of the residuals

For checking variance stability and independence of
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the residuals shown as Fig. 3 to Fig. 14 being separated by

twelve responses (Y1 to Y12). Fig. 6 Residual Plots for Y4
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A. Box-Behnken Design
Results from Minitab for Box-Behnken Design, at
significant level (o) 0.05, P-value of each main factor and
2-way interaction was lower than 0.05 in some current
testing points hence all main factors cannot be eliminated
from the experimental model. Therefore, the factors effect

Fig. 11 Residual Plots for Y9
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to the electrical errors of AC single phase mechanical
meter DD862 type were released screw distance 1,
released screw distance 2, released screw distance 3,
released screw distance 4, current coil diameter, current
coil winding cycles, voltage coil winding cycles and the
other 2-ways interaction at a significant level 0.05 to be the
final conclusion.
B. Response Optimizer

In order to optimize the level of each significant
factors, response optimizer function in Minitab was
performed which target is zero point for all responses. The
optimal condition of all significant factors were obtained
using optimization plot as shown in Fig. 14.
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Fig. 14 Optimization plots for of factors for all responses

According to Fig. 6, the optimal condition of seven
factors to minimize the electrical errors of AC single phase
electromechanical meter are released screw distance 1
level to be -0.3, released screw distance 2 level to be 0.2,
released screw distance 3 level to be 1, released screw
distance 4 level to be -1, current coil diameter level to be -
1, current coil winding cycle level to be 1 and voltage coil
winding cycle level to be 0, can be summarized as shown
per Table II1.
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TABLE III

OPTIMIZED LEVEL OF SEVEN FACTORS

Factors Optimized level
A -0.3
B 0.2
C 1
D -1
E -1
F 1
G 0

The results of optimal conditions of twelve responses
were obtained as shown in Table IV.

TABLE IV
OPTIMIZED CONDITION FOR THE TWELVE
RESPONSES
Responses Electrical errors
(%)
Y1 0.05
Y2 0.38
Y3 -0.18
Y4 0.03
Y5 0.24
Y6 0.01
Y7 -0.04
Y8 0.11
Y9 -0.38
Y10 0.08
Y11 0.10
Y12 -0.18

3. Confirmation runs
The results of five confirmation runs were obtained as
shown in Table V.

TABLE V

RESULT OF FIVE CONFIRMATION RUNS

Responses Electrical errors (%)
Meter | Meter | Meter | Meter | Meter

1 2 3 4 5
Y1 0.21 0.14 0.09 0.14 0.12
Y2 0.38 0.41 0.42 0.32 0.39
Y3 -0.38 -0.20 -0.18 -0.24 -0.27
Y4 0.19 0.24 0.11 0.19 0.20
Y5 0.42 0.31 0.22 0.37 0.34
Y6 0.22 0.15 0.05 0.16 0.33
Y7 -0.16 -0.10 -0.15 -0.22 -0.18
Y8 0.13 0.21 0.03 0.18 0.28
Y9 -0.24 -0.13 -0.42 -0.26 -0.33
Y10 0.15 0.21 0.28 0.24 0.18
Y11 0.09 0.18 0.27 0.17 0.23
Y12 -0.23 -0.18 -0.34 -0.22 -0.25

The results of five confirmation runs showed that all
electrical errors were under 0.5% along with objective.
Therefore the initial conclusion was the optimized level of
seven factors can be used to optimize the AC single phase
electromechanical meter. Then the results must be checked



the model adequacy before concluding the result of the
research.

Normality check - The optimized level at -0.3 of
released screw distance 1, 0.2 of released screw distance 2,
1 of released screw distance 3, -1 released screw distance
4, -1 of current coil diameter, 1 of current coil winding
cycles and 0 of voltage coil winding cycles were tested
without replication. The result of normality test was
conducted using probability plots and found that all data
are normal distributed as their p-value is all higher than
0.05 as shown per Fig. 15
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Fig. 15 Probability Plots for Confirmation Runs

V. CONCLUSION

Box-Behken Design and Minitab were performed in
this research and found that released screw distance 1,
released screw distance 2, released screw distance 3,
released screw distance 4, current coil diameter, current
coil winding cycles and voltage coil winding cycles were
influent to the electrical errors.

The optimal condition of seven factors was summarize
as following:

1. Released screw distance 1 set at level -0.3

2. Released screw distance 2 set at level 0.2

3. Released screw distance 3 set at level 1

4. Released screw distance 4 set at level -1

5. Current coil diameter level to be -1

6. Current coil winding cycle level to be 1

7. Voltage coil winding cycle level to be 0

Confirmation runs were performed using optimal
condition of each factor to validate the results of
experimental model analysis which showed the electrical
errors of each testing current point shown as Table IV. The
results of five confirmation runs showed that all electrical
errors of five AC specimens were under 0.5% as expected
in objectives. Therefore, the results of the confirmation
runs were not different from the experimental model
analysis.

VI. SUGGESTION
This research is for improving the electrical accuracy
of the AC single phase electromechanical meter in current
rate of 5(20) A. only. In case of improving the electrical
accuracy of the AC single phase electromechanical meter
in different current rates, needs to be reinvestigated the
optimal condition of the testing current points are different.
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Nevertheless the methods in this research can be a
guideline. There are other several factors effect to
electrical accuracy of the AC single phase
electromechanical meter, to investigate more factors
probably used to minimize the electrical errors to be closed
to zero as an ideal case.
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