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ABSTRACT:  The evaluation of the seabed response, including pore pressure, effective stresses and shear stresses, is particularly important 
for coastal geotechnical engineers involved in the design of foundation around marine structures. This paper consists of two components. The 
first component focuses on analytical approximation for the seabed response, in which a new analytical solution for the seabed response due 
to combined wave and current loading is presented. Both transient and residual mechanisms are considered. Based on the new analytical 
solution, the effects of currents on the seabed response are examined and a modified J-S curve is presented. The second component will 
present an integrated model for ocean waves propagating over a submerged coastal structure. In the new model, Navier-Stoke equations, 
Biot’s poro-elastic theory, and structural mechanics theory are solved for wave propagation, seabed response and structure deformation, 
respectively. The new feature of this model is to integrate wave, soil and structure modes into one model within COMSOL Multiphysics 
environments. In this part, we first present the model of ocean wave generation over a porous seabed. Then we further consider two coastal 
engineering problems: (1) ocean waves propagating over a submerged breakwater on a porous seabed; and (2) waves over a deformable 
structure on a porous seabed, which can be applied to wave energy converter. 
 
 
1. INTRODUCTION 
 
The phenomenon of pore pressure within a seabed is an important 
feature in coastal engineering problems such as the stability of 
breakwaters and the sinking or uplifting of pipelines. It is well 
known that ocean waves/currents can generate significant dynamic 
pressures on the sea floor. This dynamic pressure further induces 
pore-water pressure and effective stresses within the seabed. With 
excess pore pressure and diminishing vertical effective stress, part of 
the seabed may become unstable or even liquefied. Once 
liquefaction occurs, the soil particles are likely to be carried away as 
a fluid by any prevailing bottom current or mass transport owing to 
the natural loadings such as waves and currents. 

This paper consists of two components: (i) analytical 
approximation for the seabed response due to dynamic loading 
(including waves and currents); and (ii) integrated numerical model 
for waves propagating over a porous seabed around marine 
structures. 

Two mechanisms of the seabed response have been observed in 
the field measurements and laboratory experiments, depending upon 
how the excess pore pressure is generated (Nago et. al, 1993). One 
is caused by the residual or progressive nature of the excess pore 
pressure, which appears in the initial stage of cyclic loading. This 
type of soil response is similar to that induced by earthquakes, 
caused by the buildup of excess pore pressure (Seed and Rahman, 
1978). The other, generated by transient or oscillatory excess pore 
pressures, is accompanied by the damping of amplitude and phase 
lag in the pore pressure, and appears as a periodic response to each 
wave (Yamamoto et. al, 1978; Jeng and Hsu, 1996). 

Numerous investigations of the wave-induced transient soil 
response have been reported, based on different assumptions of 
relative rigidity for pore fluid and soil skeleton. Among these, 
Yamamoto et al. (1978) developed an analytical solution for the 
water waves/soil interaction problem within a hydraulically 
isotropic seabed of infinite thickness. For a fully saturated seabed, 
the soil response was also found to be independent of the soil 
permeability and no phase lag was observed. On the other hand, 
pore pressure attenuates rapidly with a phase lag in an unsaturated 
seabed. Details of previous investigations of wave–seabed–structure 
interactions were summarized in Jeng (2003). 

Residual mechanisms of wave-induced pore pressure have been 
investigated since Seed and Rahman (1978). Dynamic wave 
pressures that vary harmonically in space and time will generate 
cyclic shear stresses in the soil that can cause the contraction of 
relatively loose soils and in turn lead to an increase in the mean 

excess pore-water pressure if drainage is impeded. These mean pore 
pressures are not uniquely related to instantaneous values of the 
wave-induced stresses, but depend on the accumulated action of the 
cyclic loading and the rate of pore pressure dissipation. Under this 
action, liquefaction may develop in un-drained or poorly drained 
conditions. Some recent investigations of this mechanism were 
carried out by numerous researchers (Sumer and Cheng, 1999; 
Sumer and Fredsoe, 2002; Sassa and Sekiguchi, 1999; Jeng and 
Seymour, 2007). 

It is noted that all aforementioned investigations have only 
considered wave loading, totally ignored another important natural 
loading-ocean currents. In §2, the seabed response within a porous 
seabed will be re-examined by considering the combined loadings of 
waves and currents. Both transient and residual mechanisms will be 
considered in this study. Based on the newly analytical solutions, a 
simplified approach for the predictions of liquefaction will be 
proposed for engineering practice. 

Marine structures on a porous seabed have been widely 
constructed for the coastal protections, oil production transport and 
offshore wind farm foundation. The existence of these structures 
(such as breakwaters, vertical walls, pipelines and mono-piles, etc.) 
will largely interact with the water surface waves, and consequently 
affect the wave-induced seabed responses around the marine 
structures. 

In the past few decades, considerable effort has been devoted to 
the wave-soil-structure interaction (WSSI) phenomenon. The major 
reason for this growing interest is that many marine structures have 
been damaged by the wave-induced seabed response, rather than 
from the construction deficiencies (Christian et. al, 1974; Smith and 
Gordon, 1983; Lundgren et. al, 1989). To have a better 
understanding of the functionality and stability of marine structures, 
the wave motion and seabed responses around these structures must 
be determined. 

Numerous investigations for the wave-seabed-structure 
interactions have been carried out since the 1980s. A detailed review 
of previous research in the area can be found in (Jeng, 2003). Most 
of them have been focused on the individual approaches (Mase et. 
al, 1994; Jeng, et. al, 2000; Magda, 2000), rather than an 
integrations of wave, seabed and structure models. However, the 
phenomenon of the wave-seabed-structure interactions will not been 
fully captured without a consideration of all components together. 

In §3, based on COMSOL Multiphysics, is to develop an 
integrated model for ocean waves propagating over a marine 
structure on a porous seabed.  
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2. WAVE/CURRENT INDUCED SEABED RESPONSE 
 
2.1 Wave field 
 

 
(a) Plan view 
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(b) Cross view 

 
Figure 1.  Sketch of wave-current propagating over a seabed 

 
Considering combining wave and current loadings along a porous 
seabed, as shown in Fig. 1, the angle between waves and currents 
are denoted as 1θ , and angle between the direction of wave 

propagation and the x-direction is θ . Based on potential flow 
theory, the velocity potential (φ ) satisfies the conservation of mass, 
leads to, 
 
 2 0φ∇ = , (1) 
 
in which the velocity of fluid is defined as 

 
 ( , , )u v w φ= −∇  (2)  
 
The velocity potential (φ ) in (1) satisfies the free surface 

boundary conditions,  
 

� Dynamic free surface boundary conditions: 

 
22 2

1
( )

2
g d C

t x y z

φ φ φ φη
  ∂ ∂ ∂ ∂   
 − + + + + + =    ∂ ∂ ∂ ∂      

 (3) 
where η  is the water elevation,  d is water depth, and C is the 
Bernoullis’ coefficients. 
 
� Kinematic free surface boundary condition: 

 
z t x x y y

φ η φ η φ η∂ ∂ ∂ ∂ ∂ ∂− = − −
∂ ∂ ∂ ∂ ∂ ∂

 (4) 

 
The velocity potential and wave profile can be obtained by 

solving (1) with linearised (3) and (4), and expressed as: 
 

 cos( )
2

H
mkx nky tη ω= + −  (5) 

 [ ]0 1 1 1 1( ) ( )U mm nn x nm mn yφ = − − + +  

 
0 1

cosh
sin( )

2 (1 )cosh

gH kz
mkx nky t

U m k
kd

ω
ω

ω

− + −
−

 (6) 

 
where k is the wave number, and cosm θ= , sinn θ= , 1 1cosm θ= , 

1 1sinn θ= . The detailed derivations can be found in appendix. 

The wavelength can be determined by the wave dispersion 
relation given by: 

 

 ( )2

1 0 tanhmU k gk kdω − =  (7) 

 
It is noted that an addition variable “m1” appears in (7), which 

only exists for the combing wave and current loadings. For the case 
with waves only, m1=0. 

Based on the above potential theory for combined wave and 
current loading, the dynamic wave pressure can be expressed as: 

 

 
cosh

cos( )
2 coshd

gH kz
P mkx nky t

kd

ρ ω= + − . (8) 

 
2.2 Poro-elastic model-transient mechanism 

 
Figure 2.  Mechanism of wave-induced pore pressure (not in scale) 

 
For the problem of wave-seabed interaction, as shown in Fig. 2, the 
Biot consolidation theory (Biot, 1941) has been generally adopted to 
model the dynamic response of marine sediments for various 
applications. In general, the wave-induced pore pressure within 
marine sediments consists of two components: oscillatory ( p% ) and 
residual (p ) mechanisms, which can be expressed as (see Fig. 2): 
 
 ppp += ~ , (9) 

 
where p is the pore water pressure, p%  represents the oscillatory pore 
pressure that leads to momentary liquefaction, while u represents the 
period-averaged pore pressure that leads to residual liquefaction, 
and is defined by: 
 

 
1 t T

t
p pdt

T

+
= ∫ , (10) 

 
where T is the wave period and t is the time.   

For the transient soil response in a saturated seabed, the Biot’s 
consolidation equation is commonly used as the governing equation, 
i.e., 
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2 2 2

2 2 2
0wp p p

x y z k t

γ ε∂ ∂ ∂ ∂+ + − =
∂ ∂ ∂ ∂

 (11) 

where the volume strain is defined by: 
 

 

u v w

x y z
ε ∂ ∂ ∂= + +

∂ ∂ ∂
 (12) 

The equations of force balance can be expressed as: 
 

 

xyx xz p

x y z x

τσ τ∂′∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

 (13)

 

 

xy y yz p

x y z y

τ σ τ′∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

 (14)

 

 

xy yz z p

x y z z

τ τ σ∂ ∂ ′∂ ∂+ + =
∂ ∂ ∂ ∂

 (15)

 

 
Based on Biot’s poro-elastic theory, the stress-strain relations 

are given as: 
 

 

2
1 2x

u
G

x

µεσ
µ

 ∂′ = + ∂ − 
, (16) 

  2
1 2y

v
G

y

µεσ
µ

 ∂′ = + ∂ − 
 (17)

 

 

2
1 2z

w
G

z

µεσ
µ

 ∂′ = + ∂ − 
,  (18) 

 
xz

u w
G

z x
τ ∂ ∂ = + ∂ ∂ 

 (19)

 

 

yz

v w
G

z y
τ  ∂ ∂= + ∂ ∂ 

,  (20) 

 

xy

u v
G

y x
τ  ∂ ∂= + ∂ ∂ 

 (21)

 

 
Substituting (16)-(21) into (13)-(15), the equations of force 

balance can be expressed as: 
 

 

2

(1 2 )

G p
G u

x x

ε
µ

∂ ∂∇ + =
− ∂ ∂

 (22)

 

 

2

(1 2 )

G p
G v

y y

ε
µ

∂ ∂∇ + =
− ∂ ∂

 (23)

 

 

2

(1 2 )

G p
G w

z z

ε
µ

∂ ∂∇ + =
− ∂ ∂

 (24)

 

 
To solve the seabed response, including pore pressure and soil 

displacements, the following boundary conditions are required, 
 

� At the surface of the seabed, the pore pressure is equal to the 
dynamic pressure generated by wave and currents, and the 
vertical effective normal stress and shear stresses vanish; 
 

 
0z xz yzσ τ τ′ = = =

 (25)
 

 0

cos( )
2cosh

cos( )

wH
p mkx nky t

d
p mkx nky t

γ ω
λ

ω

= + −

= + −  (26) 

� At the bottom of the infinite seabed, the soil displacements and 
pore pressure vanish, i.e., 
 

 
0u v w p= = = =   as  z → −∞  (27) 

 
Following the framework proposed in Jeng (1997), the pore 

pressure and soil displacements in a saturated porous seabed due to 
combined wave and current loading can be expressed as: 

 

 
0

2
exp( )cos( )

Gku
mkz kz mkx nky t

p
ω= − + −

 (28)

 

 
0

2
exp( )sin( )

Gkv
nkz kz mkx nky t

p
ω= − + −

 (29)

 

 

( )
0

2
1 exp( )cos( )

Gkw
kz kz mkx nky t

p
ω= − + −

 (30)

 

 0 exp( )cos( )p p kz mkx nky tω= + −
 (31) 

 
Then, effective normal stresses and shear stresses can be 

expressed as: 
 

 
2

0 exp( )cos( )x m p kz kz mkx nky tσ ω′ = − + −
 (32)

 

 
2

0 exp( )cos( )y n p kz kz mkx nky tσ ω′ = − + −
 (33) 

 0 exp( )cos( )z p kz kz mkx nky tσ ω′ = + −
 (34) 

 0 exp( )cos( )xz mp z z m x n y tτ λ λ λ λ ω= − + −
 (35) 

 0 exp( )cos( )yz np kz kz mkx nky tτ ω= − + −
 (36) 

 0 exp( )cos( )xy mnp kz kz mkx nky tτ ω= − + −
 (37) 

 
2.3 Poro-elastic model-resident mechanism 

The residual pore pressure (p ) in a homogenous, isotropic soil can 
be derived from the one-dimensional Biot's consolidation equation: 

 

 

2

2
( )v

p p
c f z

t z

∂ ∂= +
∂ ∂

 (38) 
where f is the mean accumulation pore pressure source term 

associated with the surface water waves. In (38), vc  is the 

coefficient of consolidation, given by: 
 

 

2 (1 )

(1 2 )v
w

GK
c

µ
γ µ

−=
−

 (39) 
 
The source term, ( )f z , is defined by (Seed and Rahman, 1978): 
 

 

1/

0

0

f
T

β
τσ

ασ
 ′

=  ′ 
 (40) 

 
in which the amplitude of shear stress is determined by oscillatory 
seabed response, 
 

 
2 2 2 2 2

0| | (1 )xz yz xy m n p kzτ τ τ τ= + + = +
 (41) 

 
Combing (40) and (41)，the source term can be expressed as: 
 

 
( ) exp( )f z Az kz= −

 (42) 
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where, 
 

 

1/
2 2

03 (1 )(1 2 )

3 (1 2 )
o

o

m n p kK
A

T K

β
γ

α γ

 ′ ++
 =
 ′+ 

 (43)

 

 

kλ
β

=   and  s wγ γ γ′ = −
 (44) 

 
To solve (38), the following boundary and initial conditions are 
required: 
 

 
(0, ) ( ,0) 0p t p z= = , and ( , ) 0p t∞ = . (45) 

 
Then, the residual pore pressure is calculated using a Laplace 
transformation as: 
 

 

3

2

2
0

2
1 1 exp( )

2

1 exp( )
sin( )

( 1)

v

v

A z
p z

c

rc t
r z dr

r r

λ λ
λ

λ λ
π

∞

  = − + − 
 

−− + 
∫  (46) 

 
2.4 Effects of currents on the wave-induced soil response 
 
One of new contributions of this study is the consideration of ocean 
currents in the existing seabed response model. Most previous 
models for the wave-seabed interactions have been limited to wave 
loading only. In this paper, we consider an additional loading from 
ocean currents. In this section, we first investigate the effects of 
ocean currents on the wave-induced soil response in a porous seabed. 

The vertical distributions of the maximum amplitude of the 
wave-induced soil response versus the soil depth for various current 
velocities are illustrated in Figs. 3 to 5. The input data for numerical 
examples presented in the figures are tabulated in Table 1. As shown 
in the figures, the vertical displacement (w) is greater than 
horizontal soil displacements (u and v), and the vertical effective 
normal stress ( zσ ′ ) is greater than horizontal normal stresses (xσ ′  

and yσ ′ ). Furthermore, the vertical shear stress (xzτ ) is greater than 

other shear stresses (yzτ  and xyτ ). 

One of new features of this solution is the inclusion of currents. 
Figs. 6 and 7 illustrate the vertical distributions of the pore pressures 
and vertical effective normal stresses for various current velocities. 
In the figures, the pore pressure and vertical effective normal stress 
increases as the velocity of currents increases. It is noted that the 
special case, 0 0U = , is the case without currents, i.e., the solution 

of Hsu et al. (1883). 
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Figure 3.  Vertical distributions of the wave/current-induced soil 

displacements and pore pressure in a porous seabed 
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Figure 4.   Vertical distributions of the wave/current-induced  

effective normal stresses in a porous seabed 
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Figure 5. Vertical distributions of the wave/current-induced shear 

stresses in a porous seabed 
 

Table 1.  Input data for numerical examples 
Wave Characteristics 

Wave period 12.5 sec  
Water depth 10 m 
Wave height 2 m 
Current velocity 3 m/sec or 

various 
Wave obliquity (θ ) 30o 

Angle between wave and currents (θ 1) 60o 
Soil Characteristics 

Coefficient of consolidation 0.01 
Residual parameter α 0.246 
Residual parameter β 0.8 
Unit weight of soil 26500 N/m3 
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Figure 6.  Vertical distributions of the wave/current-induced pore 

pressure in a porous seabed for various current velocities 
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Figure 7. Vertical distributions of the wave/current-induced vertical 

effective normal stresses in a porous seabed for various current 
velocities (The legend is the same as that in Fig. 6) 

 
2.5 Simplified formulation for wave-induced liquefaction  

For engineers, the most important task is to examine where 
liquefaction will occur and how deep it is. The well-known criterion 
of residual liquefaction is: 
 

 
0

1resP

σ
=

′
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which results in: 
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z
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Based on (50), the relationship the maximum liquefied depth 

( Lz ) and the parameter B is presented in Fig. 8.  This relation, so-

called J-S curve, was first proposed by Jeng and Seymour (2007) for 
the case of wave loading. In Fig. 8, the currents are included. For 
engineering applications, given waves, currents and soil conditions, 
we can determine the parameter B from (49). The maximum 
liquefied depth can then be easily determined from Fig. 8. 
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Figure 8. Modified J(eng)-S(eymour) curve fro wave/current  

induced  liquefaction 

3. INTEGRATED MODEL FOR WAVE-SEABED-
STRUCTURE INTERACTIONS 

 
An integrated model for WSSI is developed in this section. An 
assumption is made that the poro-elastic deformations in seabed are 
very small and do not affect the wave transformations or its induced 
pressure on the surface of the poro-elastic seabed (Mizutani et. al, 
1998). This assumption simplifies the boundary conditions at the 
seabed interface where the water pressure and shear stress calculated 
from the wave field are passed into the seabed. This integrated 
model includes three main components: (i) wave mode on the basis 
of the Navier-Stokes (N-S) equations; (ii) seabed mode on the basis 
of the Biot’s consolidation equations with poro-elastic theory; and 
(iii) structure mode on the basis of structural mechanics theory. 
 
3.1 Wave mode 

Navier-Stokes (N-S) equations are utilized to describe motion of the 
water liquid phase. Starting with the momentum balance in terms of 
stresses, the generalized equations in terms of transport properties 
and velocity gradients are: 
 

 

[ ( ( ) )]

( )

T

f

u
u u

t

u u p F

ρ η

ρ

∂ − ∇ ∇ + ∇
∂

+ ∇ + ∇ =

r
r r

�

rr r
�

   (51) 

 0u∇ =
r
�  (52) 

 

where η is the dynamic viscosity of fluid, ρ is the fluid density, 

u
r

is the velocity field, fp is the pressure, t is the time, and F
r

is a 
volume force such as gravity. 

  
3.2 Seabed mode 

The consolidation equation for the flow of a compressible pore fluid 
in a compressible porous medium can be given as (Christian et. al, 
1974): 
 

 
( ) s

w w
p

K p n
t t

εγ β γ ∂∂′∇ ∇ − =
∂ ∂

�

 (53) 
 

where p is the pore pressure, K is the permeability matrix of the 

soil, wγ is the unit weight of pore water, n′ is the soil porosity, and 

s suε = ∇
r
� (where su

r

 is the soil displacement) is the volume strain 

of soil matrix. The compressibility of pore fluid (β ) is defined as: 
 

 0

1 1

w w

S

K P
β −= +

  (54) 
 

in which wK is the true modulus of elasticity of water (taken as 

2×109N/m2), 0wP  is the absolute water pressure and S is the degree 
of saturation. 

The relationships between soil displacement and pore pressure 
are given as: 

 

 

2

1 2s s
s

G
G u pε

µ
∇ + ∇ = ∇

−
r

 (55) 
 

where G is the shear modulus related to the Young’s modulus ( E ) 

and the Poisson’s ratio (sµ ) in the form of / (2(1 ))sE µ+ . 
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3.3 Structure mode 

Based on the small-displacement assumption, the relationships 
between strain components and displacement at a point of marine 
structure are given as follows: 
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=
∂ , (56) 
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The strain tensor ε and stress tensor σ are: 
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σ τ τ
σ τ σ τ

τ τ σ

 
 

=  
 
    (62) 

 
The stress-strain relationship for linear conditions reads: 
 

 mDσ ε=  (63) 
 

where mD is the elasticity matrix. 
The structural mechanics theory in this study is based on a weak 

formulation of the equilibrium equations expressed in the global 
stress components. 

 

 mFσ−∇ =
r

�
 (64) 

 

in which mF
r

denotes the volume forces (body forces). 
 
3.4  Wave generation  

In this numerical model, a piston wave generator is used. According 
to (Dean and Dalrymple, 1991), the expression of the movement of 
the wave maker is: 
 

 ( ) cos
2

S
U t t

ω ω=  (65) 

 
where, the S  and ω  are the stroke and the frequency of the wave 
maker respectively. The fluid evaluation ( )xη  is donated as: 
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where, the 0k  and mk  are the wave number. The depth and gravity 

of water are donated by d and g. The ratio of wave height (H) to 
stroke as following: 
 

 
2

1 sinh 2

cosh 2 4
m

m
m m

d k d
N

k d k

 
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 
 (71) 

 
In order to induce the wave energy dissipation and reduce the 

wave reflection from the right wall, a sponge (wave absorbing) 
boundary is needed. In this numerical model, in the last 100m on the 
right sides, the viscosity of the fluid is increased of approximately 
10000times (with a smoothing exponential window). 

 
3.5   Boundary conditions  

When solving the governing equations, appropriate boundary 
conditions at external boundaries and internal interfaces for these 
three modes are required (see Fig. 9). 
 

 
Figure 9.   Locations for specification of boundary condition 
 
In the wave mode, a piston wave maker is used in the left-hand-

side boundary (1Γ ) of computational domain to generate wave and 

a sponge layer is located in the right-hand-side boundary ( 2Γ ) to 

avoid/reduce the wave reflection. Zero pressure is applied on the 
water free surface (3Γ ), while no-slip condition is adopted at the 

solid surface, such as sea floor (4Γ ) and surface of marine structure 

( 5Γ ). In the case of a deformable structure, the impact of the 

structure deformation on wave motion is considered in term of a 
deformation of boundary shape (5Γ ).  

In the seabed mode, it is commonly accepted that vertical 
effective normal stresses vanish at the seabed surface while the 
wave pressure and shear stresses obtained from wave mode are 
imposed as boundary conditions of seabed surface (4Γ ). In this 

study, the seabed is considered as a porous medium of a finite 
thickness and rests on an impermeable rigid bottom, indicating that 
zero displacements, zero gradient of pore pressure and no vertical 
flow occur at the horizontal bottom (6Γ ). When two side 

boundaries ( 7Γ  and 8Γ ) of seabed are far away from the concerned 

region (such as the region around a marine structure), they can be 
assumed to have zero displacement. 

In the structure mode, the displacement and velocity at the 
surface ( 5Γ ) of a deformable structure are dominated by the wave 

pressure acting on the wave-structure interface. For the embedded 
part ( 9Γ ) of a structure, it is assumed to have same displacement 

and velocity as those of ambient soil (updated from seabed mode). 
 

3.6 Numerical model  

These three numerical modes are integrated by using COMSOL 
Multiphysics (3.5a version). The main features of COMSOL 
Multiphysics adopted to set up the integrated model are listed as 
follows: 

(1) 2D space dimension; 
(2) Plane strain mode of structural mechanics; 
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(3) Coefficient form of PDE mode for seabed mode; 
(4) Incompressible Navier-Stokes mode of fluid dynamics; 
(5) Arbitrary Lagrangian-Eulerian (ALE) method for mesh 

movement. 
 
3.7  Wave-seabed Interaction  
 
As a starting point, this integrated model is applied to predict the 
wave-seabed interaction without the inclusion of a marine. In the 
example, a computational domain with a length (200L = m) is used. 
The original of the Cartesian coordinate system is located at left-
hand-size edge point of sea floor. The incident linear wave is 
generated with wave height ( 0.5wH = m), wave period ( 6.0T = sec) 

and still water depth ( 10.0d = m). For the porous seabed, the seabed 
thickness, soil porosity, permeability and degree of saturation are 
taken as 25.0sd = m, 0.4n′ = , 0.01K = m/sec and 0.98S = , 

respectively.  
Figure 10 shows an example of the distributions of wave-

induced pore fluid pressure (p ) and vertical effective normal stress 

( zσ ) within the seabed at time 43.0t = sec. The magnitude of pore 

pressure decreases with depth increases. The magnitude of vertical 
effective normal stress increases firstly, and then decreases 
gradually. The comparisons between numerical results and 
analytical solutions of water elevation (Jeng, 1997), maximal pore 
water pressure and vertical effective normal stress (Magda, 2000) at 
cross-section 100x = m are shown in Figs. 11 to 13, respectively. In 
general, there is a good agreement between numerical simulation 
and analytical theory. It is noted that the wave model used in the 
previous analytical solutions was based on the potential flow theory, 
which has no shear stresses along the seabed surface, while the 
present wave model was based on N-S equations. 

 

 
(a) pore pressure 

 
(b) Vertical effective normal stress 

 
Figure 10. Distributions of (a) pore fluid pressure and (b) vertical 
effective normal stress with wave profile and velocity field at time 

43.0t = sec. 
 

 
 

Figure 11.  Comparison of simulated water elevation with analytical 

solution at the cross-section 100x = m. 
 

 
 

Figure 12. Comparison of simulated maximal pore pressure with 

analytical solution at the cross-section 100x = m. 
 

 
 

Figure 13. Comparison of simulated maximal vertical effective 

normal stress with analytical solution at the cross-section 100x = m. 
 
3.8  Wave-seabed Interaction around a Rigid 

Submerged Breakwater  
 
In this section, a rigid, impermeable and submerged breakwater with 
a rectangular shape is considered, and its impacts on wave motion 
and seabed response are analyzed by the integrated model. The 
structure is 20 m wide and 3 m high, and its central point of bottom 
line is located at the point (105, 0). Figure 14 shows the distribution 
of the wave-induced pore fluid pressure around the structure at time 

43.0t = sec. As one can expect, the existence of structure can 
largely affect the wave motion around the submerged breakwater 
(see Fig. 15) and consequently leads to a different distribution of 
pore pressure from that without a marine structure (see Fig. 10(a) 
and Fig. 14). As shown in Fig. 15, an obvious wave deformation 
takes place due to wave-structure interaction when the wave is over 
the submerged breakwater.  
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Figure 14.  Distributions of the wave-induced pore pressure in a 

porous seabed at time 43.0t = sec. 
 

 
 

Figure 15.  Comparsions of the simulated water elevation with and 

without the presence of a submerged breakwater at time 43.0t = sec. 
 
3.9 Wave-seabed Interaction around a Deformable 

Structure  

This integrated model has also been used to study the wave 
propagation and seabed response around a deformable impermeable 
structure (such as wave energy converter). Two types of structure 
with different embedded depths are investigated, as depicted in Fig. 
16. One is simply fixed on the sea floor with zero embedded depth, 
and the other is embedded into the seabed with an embedded depth 
of 2 m. The width and height above seabed are kept the same in 
these structures, and they are taken as 1 m and 5 m, respectively. 

  

 
Figure 16.  The sketch vertical structure and seabed model 

 
Figure 17 illustrates the effects of structure obstacle on fluid 

velocity field, from which significant changes of velocity pattern 
around the structure can been observed. Furthermore, in this 
example, the wave crest arrives at the structure, which creates a 
positive pressure on the seabed surface, and result in compaction of 
the seabed.  

Figure 18 shows the effects of embedded depth on the 
distribution of wave-induced pore pressure around foundation. As 
shown in the figure, there is about 2% of increment of the pore 
pressure amplitude in case 1, compare with case 2. The comparison 
indicates the embedded part of structure may disturb/block the 

development of pore pressure. This implies that the embedded pile 
will reduce the pore pressure, and enhance the stability of the 
structure. 

 

 
Figure 17.  The sketch of velocity profile in the system of wave -

vertical wall-soil interactions-Case 2(wave period=8s, wave 
height=0.5m).  

 

 
(a) Case 1 

 
(b) Case 2 

Figure 18.  Effect of embedded depth of deformable structure on 
pore pressure. 

 
In addition to the wave field and seabed, another new feature of 

this study is the structure components in the integrated model. Here, 
we consider the horizontal displacements at the top of the wall, 
which also indicate the oscillatory of the structure. It is noted the 
horizontal displacements presented here is generated by the wave 
loading, not artificial oscillating loading. As shown in Fig. 19, the 
patterns of the horizontal displacements at the top of the wall are 
similar for both cases. It is important to note that the horizontal 
displacement at the top of the wall in case 2 is two order higher than 
case 1. This implies that the design of case 2 can stand for two-order 
higher deformation of the pile than case 1. 
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(a) Case 1 

 
(b) Case 2 

Figure 19.  The horizontal displacements at the top of the wall (a) 
case 1 and (b) case 2 

 

 
(a) Case 1 

 
(b) Case 2 

Figure 20. The first principal stress at point 1 (a) case 1 and (b) case 
2 

 

 
(a) Case 1 

 
(b) Case 2 

Figure 21.  The von Mises stress at point 1(a) case 1 and (b) case 2 
 

Figure 20 illustrates the first principal stress at point 1 (see Fig. 
16) for both cases. As show in the figure, the first principal stresses 
at point 1 for case 1 is one-order higher than that in case 2. This 
implies that the bottom of the structure will received higher stresses 
in case 1, which required more intensive design for the structure. 
For von Mises stress at point 1 (Fig. 21), the highest vale is about 

49 10×  for case 1 and 51.2 10×  for case 2. They can be considered 
as in the same order of magnitudes.  

Based on results presented in Figs. 18 to 21, the design of case 2 
provide a better design for the deformable pile in the wave-seabed-
pile interaction system. 
 
4. CONCLUSIONS 

 
In this paper, we first present a new analytical solution for the 
wave/current-induced soil response in a porous seabed. Both 
oscillatory and residual mechanisms are considered in this study. 
Then, we present a numerical model for the simulations of wave 
propagating over a porous seabed around marine structures. Based 
on the numerical examples presented, the following conclusions can 
be drawn. 
1. For the combined loading of waves and currents, the soil 

response increases as the current velocity increases. 
2. A modified J-S Curve is established by including currents for 

the prediction of the liquefaction potential, which provides 
engineers a effective tool. 

3. An integrated model, based on COMSOL Multiphysics, has 
been developed to study the WSSI phenomenon in this study. To 
validate this model, the simulated wave profile, pore fluid 
pressure and vertical effective normal stress in the case without 
any marine structure are compared with those from analytical 
theory. The comparison results show a good agreement between 
numerical simulation and analytical theory.  

4. The numerical results show that the existence of a marine 
structure may significantly increase the wave crest height and its 
induced pore pressure within seabed. 
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5. The embedded depth of a deformable structure slightly affect the 
wave propagation but has a large impact on pore pressure around 
the structure foundation. 
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APPENDIX: WAVE AND CURRENT –INDUCED DYNAMIC 
PRESSURE 
 
In this appendix, we provide detailed information of wave/current-
induced dynamic pressure along the seabed surface. To satisfy the 
governing equation (1) and bottom boundary condition, we have 
velocity potential as: 
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where A is an unknown coefficient and the water surface elevation 
as: 
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Substituting (A1) and (A2) into the dynamic free surface 

boundary (3), and take the linear terms, we have: 
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which leads to 
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Then, we have the velocity potential 
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Introducing (A3) and (A5) into kinematic boundary condition 

(4), we have the dispersion relation as: 
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Which will be used to determine the wavelength 2 /L π λ= . 
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Again, taking the linear term, we have the dynamic wave pressure 
( dP ) as: 
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