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ABSTRACT: If piles are installed in slopes or next to heavy loads, especially in soft cohesive soils, piles are often loaded by horizontal
ground displacements. In this case the pile shafts are stressed by shear forces and bending moments. Initially, a structured overview of exist-
ing analytical methods for estimating passive loading on piles by horizontal movement of surrounding soil is presented. While one compo-
nent of passive load is determined by the shear strength of the soil, the other often negligible component depends on the relative velocity
between the pile and surrounding soil. For mobilizing the maximum passive load on pile, the soil often has to undergo large deformations. In
classical Lagrangian Finite Element Method these deformations distort the finite element mesh which might lead to inaccurate results or the
numerical analysis does not converge to a stable solution. Hence, numerical study of pile soil interaction needs more sophisticated modelling
techniques like the Arbitrary Lagrangian-Eulerian (ALE) method, the Coupled Eulerian-Lagrangian (CEL) method or the Material Point
Method (MPM) to minimize numerical problems caused by distorted mesh. These methods are discussed briefly and their potential is shown

for a simple 2D plane strain problem of a single passive loaded pile.

1. INTRODUCTION

If piles are installed in slopes or next to heavy loads, especially in
soft cohesive soils with high water content and soft or even more
unfavourable consistency or highly organic soils e.g. tidal mud or
peat, piles are often loaded by horizontal ground displacements. In
such cases pile shafts will be stressed by heavy shear forces and
bending moments, which may lead to serviceability problems (SLS)
or even pile failure (ULS), when soil “squeezes” between and around
piles. In literature these piles are called as passive loaded piles
(Branshy, 1996). Typical examples are slopes with pile systems (e.g.
dowels), as shown in Figure 1 (e.g. Ito et al., 1982; Gudehus &
Schwarz, 1984; Schwarz, 1987; Poulos, 1995; Ausilio et al., 2001;
Cai & Ugai, 2011). But also in case of heavy one sided loads (e.g.
Oteo, 1977; Bransby & Springman, 1997; Jeong et al., 2004), piled
bridge abutments (e.g. Stewart et al., 1994; Ellis & Springman,
2001) and excavation works, piles might get, in particular in soft
soils, heavy more or less unexpected passive loads. Figure 1 shows
the most important design situations for passive loaded piles. The
negative effect of passive loads on piled foundations was shown in
many damages e.g. of piled bridge abutments or piled foundations of
overhead bridge cranes next to heavy loads.

Piled foundations of overhead bridge cranes for stock yards on
soft soils represent particular critical design situations. One case in
1960s lead in Bremerhaven (Germany) to unexpected heavy hori-
zontal ground displacements and consequently to overstressed foun-
dation piles causing shift distortions of the crane runway (Leussink
& Wenz, 1969). For investigation of the process amongst others an
instrumented 6 m long steel pile was installed and the behaviour of
the instrumented pile was monitored. Three years after applying a
load next to this testing pile, passive loads caused a burst of the
testing pile. The pile deflection was approximately 1.0 meter and
ground was already flowing around the pile.

Because there is still some lack of knowledge in design of piles
for passive loads, in 2009 a large scale test for design of a piled
foundation of a runway on soft soil for a steel yard in Brazil was
conducted (Muhl et al., 2011). Numerical results of the large scale
test are reported e.g. by Aschrafi et al. (2013).

2. LITERATURE REVIEW

According to Eurocode EC 7-1 (EN 1997-1:2009) the design of
passive loaded piles can be based on analytical, semi-empirical or
numerical solution. Thereby a classification in geotechnical cate-
gory 3 according to EC 7-1, i.e. the most difficult category, is re-
quested. For design of piles, ground displacements can be treated
both as action followed by an interaction analysis to determine
forces, lateral displacements and strains in the pile or as an upper

bound to force, which the ground can exert to the pile. Evaluation of
this force shall take account of the strength of the soil and the source
of the load, represented by the weight or compression of the moving
soil or the magnitude of disturbing actions (EN 1997-1:2009).

In more complex situations and in accordance to EC 7-1 passive
loads have to be determined with numerical methods, considering
the interaction between piles and the moving ground mass. Com-
parison of numerical results with existing analytical solutions is
recommended to the engineer.
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Figure 1 Design situations for passive loaded piles: a) piled slopes
(dowels), b) heavy surcharge loads, c) excavations,
d) piled bridge abutments with inclined piles
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2.1 Analytical methods

The quantity of the passive load depends on the magnitude and
velocity of the ground movement as well as on the pile stiffness and
the geometrical boundary conditions such as center to center dis-
tance of the piles and thickness of the soft soil layer. According to
the bending stiffness, roughness of pile surface and the quantity of
ground displacement, two cases have to be considered, when design-
ing piled foundations for passive loads: 1. case: Piles are able to
resist passive loads regardless of their failure and are only deformed
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according to their bending stiffness and the magnitude of horizontal
ground displacement. If pile displacement is less than the ground
displacement, soil will flow around piles. The quantity of the load
depends on the velocity of soil. 2. case: The piles do not have a
certain bending stiffness to resist passive loads, consequently piles
are partially deformed like the ground. Hereby failure might occur,
if pile deformation exceeds the maximum allowable deformation of
the piles.

Fundamental features of passive loaded piles show similarity to
flow around a cylinder in a viscous fluid (Figure 2). Ito and Matsui
(1975, 1982) proposed a theoretical method, called theory of plastic
flow, where the lateral force on a pile is calculated by considering
the soil as a visco-plastic medium. A similar theory was presented
by Winter (1979) based on viscous properties of cohesive soils,
which involved an analytical solution for the passive load on a pile
in a viscous soil. Firat et al. (2005) investigated the flow of a visco-
plastic soil around a pile in a row. He performed calculations with
variation of fundamental key parameters.
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Figure 2 Flow of visco-plastic soil around a single pile
(Firat et al., 2005)

To investigate the passive load on a single pile and pile group,
an analytical approach according to the "Recommendations of the
German Piling Committee - EA Pfahle” (EA-Pfahle 2013, 2™ edi-
tion) is proposed, which is mainly based on the experimental works
of Wenz (1963) and Winter (1979). The necessity of designing piles
for passive loads can be estimated by a global failure analysis ac-
cording to DIN 4084, adopting the partial safety factors from Euro-
code EC 7-1 (EN 1997-1:2004). Determination of the passive load is
done by a limit value determination for loads resulting from ground
movements lateral to the pile axis. Decisive is the smaller total
passive load on the piles calculated from the characteristic resulting
earth pressure 4p,,, and the characteristic flow pressure p, , whereby
the effect resulting from flow pressure P, , and the resulting earth
pressure AE; are determined over the entire height of the action.

In case of determination of the resulting earth pressure, it is as-
sumed that the piles support the soft soil with their bending stiffness,
whereby for the flow theory it is assumed that the shear strength of
ground is fully mobilized and the plastified ground flows around the
pile. In the latter case, the pressure p,, on the pile can be determined
independent of depth according to EA-Pfahle (2013) with Eq. (1):

Puk = 7 Na * Cuk * Qs (1)

thereby 7, is a calibration factor for the spatial pile arrangement of a
single pile in a pile group (factor 1 to 5) according to Wenz (1963)
and ¢, the undrained cohesion of the soil. In case of a square cross-
section ay is the pile width normal to the direction of flow, apart
from that «, is the diameter of a round pile.

In literature the approach for passive loads on piles varies
because of constitutive and kinematic assumptions. Passive loads on
piles based on analytical methods are given in a very wide range of

Puk = 3~12.5 “Cuk 'dD (2)

at which dj is the diameter of the pile.

In last decades, analytical and semi-empirical approaches for re-
liable determination of passive loads on piles have not been further
developed. In Table 1 most important analytical and
empirical approaches are summarised from an extensive literature
review.

2.2 Numerical methods

In recent years, Finite Element Method (FEM) has been considered
the main tool for solving geotechnical problems. FEM is often pre-
ferred for their speed and simplicity. Fundamental research for pile-
soil interaction for passive loaded piles, based on finite element
analyses, is shown by many researchers (e.g. Branshy, 1996;
Bransby & Springman, 1999; Xu & Poulos, 2001; Miao et al., 2006;
Georgiadis et al., 2013). Depending on the stiffness in the elastic
region, deformation of approximately 2% of the pile diameter are
necessary to mobilize maximum passive load on a pile in fully
undrained, elastic-plastic soil (Branshy & Springman, 1999).

The problem of considering a gap behind the pile was studied by
Bransby & Springman (1996). They mentioned that the occurrence
of a gap is more significant for piles at low stresses (e.g. dowels)
compared to piles with high normal stresses around the piles
(e.g. caused by surcharge loads or great depth). For the second case
it has been observed that no gapping occurs.

Several researchers studied also application-orientated problems
of passive loaded piles such as piled bridge abutments (Stewart et
al., 1994; Ellis & Springman, 2001; Kelesoglu & Springman, 2011),
piles adjacent to heavy one sided surcharge loads (Bransby &
Springman, 1996) and piled slopes (e.g. Chaoui et al., 1994; Cai &
Ugai, 2000; Pan et al., 2002; Chen & Martin, 2002; Ellis et al.,
2010; Kanagasabai et al., 2011) using small strain deformation
theory. Based on numerical discretisation of the contact zone be-
tween pile and soil and constitutive law only less relative displace-
ments could be modelled with the classical small strain Finite Ele-
ment formulation.

Studying geotechnical problems like collapse of a pile construc-
tion e.g. dowels in a slope undergoing large ground displacements or
installation effects of piles or spud cans in offshore engineering, it is
evident that large deformation can occur. Fundamental research in
modelling large deformations has been done by e.g. Qui et al., 2010;
Henke et al., 2010 and Kafaji, 2013. Tian et al. (2011) studied large-
amplitude penetration of a full flow penetrometers and pipeline
using large deformation analyses.

3. DISCUSSION ON LITERATURE REVIEW

In many geotechnical applications the material undergoes large
deformations e.g. dowels in moving ground. Existing analytical
methods are often limited to special boundary conditions respective
are not able to predict the soil-structure interaction in a reliable way
for design of geotechnical constructions. Because of this reasons, in
recent decades finite element methods became a powerful tool for a
wide range of geotechnical applications.

It is evident that classical finite element method has many short-
comings solving geotechnical problems with large deformations.
Especially contact problems and large finite element mesh distor-
tions may lead to inaccurate results or even to a convergent solution
of the problem. There is still no understanding in the soil-pile inter-
action and failure mechanism of the soil under large deformation
conditions. Because of this reason it is necessary to use more sophis-
ticated modelling techniques like the Arbitrary Lagrangian-Eulerian
(ALE) Method, the Coupled Eulerian-Lagrangian (CEL) Method or
the Material Point Method (MPM).
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Table 1 Analytical methods for estimating passive loads on piles in soft cohesive soils

Author

Formulation

Comment

Brinch-Hansen & Lundgren (1960) pu=75-¢c,-dp

Load from base failure of a deep
based vertical foundation.

Wenz (1963) ) P,
Cy - dD

=xv-(2+&m

Based on plasticity theory and
model experiments.

Broms (1964) pu=9-c,-dp

Empirical formula without theoreti-
cal background. Close to the ground
surface the load was reduced to
allow for different mode of defor-
mation.

Smoltczyk (1966) pu=44 ¢, -dp

Only shear stresses acting on sur-
face of the pile.

Goldscheider & Gudehus (1974) pu<12.5 ¢, -dp

Assumption of a kinematic failure
mechanism (sickle).

Ito & Matsui (1975) @

P=. tang) -2-(D;-Dy)]+

D,
P, = ¢ ‘[D1 : (3 'lOgD—Z +

D;-D,
D,

Development of two different ap-
proaches for pile groups: 1) Theory
of plastic deformation (see formula)
and 2) Theory of plastic flow (Ito &
Matsui, 1975).

P=+y-h-(D;-D;)

Winter (1979) © 4 Based on a mathematical expres-
Pu_ _ ko |1+1, == sion of a viscous clay.
Cy - dD a - dD
(O] . .
Randolph & Houlsby (1984) Py _ T+ A+ 2 -cosA + Lower bgund an_alytlca_tl expression
¢, -dp for a single pile with different

5 Q) G)
c, dD cos 2 sin 2

roughness according to classical
plasticity theory.

= factor for the shape of the pile; v = factor for pile arrangement; &= factor for embedment of the pile
D, = center distance; D, = inside width between the piles; # = thickness; ¢, = undrained cohesion; y = unit weight

Q):

):

(3): ko = shape parameter; 7,,, = viscosity index; v, = flow rate; &, = shear rate;
a = center distance normal to the direction of flow

(4): A = factor for roughness of the pile surface

4. NUMERICAL METHODS FOR MODELLING LARGE
DEFORMATIONS

Since first application in the middle of the last century,
computational methods have become a very powerful tool in
geotechnical engineering for analysing problems like deep
foundations, excavations and tunnels etc. with increasing
complexity. By trying to make accurate predictions e.g. soil flowing
around a pile with standard numerical methods, the limits of
conventional numerical simulations are reached.

Determining the magnitude of the passive load requires not only
knowledge of material properties, but also of the developing stress
field surrounding the pile. Predicting these stresses requires taking
into account the highly nonlinear stress-strain relationship of soil, as
well as the complex nonlinear deformation and contact processes
imposed by the horizontal moving ground around a pile.

This article deals with the proper reproduction of large
deformations by numerical simulation of passive loaded piles. Here,
the focus lies on quasi-static problems where inertia effects can be
neglected.

4.1  Finite Element methods

The Finite Element Method (FEM) is the most important numerical
method in computational geomechanic applications. The theory of
traditional FEM is suitable for geotechnical problems, when element
distortions are moderate. Theory can be found in e.g. Zienkiewicz &
Taylor (1967) or Bathe (1996). The interface is precisely defined
and tracked and the Lagrangian elements contain the same material
throughout the calculation and the material moves only with the
deformation of the mesh. Soil-structure interaction is generally
modelled with discrete interface elements. The presently used
FE-programs provide often a calculation procedure for geometric
nonlinearity, which is based on an updated Lagrange (UL) Finite
Element formulation. In FE-analysis with updated Lagrange
procedure, the stiffness matrix is updated due to the new
geometrical positions of the deformed elements. In addition to that,
a special definition of stress rate is adopted that includes rotational
terms. For geometric nonlinearity, however, discrete interface
elements cannot be used in an unrestricted way. For this reason,
kinematic contact algorithms according to the master-slave principle
often tend to be applied (Moormann & Katzenbach, 2002).
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Nevertheless, in many nonlinear geotechnical applications the
material undergoes large deformations and even the updated
Lagrangian Finite Element Method is not suitable anymore. These
deformations distort the finite element mesh and the nonlinear
boundary conditions. For this reason, the distorted mesh is unable to
provide accurate results and can slow down the convergence of the
solution or even the numerical analysis does not converge to a stable
solution. Figure 3 shows the mesh in deformed configuration after
applying a prescribed displacement of 0.5d,, to the rigid pile with
rough surface. It is obvious that for this distorted mesh, but also with
a finer mesh discretisation and different pile-soil interaction
properties, one cannot trust in numerical results anymore. Thus, for
excessive mesh distortions or material brakes up, different
numerical formulations should be used, in order not to lose accuracy
in the solution.

p2rr 7y

B

| i

severe mesh distortion

Figure 1 Finite Element mesh around a pile in deformed
configuration, coarse mesh (UL-FEM)

In recent years some Finite Element methods, based on the
Arbitrary  Lagrangian-Eulerian (ALE) method or Coupled
Eulerian-Lagrangian (CEL) method have been developed to
overcome numerical problems by the distorted mesh. In case of pure
Lagrangian description (particle description) the movement of the
continuum is specified as a function of the material coordinates and
the time. The nodes of the Lagrangian mesh move together with the
material. Therefore, the interface between two parts is precisely
tracked and defined. In Eulerian description (field description) the
movement of the continuum is specified by a function of the spatial

coordinate and time. An Eulerian reference mesh which remains
undistorted is needed to trace the free motion of the material in the
Eulerian domain. In an Eulerian description no element distortions
occur, but numerical diffusion can happen in case of two or more
materials in the Eulerian domain.

The Arbitrary Lagrangian-Eulerian (ALE) method is an
effective method, to analyse large deformation problems. This
method was first introduced by Hirt et al. (1974) to solve fluid
dynamic problems or later metal forming problems (e.g. Khoei et
al., 2008). This method uses a finite mesh with nodes, which may
move with the material (Lagrangian description) or be held fixed in
space (Eulerian description). The mesh is partially attached on
material and can become independent where necessary. Initially,
Lagrangian body and Eulerian body entirely overlap each other and
have the same mesh discretisation. Mesh motion (Lagrangian) is
constrained to the material motion (Eulerian) only where necessary
(at free boundary). Otherwise, material motion and mesh motion are
independent. The ALE method can overcome the mesh distortion
while representing the boundary conditions correctly.

According to Hirt et al. (1974) one time step of an
ALE-calculation is based on three phases, incipient with a classical
explicit Lagrangian calculation phase. After this phase, the
momentum equation is identical to a time-step in a standard
Lagrangian analysis. The following optional adaptive meshing phase
respectively smoothening phase moves only nodes independently
from material to reduce mesh distortion. Nodes, which are specified
to adaptive domains, are frequently adapted to keep reasonable
element shape during large deformation analyses. However, the
topology i.e. the number of elements and connectivity of each
element is not altered. Adaptive meshing could also be used to
analyse pure Lagrangian problems as well as pure Eulerian
problems. Adaptive meshing techniques have been proposed by e.g.
Benson (1989). In a final Eulerian phase the solution obtained from
the Lagrangian phase is remapped onto the new relocated mesh
(advection phase), which was developed through the adaptive
meshing algorithm. Examples with the ALE method can be found in
e.g. Tian et al. (2011).

Origin, the Coupled Eulerian-Lagrangian (CEL) method was
developed by Noh (1964) and further developed e.g. by Benson
(1992) and Benson & Okazawa (2004). This method, which
attempts to capture the strength of the Lagrangian and the Eulerian
method, is implemented in the commercial code ABAQUS/Explicit.
For geotechnical problems, a Lagrangian mesh is used to discretize
structures; while an Eulerian mesh is used to discretize the subsoil.
The Eulerian material is tracked as it flows through the Eulerian
mesh computing its Eulerian volume fraction (EVF). If an Eulerian
element is completely filled with material, its EVF is 1. If there is no
material in the element, its EVF is 0 (Dassault Systéms, 2013).

Lagrangian
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cell ™~

"~ Eulerian mesh

Figure 4 Principle representation of Noh’s Coupled Eulerian-
Lagrangian method (Qui, 2012)
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The interface between structure and subsoil could be represented
using the boundary of the Lagrangian domain. On the other hand,
the Eulerian mesh, which represents the soil that may experience
large deformations, has no problems regarding mesh and element
distortions. According to Noh (1964) initially the pressure on the
interface of the Eulerian interface cells are integrated to calculate the
force acting on the Lagrangian nodes at the interface. Following, the
motion of the Lagrangian domain is calculated and the portion of the
domain at the time ¢ = /™ is determined using the new position of
the Lagrangian domain. Finally, the discretized Eulerian equations
are solved to obtain the new pressure.

In Abaqus contact between Eulerian materials and Lagrangian
materials is enforced using a general contact algorithm that is based
on a penalty contact method (Dassault Systéms, 2013). This contact
algorithm does not enforce contact between the Lagrangian elements
and the Eulerian elements, i.e. Lagrangian elements can move
through the Eulerian mesh without resistance until they encounter an
Eulerian element filled with material (EVF = 0). The implemented
penalty contact algorithm creates seeds on the Lagrangian element
surfaces, while anchor points are created on the Eulerian material
surface. The penalty method approximates hard pressure overclosure
behaviour. Small penetration of the Eulerian material into the
Lagrangian domain is allowed. The contact force Fp between seeds
and anchor points is proportional to the penetration distance d,

Fp: kp'dp (3)

where the factor k, is the penalty stiffness which depends on the
Lagrangian and Eulerian material properties. This method is less
stringent compared to the classical kinematic contact method
(master-slave concept).

An illustration of the penalty contact algorithm is shown in
Figure 5.

Lagrangian

/ material

L] anchor

overclosure

N.B.:
Number of
N seeds and
Eulerian N anchors
mesh reduced for
clarity

seed

Figure 5 Schematic illustration of the contact between Lagrangian
part (pile) and Eulerian part (soil)

Qui et al. (2010) or Henke et al. (2010) showed the potential of
the CEL method for geotechnical applications undergoing large
deformations.

Both CEL and ALE methods use an explicit time integration
scheme. Thereby, the unknown solution for the next time step can
be found directly from the solution of the previous time step. In this
case no iteration procedure is needed. However, explicit calculations
are not stringently stable, which means, that numerical stability has
to be guaranteed by introduction of a critical time step Az The
step size depends on the characteristic element length Z, and the
dilational wave speed ¢4 (Bathe, 1996).

Both methods (ALE and CEL) combine the benefit of a pure
Lagrangian and pure Eulerian description of the movement of a
continuum in time. Simplified mesh structures of a passive loaded
pile with the ALE and CEL method are shown in Figure 6.

[ soil (Lagrangian) [~ soil (CEL) i
I |
N

_ soil (ALE)

pile

Figure 6 Simplified mesh structure for ALE model (left) and CEL
model (right)

4.2 Meshbased particle methods

The Material Point Method (MPM) is a mesh based particle
method and has been developed to overcome the difficulties of the
FEM. The method is based on a finite element mesh and a cloud of
points, called material points that move through a fixed Eulerian
grid. These material points represent subregions of a soil material.

Deformation of the solid is represented by the movements of
Lagrangian material points (particles). The material points carry all
physical properties of the continuum such as mass, momentum,
material parameters, strains, stresses as well as external loads. The
computational Eulerian mesh and its Gauss points carry no perma-
nent information. The computational grid is used to determine in-
cremental displacements by solving the stiffness equations as in
standard Finite Element Method. The schematic representation of a
classical calculation cycle of the Material Point Method contains the
following steps (Figure 8): At the beginning of a time step, informa-
tion is transferred from particles to the computational background
mesh. This includes amongst others external load information. The
element stiffness matrices are constructed and assembled into a
global stiffness matrix. After determining the incremental solution
of the field equations as in Lagrangian way, the solution is mapped
from the computational mesh back to the material points to update
their informations (convective phase) respectively the location and
stresses of the material points. After updating information, mesh is
reset to its initial configuration.

In recent years the Material Point Method has been applied suc-
cessfully to dynamic and quasi-static large deformation problems
(see e.g. Beuth, 2012 or Kafaji, 2013).

4.3  Benchmark: Passive load on single pile

In this part, the benchmark problem of an infinitely long cylindrical
single pile which is loaded by purely horizontal soil movements is
discussed. Undrained loading of passive piles is analysed using
UL-method, ALE-method, CEL-method and the Material Point
Method.

In Figure 7 a vertical section through the half space is shown.
The pile is completely embedded into soil and pushed in horizontal
direction. To simplify calculations, soil is modelled as perfectly
plastic cohesive material and is assumed to be weightless. Since
only relative displacement between soil and pile is important, it is
also possible to calculate the passive load on the pile, if pile is
pushed into soil.
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Figure 7 Assumptions of flow around a pile and slip lines of deforming zones; extreme cases smooth pile and fully rough pile
(Randolph & Houlshy, 1984)

a) beginning of b) incremental c) end of
time step deformation time step
= active node o inactive node o particle

Figure 8 Basic concept of MPM (Kafaji, 2013)

The magnitude of force per length P,, which is needed to push
the pile into soil, could be expressed by the solution after Randoph
& Houlsby (1984). The force P, of a single pile ranges from
(6+m) ¢, - dp =9.14 ¢, - dp for a smooth pile up to (4 - V2 + 2m) ¢, -
dp=11.94 ¢, - dp, for a perfectly rough pile per meter length.

4.3.1 Geometry and discretization

Due to the symmetry of the geometry and the loading conditions,
only half of the problem was analysed. The problem was reduced to
a plane strain problem in plasticity theory, in which the passive load
is calculated on a long cylinder, which is moved laterally through an
infinite medium. Pile diameter was taken as 1.0 m. Pile loading was
subsequently simulated by applying prescribed displacement y to all
nodes on the pile diameter. The geometrical boundary conditions
and load definitions are summarised in Figure 9. Soil is fully
attached to the pile (no gap). Boundaries were placed at a distance
of 254, from the pile and fixed in normal direction.

Mesh size of the elements for UL-method, ALE-method,
CEL-method and MPM was studied before calculation. Basic
assumptions for ALE method and CEL method are shown in
Figure 6.

In dynamic calculations, special attention should be paid to
reflecting waves from model boundaries with e.g. infinite boundary
elements or special boundary conditions with damping properties.
For the introduced benchmark problem of a passive loaded single
pile effects from reflecting waves have not been considered because
of quasi static loading conditions.

Contact was modelled between the piles and the soil. Both
smooth pile and fully rough pile (and medium rough) conditions are
investigated.

4.3.2 Constitutive law

The piles were modelled as linear material with the elastic properties
of reinforced concrete (Young’s modulus E, = 2.0 x 10’ kN/m? and
Poisson’s ratio 1, = 0,2, while the soil was modelled as a Tresca
material with undrained cohesion ¢, = 100 kN/m? undrained
Young’s modulus £, = 300¢, and undrained Poisson’s ratio v, =
0.495. Various adhesion factors « (= t¢/c,, where ¢ is the limiting
pile-soil adhesion) and pile spacings s, were considered, while the
pile diameter was taken as dp = 1.0 m in all analyses.

According to the Tresca failure criterion, which was adopted for
the soil around the pile, the shear strength is independent of the
stress level in soil. Consequently, FEM results are independent of
the initial stresses. Therefore stresses were specified as zero at the
beginning of each analysis.

In case of a rate-independent constitutive model, the velocity of
pile movement respectively soil movement has limited influence on
the numerical results, which means, that the computational time of
an explicit analysis can be shorten by an increase of the velocity.



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 45 No.2 June 2014 ISSN 0046-5828

According to Bransby and Springman (1999) assumptions of
fully undrained soil behaviour, plane strain conditions and no gap-
ping produce worst case results for passive loading. In their opinion,
these conditions are often fulfilled in real site conditions.
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Figure 9 Boundary conditions for benchmark problem of passive
loaded pile

4.3.3 Results

Typical load-displacement curves with a normalised load (p/c, dp)
obtained from the Finite Element analyses are shown in Figure 10
for s,/dp = 25 (single pile) and several adhesion factors «. For the
case of a single pile, bearing capacity factors N, of 9.2, 10.5 and
11.9 were calculated for adhesion factors « of 0.0 (smooth), 0.5
(medium rough) and 1.0 (fully rough) respectively. These values
compare excellently with the exact solution by Randolph & Houlshy
(1984) (0.5%, 0.3 and 0.4% difference).
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Figure 10 Load displacement curves for a single pile with various
adhesion factors o

When the pile is displaced and passive load on pile increases,
soil deformation mechanisms change continuously. Figure 11 shows
the incremental soil displacement vectors at the plastic limit for a
fully rough pile. The slip plane shows exactly the deforming zone
according to Randolph & Houlshy (1984).

direction
of
movement

Figure 11 Contours of incremental displacements for fully rough
pile with & = 1.0 (UL-FEM)

In Figure 12 the maximum and minimum principle total stresses
for a single pile are shown. The numerical model is able to capture
the rotation of principle stresses in front and behind of the pile
nicely.

In the ALE and CEL calculations the pile was moved up to
approximately 1.0 m into the soil. Instead of a prescribed
displacement, a low velocity of 0.5 m/s was applied to the rigid pile
so that this problem seems to fulfil the requirements of quasi-static
analysis using a rate-independent constitutive model. An explicit
algorithm was used to solve this problem. The soil was also allowed
to separate from the pile (gap). Figure 14 shows results of the
numerical calculations. Both methods led to fundamentally
comparable results concerning stresses and developing of a gap
behind the pile, although both methods are based on fundamental
different numerical approach.

In addition, analyses have been performed with an MPM code
that has been developed to solve large deformation problems.
Figure 14c shows results of an MPM calculation with explicit time
integration. Rough contact was considered.

In case of a quasi-static calculation, there is no difference in
numerical results if the pile or the surrounding soil is moving.
However, where dynamic effects play a major role, numerical
results may diverge for both cases and special consideration has to
be paid to absorbing boundaries or damping. In the MPM calcula-
tion a force was applied to the piles.
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Figure 2 Maximum and minimum principle total stresses for a single pile
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a)
S, Mises
(Avg: 75%)
+1 45e+04
+1.30e+04
+5.78e+03
+4 34e+03
+2.89e+03
+1.45e+03
+0.00e-+00
direction of pile movement>—p
slip plane
b)
c)

Figure 14 Numerical results of a pile moving in horizontal plane; 2D-slice of soil with gap:
a) ALE, b) CEL (shown: stresses) and ¢) MPM calculations (shown: total displacements u)
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5. CONCLUSION AND OUTLOOK

An important application in the geotechnical field has been tackled,
i.e. the flow of soil around a pile. The benchmark test comprises the
state of stresses and displacements in soil as well as in piles and
provides a comprehensive understanding of complex soil-pile
interaction in soft soils.

The widely-used Updated Lagrangian Finite Element Method
(UL-FEM) shows its limitations when modelling flow around a pile.
For the adequate numerical modelling of large displacements (e.g.
dowels in moving ground) expertise and advanced modelling
techniques are required. The Arbitrary Lagrangian-Eulerian (ALE)
method, the Coupled Eulerian-Lagrangian (CEL) method and the
Material Point Method can overcome mesh distortion and contact
problems. All methods have the potential to improve the
understanding of the complex interactions but also to optimize piled
foundations by numerical tools. Especially the following aspects
have to be considered whenever numerical analyses with the
Arbitrary Lagrangian-Eulerian (ALE) method and the Coupled
Eulerian-Lagrangian (CEL) method are used:
= ALE and CEL methods are successfully applied to model large

deformations (e.g. flow of soil around a pile).
=  When dealing with geomechanical problems, the ALE method
is probably more flexible and advantageous than the CEL
method since:
-only the 3D 8-node element is available for Eulerian Elements
-mass scaling is not supported for Eulerian elements
-accuracy of an Eulerian model is slightly less than that of a
Lagrangian model with the same mesh density
-advanced contact formulations are available for ALE method.
=  Both methods are able to model a gap behind the pile nicely.
Like the ALE and CEL method, the Material Point Method (MPM)
is able to capture the physical problem of the lateral flow
mechanism of soil around a pile. Due to the undrained soil
conditions, the following aspects have to be considered in the future:
= Application of a 2-phase-formulation which allows to model
consolidation effects for e.g. dowels in slopes.
= Investigation of pile soil interaction using adhesive contact
properties.
It is also important to mention that the characteristic behaviour of
soft soil under large deformations should take into account effects
like strain softening, strain rate effects or density change. However,
for geotechnical applications with large deformations more
advanced soil models are needed.
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