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ABSTRACT: The uplift capacity of piles is considered as a crucial aspect in practice for a geotechnical engineer. Nowadays, artificial machine 

learning techniques have emerged as a powerful tool in engineering for prediction and estimation with reasonable accuracy. This paper 

investigates the uplift capacity of two types of single piles: regular and enlarged piles installed in sand using an artificial neural network (ANN). 

Different activation functions were used, and the ANN results were compared with those of other algorithms. The results showed that one 

unified machine learning model has proven its efficiency in giving reasonable and accurate estimates of the uplift capacity of regular and 

enlarged piles. The ANN algorithm had the best results compared with other algorithms (Random forests, XGBoost, and Adaboost) with a 

coefficient of determination R2 equal to 0.970151 and 0.96924 for training and testing data, respectively, while other algorithms showed a sign 

of over-fitting. Finally, the ANN model was compared to well-known theoretical models and the ANN had better results. 
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1. INTRODUCTION 

Pile foundations transmit massive loads coming from high-rise 

structures such as transmission towers, tall chimneys, underground 

tanks, and even offshore structures to a desirable deeper, stronger 

stratum. Therefore, piles that support these kinds of structures are 

susceptible to different types of loading: axial, lateral, overturning 

moments, and uplift loads. The combination of these types of loading 

can occur concurrently on the pile (Mosquera et al., 2015; Milad et 

al., 2015). Piles need to transmit the generated uplift load to deep soil 

layers by means of soil-pile interaction along the pile shaft (i.e., skin 

friction), which is associated with the lateral effective stress 

experienced during failure. The typical failure modes of regular piles 

(i.e., piles with constant cross-sectional area along their depth) under 

uplift forces are inverted-truncated cone-shaped shear failure, the 

shear failure formed along pile-soil interface periphery, and 

compound shear failure. Whereas the shear failure generated along 

the pile-soil boundary is found to be the most common failure mode 

of regular piles embedded in sand and subjected to uplift loading (He 

et al., 2015).   

Enlarged piles, also known as under-reamed piles or belled piles, 

have proven their effectiveness in increasing the uplift capacity as 

compared with regular piles. Enlarged piles are characterized by a 

bell-shaped or inverted-cone base that offers an enlarged area to 

enhance the uplift resistance (Harris & Madabhushi, 2015). These 

piles are usually manufactured from concrete. The enlarged base can 

contribute to the uplift capacity of the pile due to the mobilization of 

a passive wedge of soil as a result of the weight of soil located above 

the base thus forcing the failure to occur and enhancing the end-

bearing capacity (Harris & Madabhushi, 2015). 

Various research work is available in the literature regarding the 

uplift capacity of regular piles embedded in sand soil (Al-Mhidib & 

Edil, 1999; Dash & Pise, 2003; Bose & Krishnan, 2009; Basha & 

Azzam, 2018; Emirler et al., 2021) and enlarged piles (Vanitha et al., 

2007; Verma & Joshi, 2010; Honda et al., 2011; Niroumand et al., 

2012; Nazir et al., 2015; Kotal & Khan, 2015). In addition, the uplift 

capacity of piles was investigated numerically using finite element 

and finite difference methods (Honda et al., 2011; Faizi et al., 2015; 

Emirler et al., 2019; Liu et al., 2020; Kumar et al., 2022). 

Dash and Pise (2003) investigated the influence of compressive 

load on the uplift capacity of regular single steel pipe piles embedded 

in the sand. Bose and Krishnan (2009) reported that the uplift capacity 

of regular piles was found to be significantly increased as pile 

diameter (D) and slenderness ratio (L/D) increased. Basha and Azzam 

(2018) conducted a series of laboratory model tests to evaluate the 

importance of water table rising on the uplift capacity of regular piles 

considering various slenderness ratios, sand densities, and pile 

installation methods. It was concluded that the uplift capacity of the 

pile declined when the submerged length ratio of the pile (i.e., the 

ratio of the height of water to the length of the pile) increased. Liu et 

al. (2020) studied the uplift capacity and failure mechanism of regular 

piles with the effect of different factors using numerical analysis 

through FLAC 3D software. It was concluded that the slenderness 

ratio (L/D), the friction angle at the interface between soil and pile, 

the pile cross-section, and the pile location in the group have a great 

influence in enhancing the uplift capacity of regular piles. 

Extensive research has been conducted to investigate the failure 

mechanism of enlarged piles under uplift loading. The ultimate uplift 

capacity of the enlarged pile is based on the mobilized shearing 

resistance along the failure wedge as well as the weight of soil mass 

above the enlarged pile base (i.e., the soil surrounded by the failure 

wedge). Different methods were proposed to analyse the uplift 

capacity of enlarged piles in homogeneous strata, for instance: 

Meyerhof & Adams (1968), Chattopadhyay & Pise (1986), and Rao 

& Kumar (1994). Patra & Pise (2003) proposed a method to analyse 

the uplift capacity of enlarged piles installed in multi-layer strata. 

Vanitha et al. (2007) performed an experimental study on a single and 

group of enlarged piles of 2 × 2 configuration in dry sand subjected 

to uplift loading. In addition, an analytical model was proposed using 

the limit equilibrium method to estimate the uplift capacity of the 

enlarged pile group. Verma and Joshi (2010) studied the effect of pile 

material on the uplift capacity of single and group of regular piles as 

well as enlarged piles with enlarged base to diameter ratios of 2 and 

3 made of different pile materials (i.e., concrete, PVC, and 

Galvanised Iron). The results showed that the galvanized iron pipe 

pile delivered the highest uplift capacity compared to  other piles 

materials in the case of a regular single pile. Furthermore, enlarged 

piles enhanced the uplift capacity to a further extent as compared to 

regular piles, and increasing the enlarged base-to-diameter ratio 
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increased the uplift capacity of the piles significantly. Honda et al. 

(2011) performed a 2D finite element analysis to estimate the uplift 

capacity of single-belled and multi-belled piles installed in dense 

sand. Nazir et al. (2015) investigated various factors that may affect 

the performance of enlarged piles under uplift loading using large-

scale model tests. The uplift capacity of the enlarged pile was 

significantly influenced by the pile shaft diameter (D), the diameter 

of the enlarged base (Db), the embedment ratio (L/Db), the base 

inclination angle (α), and the soil relative density. Kumar et al. (2022) 

conducted a 2D finite element analysis to evaluate the uplift capacity 

of regular and enlarged piles installed in sand.  

In recent years, the Artificial Neural Network (ANN) technique 

has emerged as a promising technology for solving various complex 

geotechnical engineering problems with high accuracy, offering an 

alternative to numerical modelling (Das & Basudhar, 2008). The 

complexity of modelling the interaction between piles and 

surrounding soils has limited the effectiveness of traditional methods 

(i.e., experimental, numerical, and analytical methods) in predicting 

pile behavior (Fatehnia & Amirinia, 2018). Numerous attempts have 

been made to predict the uplift capacity of different types of piles 

using various machine learning techniques (Jebur et al., 2018; 

Moayedi & Rezaei, 2019; Tien Bui et al., 2019; Dadhich et al., 2022). 

Studies in the literature have investigated the performance of regular 

and enlarged piles separately under the influence of uplift loading. 

This paper aims to simulate both types of piles in a single general 

model using artificial neural network machine learning techniques. A 

large dataset was collected from the literature for both regular and 

enlarged piles to accurately predict their uplift capacity in the sand. 

  

2. MACHINE LEARNING TECHNIQUES IN PREDICTING 

BEHAVIOUR 

Machine learning is the capacity of a machine to mimic intelligent 

human behavior. In other words, the capability of the computer to 

learn without human intervention. Machine learning can be divided 

into three main categories: supervised, unsupervised, and reinforced 

learning. Each one of the learning types follows different techniques 

and has its own algorithms and each type can be applied to certain 

problems. However, the most popular type for engineering 

applications is supervised machine learning, where it can be used in 

regression and classification problems. Supervised machine learning 

is data dependent, providing labels of each feature or independent and 

labelling the target or the dependent. Many algorithms could be used 

in supervised learning for regression or classification, such as linear 

regression, logistic regression, neural networks, etc. In this study, a 

supervised learning neural network algorithm will be used to predict 

the uplift ultimate capacity of regular and enlarged piles with data 

collected from the literature. Many researchers have studied pile 

behavior using different machine-learning techniques.  

Pham et al. (2020) studied the prediction of axial bearing capacity 

for piles using artificial neural networks (ANN) and random forest 

machine learning algorithms, using 2314 datasets of driven piles, 

taking into consideration many features, including the SPT. In their 

study, the Random Forest performed better than the artificial neural 

network for the prediction of the pile-bearing capacity. However, 

both algorithms had better results compared to classical known 

models of pile bearing capacity predictions. Jebur et al. (2022) used 

the Levenberg–Marquardt training neural network algorithm to 

predict the uplift settlement of concrete piles using 274 

experimentally tested piles. The proposed model showed good results 

with great prediction accuracy. The R2 for the training and the testing 

data were 0.99088 and 0.98436 respectively.   

Prayogo and Susanto (2018) used a self-tuning least squares 

support vector machine (STLSSVM), a novel hybrid prediction 

technique presented in this study, to precisely predict the friction 

capacity of driven piles in cohesive soil. This thorough assessment 

proved that this approach could accurately simulate the friction 

capacity of driven piles in clay; however, very few data points were 

used in their study. Muduli et al. (2013) used extreme machine 

learning, a type of supervised learning, to predict the lateral capacity 

of piles with good accuracy. 

Benbouras et al. (2021) used deep neural networks for the 

prediction of the bearing capacity of driven piles and compared the 

results with other algorithms such as lasso regression, Random 

Forests and SVR etc. Although most algorithms had great accuracy 

in predicting the bearing capacity, Deep Neural Networks had the best 

accuracy of all. Amjad et al. (2022) used the extreme boosting 

algorithm XGBoost for the prediction of piles’ bearing capacity. Two 

hundred driven piles, in total, under static load were used for the 

learning process of the XGBoost. The results were compared with 

other algorithms as well, such as Random Forests, Adaboost, and 

SVR. All the models had great accuracy, but XGBoost scored the 

best. Pham et al. (2020) developed a deep neural network architecture 

to estimate the bearing capacity of piles. The deep neural network was 

able to predict the bearing capacity of piles with great accuracy for all 

training, testing, and validation data. 

In summary, most of the studied algorithms were able to capture 

the behavior of piles. From the literature, Artificial Neural Networks, 

extreme learning, and Random Forests have been able to predict 

different pile characteristics with great accuracy. In this study, ANN 

will be used to predict the uplift capacity of piles embedded in sand 

and the model will be compared with different algorithms. 

 

3. DATA 

The data used in this study were collected from several previous 

studies (Rao & Venkatesh, (1985); Shooshpasha et al., (2009); Al-

Mhidib & Edil, (1999); Alawneh et al., (1999); Shanker et al., (2007); 

Krabbenhoft et al., (2008); Shelke & Patra, (2009); Gaaver, (2013); 

Nasr, (2013); Faizi et al., (2015); Nazir et al., (2015); Ali et al., 

(2017); Narayanan et al., (2017); Basha & Azzam, (2018); Bajaj et 

al., (2019); Emirler et al., (2019) and (2021); Agarwal et al., (2021); 

Abdul-Hussein & Hamadi, (2021); Hussein et al., (2021)). A total of 

764 datasets were collected for both regular and enlarged base piles 

under axial uplift load. The considered features in this study are 

diameter of the shaft (Ds), length of the shaft (L), the embedded 

length (Lembed), base diameter (Db), base height (Lb) base angle(α), the 

ratios of the length to diameter for both the shaft and the base (L/D) 

and (Lb/Db) as the pile properties. For the soil properties, only the 

friction angle (ϕ) and the relative densities (Dr) were taken into 

consideration. The target is only the maximum uplift axial load of the 

pile, denoted as Qu, measured in (kN). Besides the numerical data 

collected from the papers, several categorical data have been 

collected such as the pile section, pile material, pile type and the 

method of installation. Tables 1 and 2 show some statistics of the 

collected data. 

 

Table 1 Data statistics 

Name Mean 
Medi

an 

Dispers

ion 

Mi

n. 
Max. 

Missin

g 

Lembed 

(mm) 

427.8

28 

282.6

79 
2.19921 0 

1499

4.3 
0 (0%) 

Db  

(mm) 
63.78 75 0.93 0 150 0 (0%) 

Lb  

(mm) 

22.67

07 

14.43

38 
1.19643 0 

103.9

23 
0 (0%) 

L 

 (mm) 

853.8

4 
500 1.45969 0 

1499

4.3 
0 (0%) 

Ds 

(mm) 

52.03

62 
40 1.96908 10 1200 0 (0%) 

hw/L 
0.059

3 
0 3.4114 0 1 

88 

(12%) 

ϕ 
38.39

29 
38 0.1184 

28.

9 
48 6 (1%) 

Dr% 59.21 60 0.426 9 95 
71 

(9%) 

Qu  

(kN) 

8.074

02 
0.2 8.43983 0 

1537.

6 
0 (0%) 
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Table 2  Categorical data statistics 

Name Most frequent Missing 

Pile material Steel 24(3%) 

Method of installation Non-displacement 42(6%) 

Pile type Solid 33 (4%) 

 

4. METHODOLOGY 

Every supervised machine learning algorithm follows the general 

procedure of gathering and analysing input data, training the 

algorithm, testing the algorithm, and producing output/outputs. 

Before the data gathering process, a consideration of what factors 

may influence the prediction target should be thoroughly 

investigated. Since the studies in literature have tested different types, 

ranges and considered different factors, a unification process should 

be done before applying the learning algorithms. Moreover, many 

missing data could result hence the different factors studied for each 

work. In this study, the main challenge was the unification of data for 

both regular and belled or enlarged piles since the regular pile does 

not have the enlarged part and its properties represented in base 

diameter (Db), base height (Lb) and base angle (α) as shown in Figure 

1. The authors have decided to apply zeros for the enlarged part 

parameters when collecting data for the regular pile. Pre-processing 

of the collected data was carried out to account for missing data, that 

include data imputations and filling missing data based on some 

techniques for until best results were reached. In this study, missing 

data for a particular feature was replaced with the average of the 

observed data for that feature. Moreover, feature selection was carried 

out until best contributing features were selected. 

 
Figure 1 Regular and enlarged pile 

 

The authors of this study have used python 3 and its open-source 

libraries to clean and impute the data as well as applying the artificial 

neural network for the learning process and the testing metrics. Many 

libraries such as Pandas, NumPy, Matplotlib and learn have been 

used. Multi-layer Perceptron (MLP) back propagation neural network 

from sci-kit that is used for supervised learning, both regression and 

classification, have been implemented for the learning and prediction 

of the ultimate uplift capacity of the pile. This library does not support 

GPU for faster learning; however, the data used does not require such 

implementation. Usually, an artificial neural network consists of 

neurons distributed in several layers. Each layer, have a several 

number of neurons that can be defined by the user. The layers can be 

divided into three types of layers: input layer, output layer and layers 

between them that are called hidden layer. Figure 2 shows a typical 

artificial neural network with only one hidden layer. Each layer is 

connected to the layer next to it by weights and each neuron could 

contain what is called an activation function for modelling non-linear 

problems. The sci-kit learn provides several activation functions; 

ReLu, Sigmoid and Tanh function as well as Identity which is the 

same as having no activation function in the neurons. The number of 

hidden layers, number of neurons in each layer and the activation 

functions should be changed until best accuracy has been reached. 

Besides Artificial Neural Networks, Ensemble methods in 

machine learning are being used in this study for the purpose of 

comparison. Ensemble methods combine different models to enhance 

the system's overall predictive performance. The premise behind 

ensemble approaches is that by combining the results of several 

models, the errors and biases of each model can be eliminated or 

decreased, resulting in predictions that are more reliable and accurate. 

 

 
 

Figure 2 An artificial neural network 

 

There are many different kinds of ensemble methods, but a few of 

the most popular ones are as follows: Bagging (Bootstrap 

Aggregating) is a technique that entails training numerous different 

models on arbitrary selections of the training data before averaging 

the results. Bagging is frequently utilized with decision tree 

algorithms. Boosting: This approach includes successively training 

models on the same data, with each model aiming to fix the flaws of 

the one before it. Combining all of the models' predictions yields the 

ultimate prediction. This research investigates the use of one bagging 

technique represented in the Random Forest Algorithm and two 

boosting algorithms: the XGBoost and the Adaboost algorithms. 

 

5. RESULTS 

This section looks at the predictions of the uplift ultimate capacity of 

piles using artificial neural network machine learning model. The data 

utilized in each model was divided into training and testing data at 

ratios of 80% and 20% of the total data. Following the completion of 

the learning process, various assessment metrics were calculated for 

both training and testing data to measure the model's prediction 

accuracy. The assessment metrics are Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 

the coefficient of determination (R²), which can be calculated as 

follows: 

 𝑀𝑆𝐸 =
1

𝑁
∑ (yi − y°i)

2N
i=1                                                    (1)                                              

  𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (yi − y°i)

2N
i=1                                             (2)                          

  MAE =
1

N
∑ |yi − y°i|

N
i=1                                                      (3) 

   𝑅2 = 1 −  
∑ (𝑦𝑖−𝑦°𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦⋀)2𝑁
𝑖=1

                                                       (4)                                                       

where: N= Number of data points, 

  𝑦𝑖  = Actual observed value, 

  𝑦𝑖
° = Predicted value, 

  y⋀ = Mean of the observed value (𝑦𝑖). 

For each selected activation function and number of neurons, 

these assessment metrics were calculated until best accuracy was 

reached. Moreover, the results of the ANN were compared with 

different algorithms, selected based on the literature, to determine 

which algorithm can best predict uplift capacity. Every algorithm has 

its own properties that were changed until the highest R2 and lowest 
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MSE, RMSE and MAE were reached. As a result, three hidden layers 

were chosen; the first hidden layer contains 64 neurons, the second 

layer contains 128 neurons, and the third layer contains 64 neurons. 

The size of batch was set to 32 and the number of epochs for this 

analysis was set to 100. In Table 3, the results of four algorithms can 

be seen. 

 

MSE calculates the average of the squared differences between 

the predicted and actual values of the target variable. A lower MSE 

score suggests that the model is performing better. In Table 3, it can 

be seen that for the training dataset, the Adaptive boosting algorithm 

(AdaBoost) outperforms the other algorithm in terms of the MSE, 

followed by XGBoost, Random Forests, and Neural Networks. The 

Root Mean Squared Error (RMSE) represents the average difference 

between the predicted and actual values. Considering that RMSE is 

the square root of the MSE, it has the same trend as that of MSE for 

the training data for all the algorithms. A lower RMSE value denotes 

improved model performance. MAE measures the average absolute 

difference between predicted and actual values. Model performance 

improves as MAE decreases. In Table 3, the AdaBoost has the lowest 

MAE among all the used algorithms. The same can be seen in the 

results of R2, where AdaBoost scored the highest value of R2, 

followed by XGBoost, then Random forests, and ANN.  R2 is a 

measure of how much of the target variable's variance can be 

attributed to the independent variables. An R2 value that is nearer 1 

suggests that the model fits the data more accurately. 

For the testing data set, however, a different scenario was 

observed whereby the performance of the algorithms was different 

concerning the parameters being measured. The MSE and RMSE 

were the lowest for the ANN model, the second was the Random 

Forest, and the third was AdaBoost, while the largest was on the 

XGBoost. This proves that ANN gave the higher performance of the 

testing set in terms of MSE and RMSE, where the lowest values are 

preferred. While AdaBoost seemed to have the lowest MAE, 

suggesting that it made fewer large errors, it was still outperformed 

by ANN based on MSE and RMSE. For the R2, the ANN algorithm 

had the highest score and the same order algorithm can be observed. 

Looking at the results of both training and testing data, it can be seen 

that there are differences between the evaluation metrics of training 

and testing sets. For example, the MSE results of the XGBoost 

algorithm for training and testing datasets are 1.4 and 35.16, 

respectively, and the R2 are 0.996 and 0.91, respectively. This 

suggests that overfitting phenomena are observed for some models. 

When a model learns the noise in the training set while doing poorly 

on the test set, it is said to be overfit. A comparison between the 

models' performance on the training and test sets of data was made to 

see if there is overfitting. The model may be overfitting if its 

performance on training data is noticeably better than on test data.  

The XGBoost method has much lower MSE and RMSE scores on 

the training data compared to the test data, which raises the possibility 

that it may be overfitting to the training data based on the evaluation 

metrics in the table above. As seen by a lower MSE and RMSE score 

on the training data compared to the test data, the Adaboost method 

also exhibits some overfitting characteristics. The Neural Networks 

method, in comparison, exhibits comparable performance on the 

training and test sets of data with almost the same values, with a little 

lower MSE and RMSE score on the training sets but still with a 

respectable level of performance on the test sets. Moreover, the 

Random Forest algorithm performs similarly on both training and test 

data but with a larger difference between training and testing results. 

Therefore, it can be safely said that the ANN does not have overfitting 

with reasonably good MSE, RMSE, MAE, and R2. Therefore, ANN 

was chosen as the main model for this study.  

An ANN model training and validation for 100 epochs are 

presented on the learning curve in Figure 3 in terms of MSE. It is 

evident that the training and validation error are quite similar, and the 

model has stop overfitting entirely. 

 

 

Figure 3 Learning curve presenting training and validation 

MSE for ANN 

 

Different activation functions have been used for the ANN. The 

results for each algorithm are shown in Table 4 below. The choice of 

activation function has a direct impact on the accuracy of the 

predicted uplift-bearing capacity of piles in sand employing an ANN. 

The best performance of the tested models is characterized by ReLU 

since it provides the least errors and the highest R² in all experiments, 

proving high predictive potential and model generalization. It 

provides a sufficient measure of the complicated relationship that 

exists in the data. Sigmoid and Tanh give reasonable performances 

but have the maximum absolute error, making them less effective to 

ReLU and displaying signs of overfitting. Identity has the highest 

error and the worst fit, which can indicate that it may be the very 

model that is least suitable for the formulation of the complexities of 

the non-linear relationships, which are necessary for making accurate 

predictions. Thus, ReLU is the most appropriate activation function 

for estimating uplift-bearing capacity in sand owing to the highest 

accuracy and generalization. 

Moreover, an analysis of the importance of the permutation 

feature was carried out. The model score declines when one feature 

value is randomly shuffled, whichis known as the importance of the 

permutation. As a result, the model score drops, demonstrating how 

dependent it is on the feature. This method breaks the correlation 

between the feature and the target. With different permutations of the 

feature, this technique can be used repeatedly and is independent of 

models. Figure 4 below shows the effects of feature permutation on 

the MAE, MSE, RMSE, and R2, respectively. In all the results, the 

most important feature that affects the model accuracy is the pile 

material, and the second is the pile length, while other features had 

lower effects on the model accuracy metrics.

Table 3 MSE, RMSE, MAE, and R2 scores for the different algorithms used in this study 
 MSE RMSE MAE R2 

Model Train Test Train Test Train Test Train Test 

Random Forest 4.22689 24.8621 2.05594 4.98619 0.38394 0.82717 0.98763 0.93415 

Neural Network 10.20053 11.61393 3.19383 3.40792 0.65567 0.82718 0.97015 0.96924 

XGBoost 1.40285 35.16158 1.18442 5.92972 0.19347 0.84675 0.99590 0.90687 

AdaBoost 1.26106 33.85551 1.12297 5.81855 0.09016 0.76256 0.99631 0.91033 
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Figure 4 Feature importance of the ANN model 

 

6. MODEL VERIFICATION 

A comparative study was made between different analytical theories 

proposed in literature to predict the uplift capacity of piles inserted in 

sand and the results obtained from artificial neural network (ANN) 

with respect to the measured uplift capacity (Qu). Three theoretical 

models were used in this study for comparison: Meyerhof (1973), Das 

(1983), and Shanker et al. (2007), the theoretical equations of these 

models were illustrated in Table 5. Experimental data of (22) large-

scale pile tests from Al-Mhaidib and Edil (1995) were chosen to 

perform this comparison. Circular piles of 0.089 m in diameter and 

with different (L/D) ranging from 17 to 19 were installed in loose and 

dense sand soil. Loose sand with (Dr=9%) has an angle of internal 

friction of 30.5o and a unit weight of 15.69 kN/m3, while dense sand 

with (Dr=85%) has an angle of internal friction of 39o and a unit 

weight of 17.45 kN/m3. The properties of pile and sand for proposed 

data points like: pile diameter (D) and length (L), relative density (Dr), 

unit weight of sand (γ), angle of internal friction (ϕ) and soil-pile 

interface friction angle (δ) were the main parameters used for 

prediction of (Qu) from theoretical models. Since the angle of soil-

pile interface (δ) should be estimated carefully; therefore, for a 

conservative prediction, it was assumed to be (δ = 0.4 ϕ) for very 

loose sand (i.e., Dr = 9%) and (δ = ϕ) for dense sand (i.e., Dr = 85%) 

(Das et al., 1977). Figure 5 depicts the measured versus predicted 

uplift capacity of pile in sand for the selected data points. Table 6 

summarizes the results of predicted (Qu) from theoretical models and 

ANN as compared to the measured (Qu) in (kN). The predicted uplift 

capacity from ANN compared very well with respect to measured 

data among the predicted (Qu) derived from the theoretical methods 

adopted in this study. 

 

Table 5 A summary of theoretical equations for the model used 

to this study 

Models Theoretical Equations 

Meyerhof 

(1973) 
𝑄𝑢 =  

𝜋

2
𝐾𝑢  𝐷 𝛾 𝐿2 tan 𝛿        Ku= uplift coefficient  

Das 

(1983) 
𝑄𝑢 =

𝜋

2
𝐾𝑢𝐷𝛾𝐿2 tan 𝛿    for 

𝐿

𝐷
≤  (

𝐿

𝐷
)

𝑐𝑟
 

𝑄𝑢 =
𝜋

2
𝐾𝑢𝐷𝛾𝐿𝑐𝑟

2 tan 𝛿 + 𝜋 𝐾𝑢𝐷𝛾𝐿𝑐𝑟(𝐿 −

𝐿𝑐𝑟) tan 𝛿   for 
𝐿

𝐷
>  (

𝐿

𝐷
)

𝑐𝑟
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𝑐𝑟
= 0.156𝐷𝑟 + 3.58  
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𝐿
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𝑐𝑟
= 14.5  

Shanker 

et al. 

(2007) 

𝑄𝑢 = 𝜋𝛾 (
𝐷𝐿2

2
+

𝐿3

3 tan 𝜃
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4
𝛾𝐿𝐷2       
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tan 𝛿
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−

𝜙
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Figure 5 Predicted versus measured uplift capacity of pile in 

sand
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Table 4 MSE, RMSE, MAE, and R2 scores for the different algorithms used in this study 
 MSE RMSE MAE R2 

Model Train Test Train Test Train Test Train Test 

Random Forest 4.22689 24.8621 2.05594 4.98619 0.38394 0.82717 0.98763 0.93415 

Neural Network 10.20053 11.61393 3.19383 3.40792 0.65567 0.82718 0.97015 0.96924 

XGBoost 1.40285 35.16158 1.18442 5.92972 0.19347 0.84675 0.99590 0.90687 

AdaBoost 1.26106 33.85551 1.12297 5.81855 0.09016 0.76256 0.99631 0.91033 
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Table 6 Predicted versus measured uplift capacity of 0.089 m piles in size embedded in sand for data collected from Al-Mhaidib 

and Edil (1995) 

Point 
L 

(m) 

Dr 

(%) 
γ (kN/m3) ϕ (Deg.) δ (Deg.) 

Uplift capacity of pile (Qu) in (kN) 

Measured 
Meyerhof 

(1973) 
Das (1983) 

Shanker et 

al. (2007) 
ANN 

1 1.54 9 15.69 30.5 12.2 2.94 1.41 0.69 4.05 2.03 

2 1.65 9 15.69 30.5 12.2 3.06 1.61 0.75 4.87 2.36 

3 1.65 9 15.69 30.5 12.2 3.01 1.61 0.75 4.87 2.36 

4 1.67 9 15.69 30.5 12.2 2.95 1.65 0.76 5.03 2.42 

5 1.54 9 15.69 30.5 12.2 3.11 1.41 0.69 4.05 2.03 

6 1.65 9 15.69 30.5 12.2 3.21 1.61 0.75 4.87 2.36 

7 1.54 9 15.69 30.5 12.2 3.11 1.41 0.69 4.05 2.03 

8 1.63 9 15.69 30.5 12.2 2.92 1.58 0.74 4.72 2.30 

9 1.51 85 17.45 39 39 10.88 10.98 10.75 9.74 11.70 

10 1.51 85 17.45 39 39 10.98 10.98 10.75 9.74 11.70 

11 1.51 85 17.45 39 39 11.8 10.98 10.75 9.74 11.70 

12 1.48 85 17.45 39 39 12.85 10.55 10.37 9.23 11.50 

13 1.7 9 15.69 30.5 12.2 2.76 1.71 0.78 5.28 2.49 

14 1.65 9 15.69 30.5 12.2 2.47 1.61 0.75 4.87 2.33 

15 1.65 9 15.69 30.5 12.2 2.48 1.61 0.75 4.87 2.33 

16 1.7 9 15.69 30.5 12.2 2.1 1.71 0.78 5.28 2.49 

17 1.7 9 15.69 30.5 12.2 2.07 1.71 0.78 5.28 2.49 

18 1.65 9 15.69 30.5 12.2 2.08 1.61 0.75 4.87 2.33 

19 1.58 85 17.45 39 39 11.2 12.02 11.62 11.0 12.84 

20 1.52 85 17.45 39 39 11.7 11.13 10.87 9.91 12.41 

21 1.65 85 17.45 39 39 14.9 13.11 12.49 12.37 13.32 

22 1.52 85 17.45 39 39 13.48 11.13 10.87 9.91 12.41 

7. CONCLUSIONS 

This paper focuses on the application of an artificial neural network 

(ANN) to predict the uplift capacity of both regular and enlarged piles 

embedded in sand. Based on the research findings from this study, 

several conclusions can be drawn: 

 The prediction of the uplift behavior of two types of piles (i.e., 

regular and enlarged piles) embedded in sand soil using one unified 

machine learning model has proven its efficiency in giving reasonable 

and accurate estimates compared to the measured data.   

 Four different algorithms implemented in this study were able to 

give good predictions of the uplift capacity of piles in sand. 

 Artificial neural network (ANN) performed better over the 

different algorithms used in this study in predicting piles’ uplift 

capacity in the sand since it does not show overfitting on training and 

test data sets.  

 For the artificial neural network, the Relu activation function had 

the best results compared to other activation functions that were 

considered in this study.   

 The accuracy and reliability of the prediction of piles’ uplift 

capacity in sand using an artificial neural network could be enhanced 

significantly by increasing the quantity and quality of training data.  

 The ANN model was more accurate than other theoretical models 

in prediction the uplift capacity of piles.  
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