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ABSTRACT: The uplift capacity of piles is considered as a crucial aspect in practice for a geotechnical engineer. Nowadays, artificial machine
learning techniques have emerged as a powerful tool in engineering for prediction and estimation with reasonable accuracy. This paper
investigates the uplift capacity of two types of single piles: regular and enlarged piles installed in sand using an artificial neural network (ANN).
Different activation functions were used, and the ANN results were compared with those of other algorithms. The results showed that one
unified machine learning model has proven its efficiency in giving reasonable and accurate estimates of the uplift capacity of regular and
enlarged piles. The ANN algorithm had the best results compared with other algorithms (Random forests, XGBoost, and Adaboost) with a
coefficient of determination R? equal to 0.970151 and 0.96924 for training and testing data, respectively, while other algorithms showed a sign

of over-fitting. Finally, the ANN model was compared to well-known theoretical models and the ANN had better results.
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1. INTRODUCTION

Pile foundations transmit massive loads coming from high-rise
structures such as transmission towers, tall chimneys, underground
tanks, and even offshore structures to a desirable deeper, stronger
stratum. Therefore, piles that support these kinds of structures are
susceptible to different types of loading: axial, lateral, overturning
moments, and uplift loads. The combination of these types of loading
can occur concurrently on the pile (Mosquera et al., 2015; Milad et
al., 2015). Piles need to transmit the generated uplift load to deep soil
layers by means of soil-pile interaction along the pile shaft (i.e., skin
friction), which is associated with the lateral effective stress
experienced during failure. The typical failure modes of regular piles
(i.e., piles with constant cross-sectional area along their depth) under
uplift forces are inverted-truncated cone-shaped shear failure, the
shear failure formed along pile-soil interface periphery, and
compound shear failure. Whereas the shear failure generated along
the pile-soil boundary is found to be the most common failure mode
of regular piles embedded in sand and subjected to uplift loading (He
et al., 2015).

Enlarged piles, also known as under-reamed piles or belled piles,
have proven their effectiveness in increasing the uplift capacity as
compared with regular piles. Enlarged piles are characterized by a
bell-shaped or inverted-cone base that offers an enlarged area to
enhance the uplift resistance (Harris & Madabhushi, 2015). These
piles are usually manufactured from concrete. The enlarged base can
contribute to the uplift capacity of the pile due to the mobilization of
a passive wedge of soil as a result of the weight of soil located above
the base thus forcing the failure to occur and enhancing the end-
bearing capacity (Harris & Madabhushi, 2015).

Various research work is available in the literature regarding the
uplift capacity of regular piles embedded in sand soil (Al-Mhidib &
Edil, 1999; Dash & Pise, 2003; Bose & Krishnan, 2009; Basha &
Azzam, 2018; Emirler et al., 2021) and enlarged piles (Vanitha et al.,
2007; Verma & Joshi, 2010; Honda et al., 2011; Niroumand et al.,
2012; Nazir et al., 2015; Kotal & Khan, 2015). In addition, the uplift
capacity of piles was investigated numerically using finite element
and finite difference methods (Honda et al., 2011; Faizi et al., 2015;
Emirler et al., 2019; Liu et al., 2020; Kumar et al., 2022).
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Dash and Pise (2003) investigated the influence of compressive
load on the uplift capacity of regular single steel pipe piles embedded
in the sand. Bose and Krishnan (2009) reported that the uplift capacity
of regular piles was found to be significantly increased as pile
diameter (D) and slenderness ratio (L/D) increased. Basha and Azzam
(2018) conducted a series of laboratory model tests to evaluate the
importance of water table rising on the uplift capacity of regular piles
considering various slenderness ratios, sand densities, and pile
installation methods. It was concluded that the uplift capacity of the
pile declined when the submerged length ratio of the pile (i.e., the
ratio of the height of water to the length of the pile) increased. Liu et
al. (2020) studied the uplift capacity and failure mechanism of regular
piles with the effect of different factors using numerical analysis
through FLAC 3D software. It was concluded that the slenderness
ratio (L/D), the friction angle at the interface between soil and pile,
the pile cross-section, and the pile location in the group have a great
influence in enhancing the uplift capacity of regular piles.

Extensive research has been conducted to investigate the failure
mechanism of enlarged piles under uplift loading. The ultimate uplift
capacity of the enlarged pile is based on the mobilized shearing
resistance along the failure wedge as well as the weight of soil mass
above the enlarged pile base (i.e., the soil surrounded by the failure
wedge). Different methods were proposed to analyse the uplift
capacity of enlarged piles in homogeneous strata, for instance:
Meyerhof & Adams (1968), Chattopadhyay & Pise (1986), and Rao
& Kumar (1994). Patra & Pise (2003) proposed a method to analyse
the uplift capacity of enlarged piles installed in multi-layer strata.
Vanitha et al. (2007) performed an experimental study on a single and
group of enlarged piles of 2 x 2 configuration in dry sand subjected
to uplift loading. In addition, an analytical model was proposed using
the limit equilibrium method to estimate the uplift capacity of the
enlarged pile group. Verma and Joshi (2010) studied the effect of pile
material on the uplift capacity of single and group of regular piles as
well as enlarged piles with enlarged base to diameter ratios of 2 and
3 made of different pile materials (i.e., concrete, PVC, and
Galvanised Iron). The results showed that the galvanized iron pipe
pile delivered the highest uplift capacity compared to other piles
materials in the case of a regular single pile. Furthermore, enlarged
piles enhanced the uplift capacity to a further extent as compared to
regular piles, and increasing the enlarged base-to-diameter ratio
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increased the uplift capacity of the piles significantly. Honda et al.
(2011) performed a 2D finite element analysis to estimate the uplift
capacity of single-belled and multi-belled piles installed in dense
sand. Nazir et al. (2015) investigated various factors that may affect
the performance of enlarged piles under uplift loading using large-
scale model tests. The uplift capacity of the enlarged pile was
significantly influenced by the pile shaft diameter (D), the diameter
of the enlarged base (Dv), the embedment ratio (L/Dy), the base
inclination angle (o), and the soil relative density. Kumar et al. (2022)
conducted a 2D finite element analysis to evaluate the uplift capacity
of regular and enlarged piles installed in sand.

In recent years, the Artificial Neural Network (ANN) technique
has emerged as a promising technology for solving various complex
geotechnical engineering problems with high accuracy, offering an
alternative to numerical modelling (Das & Basudhar, 2008). The
complexity of modelling the interaction between piles and
surrounding soils has limited the effectiveness of traditional methods
(i.e., experimental, numerical, and analytical methods) in predicting
pile behavior (Fatehnia & Amirinia, 2018). Numerous attempts have
been made to predict the uplift capacity of different types of piles
using various machine learning techniques (Jebur et al., 2018;
Moayedi & Rezaei, 2019; Tien Bui et al., 2019; Dadhich et al., 2022).
Studies in the literature have investigated the performance of regular
and enlarged piles separately under the influence of uplift loading.
This paper aims to simulate both types of piles in a single general
model using artificial neural network machine learning techniques. A
large dataset was collected from the literature for both regular and
enlarged piles to accurately predict their uplift capacity in the sand.

2. MACHINE LEARNING TECHNIQUES IN PREDICTING
BEHAVIOUR

Machine learning is the capacity of a machine to mimic intelligent
human behavior. In other words, the capability of the computer to
learn without human intervention. Machine learning can be divided
into three main categories: supervised, unsupervised, and reinforced
learning. Each one of the learning types follows different techniques
and has its own algorithms and each type can be applied to certain
problems. However, the most popular type for engineering
applications is supervised machine learning, where it can be used in
regression and classification problems. Supervised machine learning
is data dependent, providing labels of each feature or independent and
labelling the target or the dependent. Many algorithms could be used
in supervised learning for regression or classification, such as linear
regression, logistic regression, neural networks, etc. In this study, a
supervised learning neural network algorithm will be used to predict
the uplift ultimate capacity of regular and enlarged piles with data
collected from the literature. Many researchers have studied pile
behavior using different machine-learning techniques.

Pham et al. (2020) studied the prediction of axial bearing capacity
for piles using artificial neural networks (ANN) and random forest
machine learning algorithms, using 2314 datasets of driven piles,
taking into consideration many features, including the SPT. In their
study, the Random Forest performed better than the artificial neural
network for the prediction of the pile-bearing capacity. However,
both algorithms had better results compared to classical known
models of pile bearing capacity predictions. Jebur et al. (2022) used
the Levenberg—Marquardt training neural network algorithm to
predict the uplift settlement of concrete piles using 274
experimentally tested piles. The proposed model showed good results
with great prediction accuracy. The R? for the training and the testing
data were 0.99088 and 0.98436 respectively.

Prayogo and Susanto (2018) used a self-tuning least squares
support vector machine (STLSSVM), a novel hybrid prediction
technique presented in this study, to precisely predict the friction
capacity of driven piles in cohesive soil. This thorough assessment
proved that this approach could accurately simulate the friction
capacity of driven piles in clay; however, very few data points were
used in their study. Muduli et al. (2013) used extreme machine
learning, a type of supervised learning, to predict the lateral capacity
of piles with good accuracy.
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Benbouras et al. (2021) used deep neural networks for the
prediction of the bearing capacity of driven piles and compared the
results with other algorithms such as lasso regression, Random
Forests and SVR etc. Although most algorithms had great accuracy
in predicting the bearing capacity, Deep Neural Networks had the best
accuracy of all. Amjad et al. (2022) used the extreme boosting
algorithm XGBoost for the prediction of piles’ bearing capacity. Two
hundred driven piles, in total, under static load were used for the
learning process of the XGBoost. The results were compared with
other algorithms as well, such as Random Forests, Adaboost, and
SVR. All the models had great accuracy, but XGBoost scored the
best. Pham et al. (2020) developed a deep neural network architecture
to estimate the bearing capacity of piles. The deep neural network was
able to predict the bearing capacity of piles with great accuracy for all
training, testing, and validation data.

In summary, most of the studied algorithms were able to capture
the behavior of piles. From the literature, Artificial Neural Networks,
extreme learning, and Random Forests have been able to predict
different pile characteristics with great accuracy. In this study, ANN
will be used to predict the uplift capacity of piles embedded in sand
and the model will be compared with different algorithms.

3. DATA

The data used in this study were collected from several previous
studies (Rao & Venkatesh, (1985); Shooshpasha et al., (2009); Al-
Mhidib & Edil, (1999); Alawneh et al., (1999); Shanker et al., (2007);
Krabbenhoft et al., (2008); Shelke & Patra, (2009); Gaaver, (2013);
Nasr, (2013); Faizi et al., (2015); Nazir et al., (2015); Ali et al.,
(2017); Narayanan et al., (2017); Basha & Azzam, (2018); Bajaj et
al., (2019); Emirler et al., (2019) and (2021); Agarwal et al., (2021);
Abdul-Hussein & Hamadi, (2021); Hussein et al., (2021)). A total of
764 datasets were collected for both regular and enlarged base piles
under axial uplift load. The considered features in this study are
diameter of the shaft (Ds), length of the shaft (L), the embedded
length (Lembed), base diameter (Dy), base height (Lb) base angle(a), the
ratios of the length to diameter for both the shaft and the base (L/D)
and (L+/Dv) as the pile properties. For the soil properties, only the
friction angle (¢) and the relative densities (Dr) were taken into
consideration. The target is only the maximum uplift axial load of the
pile, denoted as Qu, measured in (kN). Besides the numerical data
collected from the papers, several categorical data have been
collected such as the pile section, pile material, pile type and the
method of installation. Tables 1 and 2 show some statistics of the
collected data.

Table 1 Data statistics

Name Mean Medi !)lspers Mi Max. Missin
an mon n. g
Lembed  427.8 2826 1499
2.19921 0
(mm) 28 79 9 0 43 0%
Do 6378 75 0.93 0 150  0(0%)
(mm)
Lo 2267 1443 103.9
1.19643 0 0 (0
(mm) 07 38 23 (0%)
L 853.8 1499
500 145969 0 0 (0
(mm) 4 4.3 (0%)
D, 52.03
4 1. 10 12 0
) o 0 96908 10 00 0(0%)
0.059 88
hw/L 0 34114 0 1
W 3 (12%)
3839 28. \
) v 3301184 7 48 6(1%)
D% 5921 60 0426 9 95 I
r /0 . . (9%)
Qu 8.074 1537.
02 843983 0 0 (09
(kN) 02 6 (0%)
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Table 2 Categorical data statistics

Name Most frequent Missing
Pile material Steel 24(3%)
Method of installation Non-displacement 42(6%)
Pile type Solid 33 (4%)

4. METHODOLOGY

Every supervised machine learning algorithm follows the general
procedure of gathering and analysing input data, training the
algorithm, testing the algorithm, and producing output/outputs.
Before the data gathering process, a consideration of what factors
may influence the prediction target should be thoroughly
investigated. Since the studies in literature have tested different types,
ranges and considered different factors, a unification process should
be done before applying the learning algorithms. Moreover, many
missing data could result hence the different factors studied for each
work. In this study, the main challenge was the unification of data for
both regular and belled or enlarged piles since the regular pile does
not have the enlarged part and its properties represented in base
diameter (Dv), base height (Lb) and base angle (o) as shown in Figure
1. The authors have decided to apply zeros for the enlarged part
parameters when collecting data for the regular pile. Pre-processing
of the collected data was carried out to account for missing data, that
include data imputations and filling missing data based on some
techniques for until best results were reached. In this study, missing
data for a particular feature was replaced with the average of the
observed data for that feature. Moreover, feature selection was carried
out until best contributing features were selected.

~ DS = — Ds |~

Figure 1 Regular and enlarged pile

The authors of this study have used python 3 and its open-source
libraries to clean and impute the data as well as applying the artificial
neural network for the learning process and the testing metrics. Many
libraries such as Pandas, NumPy, Matplotlib and learn have been
used. Multi-layer Perceptron (MLP) back propagation neural network
from sci-kit that is used for supervised learning, both regression and
classification, have been implemented for the learning and prediction
of the ultimate uplift capacity of the pile. This library does not support
GPU for faster learning; however, the data used does not require such
implementation. Usually, an artificial neural network consists of
neurons distributed in several layers. Each layer, have a several
number of neurons that can be defined by the user. The layers can be
divided into three types of layers: input layer, output layer and layers
between them that are called hidden layer. Figure 2 shows a typical
artificial neural network with only one hidden layer. Each layer is
connected to the layer next to it by weights and each neuron could
contain what is called an activation function for modelling non-linear
problems. The sci-kit learn provides several activation functions;
ReLu, Sigmoid and Tanh function as well as Identity which is the
same as having no activation function in the neurons. The number of
hidden layers, number of neurons in each layer and the activation
functions should be changed until best accuracy has been reached.
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Besides Artificial Neural Networks, Ensemble methods in
machine learning are being used in this study for the purpose of
comparison. Ensemble methods combine different models to enhance
the system's overall predictive performance. The premise behind
ensemble approaches is that by combining the results of several
models, the errors and biases of each model can be eliminated or
decreased, resulting in predictions that are more reliable and accurate.

\40
40
()

Input Hidden

Output

Figure 2 An artificial neural network

There are many different kinds of ensemble methods, but a few of
the most popular ones are as follows: Bagging (Bootstrap
Aggregating) is a technique that entails training numerous different
models on arbitrary selections of the training data before averaging
the results. Bagging is frequently utilized with decision tree
algorithms. Boosting: This approach includes successively training
models on the same data, with each model aiming to fix the flaws of
the one before it. Combining all of the models' predictions yields the
ultimate prediction. This research investigates the use of one bagging
technique represented in the Random Forest Algorithm and two
boosting algorithms: the XGBoost and the Adaboost algorithms.

5. RESULTS

This section looks at the predictions of the uplift ultimate capacity of
piles using artificial neural network machine learning model. The data
utilized in each model was divided into training and testing data at
ratios of 80% and 20% of the total data. Following the completion of
the learning process, various assessment metrics were calculated for
both training and testing data to measure the model's prediction
accuracy. The assessment metrics are Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
the coefficient of determination (R?), which can be calculated as
follows:

MSE = L3I (v — ) M
RMSE = |~3N,(y; —y")? )
MAE = LN ly; — vl ®)
R=1- RS @
where: N= Number of data points,

¥; = Actual observed value,
y; = Predicted value,
y = Mean of the observed value (y;).

For each selected activation function and number of neurons,
these assessment metrics were calculated until best accuracy was
reached. Moreover, the results of the ANN were compared with
different algorithms, selected based on the literature, to determine
which algorithm can best predict uplift capacity. Every algorithm has
its own properties that were changed until the highest R? and lowest
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MSE, RMSE and MAE were reached. As a result, three hidden layers
were chosen; the first hidden layer contains 64 neurons, the second
layer contains 128 neurons, and the third layer contains 64 neurons.
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The size of batch was set to 32 and the number of epochs for this
analysis was set to 100. In Table 3, the results of four algorithms can
be seen.

Table 3 MSE, RMSE, MAE, and R? scores for the different algorithms used in this study

MSE RMSE MAE R?
Model Train Test Train Test Train Test Train Test
Random Forest 4.22689 24.8621 2.05594 498619 0.38394 0.82717 0.98763 0.93415
Neural Network 10.20053 11.61393 3.19383 3.40792 0.65567 0.82718 0.97015 0.96924
XGBoost 1.40285 35.16158 1.18442 5.92972 0.19347 0.84675 0.99590 0.90687
AdaBoost 1.26106 33.85551 1.12297 5.81855 0.09016 0.76256 0.99631 0.91033

MSE calculates the average of the squared differences between
the predicted and actual values of the target variable. A lower MSE
score suggests that the model is performing better. In Table 3, it can
be seen that for the training dataset, the Adaptive boosting algorithm
(AdaBoost) outperforms the other algorithm in terms of the MSE,
followed by XGBoost, Random Forests, and Neural Networks. The
Root Mean Squared Error (RMSE) represents the average difference
between the predicted and actual values. Considering that RMSE is
the square root of the MSE, it has the same trend as that of MSE for
the training data for all the algorithms. A lower RMSE value denotes
improved model performance. MAE measures the average absolute
difference between predicted and actual values. Model performance
improves as MAE decreases. In Table 3, the AdaBoost has the lowest
MAE among all the used algorithms. The same can be seen in the
results of R2, where AdaBoost scored the highest value of RZ,
followed by XGBoost, then Random forests, and ANN. R? is a
measure of how much of the target variable's variance can be
attributed to the independent variables. An R? value that is nearer 1
suggests that the model fits the data more accurately.

For the testing data set, however, a different scenario was
observed whereby the performance of the algorithms was different
concerning the parameters being measured. The MSE and RMSE
were the lowest for the ANN model, the second was the Random
Forest, and the third was AdaBoost, while the largest was on the
XGBoost. This proves that ANN gave the higher performance of the
testing set in terms of MSE and RMSE, where the lowest values are
preferred. While AdaBoost seemed to have the lowest MAE,
suggesting that it made fewer large errors, it was still outperformed
by ANN based on MSE and RMSE. For the R?, the ANN algorithm
had the highest score and the same order algorithm can be observed.
Looking at the results of both training and testing data, it can be seen
that there are differences between the evaluation metrics of training
and testing sets. For example, the MSE results of the XGBoost
algorithm for training and testing datasets are 1.4 and 35.16,
respectively, and the R? are 0.996 and 0.91, respectively. This
suggests that overfitting phenomena are observed for some models.
When a model learns the noise in the training set while doing poorly
on the test set, it is said to be overfit. A comparison between the
models' performance on the training and test sets of data was made to
see if there is overfitting. The model may be overfitting if its
performance on training data is noticeably better than on test data.

The XGBoost method has much lower MSE and RMSE scores on
the training data compared to the test data, which raises the possibility
that it may be overfitting to the training data based on the evaluation
metrics in the table above. As seen by a lower MSE and RMSE score
on the training data compared to the test data, the Adaboost method
also exhibits some overfitting characteristics. The Neural Networks
method, in comparison, exhibits comparable performance on the
training and test sets of data with almost the same values, with a little
lower MSE and RMSE score on the training sets but still with a
respectable level of performance on the test sets. Moreover, the
Random Forest algorithm performs similarly on both training and test
data but with a larger difference between training and testing results.
Therefore, it can be safely said that the ANN does not have overfitting
with reasonably good MSE, RMSE, MAE, and R2. Therefore, ANN
was chosen as the main model for this study.

An ANN model training and validation for 100 epochs are
presented on the learning curve in Figure 3 in terms of MSE. It is

evident that the training and validation error are quite similar, and the
model has stop overfitting entirely.

30
—e— Training MSE
Validation MSE

N
v

N
o

[
o

Mean Squared Error (MSE)
(=}
w

0 20 40 60 80 100
Epochs

Figure 3 Learning curve presenting training and validation
MSE for ANN

Different activation functions have been used for the ANN. The
results for each algorithm are shown in Table 4 below. The choice of
activation function has a direct impact on the accuracy of the
predicted uplift-bearing capacity of piles in sand employing an ANN.
The best performance of the tested models is characterized by ReLU
since it provides the least errors and the highest R? in all experiments,
proving high predictive potential and model generalization. It
provides a sufficient measure of the complicated relationship that
exists in the data. Sigmoid and Tanh give reasonable performances
but have the maximum absolute error, making them less effective to
ReLU and displaying signs of overfitting. Identity has the highest
error and the worst fit, which can indicate that it may be the very
model that is least suitable for the formulation of the complexities of
the non-linear relationships, which are necessary for making accurate
predictions. Thus, ReLU is the most appropriate activation function
for estimating uplift-bearing capacity in sand owing to the highest
accuracy and generalization.

Moreover, an analysis of the importance of the permutation
feature was carried out. The model score declines when one feature
value is randomly shuffled, whichis known as the importance of the
permutation. As a result, the model score drops, demonstrating how
dependent it is on the feature. This method breaks the correlation
between the feature and the target. With different permutations of the
feature, this technique can be used repeatedly and is independent of
models. Figure 4 below shows the effects of feature permutation on
the MAE, MSE, RMSE, and R?, respectively. In all the results, the
most important feature that affects the model accuracy is the pile
material, and the second is the pile length, while other features had
lower effects on the model accuracy metrics.



Geotechnical Engineering Journal of the SEAGS & AGSSEA 2025 Page 5 of 8
Table 4 MSE, RMSE, MAE, and R? scores for the different algorithms used in this study
MSE RMSE MAE R?

Model Train Test Train Test Train Test Train Test
Random Forest 4.22689 24.8621 2.05594 4.98619 0.38394 0.82717 0.98763 0.93415
Neural Network 10.20053 11.61393 3.19383 3.40792 0.65567 0.82718 0.97015 0.96924

XGBoost 1.40285 35.16158 1.18442 5.92972 0.19347 0.84675 0.99590 0.90687
AdaBoost 1.26106 33.85551 1.12297 5.81855 0.09016 0.76256 0.99631 0.91033
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Figure 4 Feature importance of the ANN model

6. MODEL VERIFICATION

A comparative study was made between different analytical theories
proposed in literature to predict the uplift capacity of piles inserted in
sand and the results obtained from artificial neural network (ANN)
with respect to the measured uplift capacity (Qu). Three theoretical
models were used in this study for comparison: Meyerhof (1973), Das
(1983), and Shanker et al. (2007), the theoretical equations of these
models were illustrated in Table 5. Experimental data of (22) large-
scale pile tests from Al-Mhaidib and Edil (1995) were chosen to
perform this comparison. Circular piles of 0.089 m in diameter and
with different (L/D) ranging from 17 to 19 were installed in loose and
dense sand soil. Loose sand with (Dr=9%) has an angle of internal

friction of 30.5° and a unit weight of 15.69 kN/m?, while dense sand
with (Dr=85%) has an angle of internal friction of 39° and a unit
weight of 17.45 kN/m?. The properties of pile and sand for proposed
data points like: pile diameter (D) and length (L), relative density (Dr),
unit weight of sand (y), angle of internal friction (¢) and soil-pile
interface friction angle (8) were the main parameters used for
prediction of (Qu) from theoretical models. Since the angle of soil-
pile interface (3) should be estimated carefully; therefore, for a
conservative prediction, it was assumed to be (6 = 0.4 ¢) for very
loose sand (i.e., Dr = 9%) and (8 = ¢) for dense sand (i.e., Dr = 85%)
(Das et al., 1977). Figure 5 depicts the measured versus predicted
uplift capacity of pile in sand for the selected data points. Table 6
summarizes the results of predicted (Qu) from theoretical models and
ANN as compared to the measured (Qu) in (kN). The predicted uplift
capacity from ANN compared very well with respect to measured
data among the predicted (Qu) derived from the theoretical methods
adopted in this study.

Table 5 A summary of theoretical equations for the model used
to this study

Models Theoretical Equations
Meyerhof ¢, = %Ku Dyl%tanéd

Ku= uplift coefficient

(1973)
Das T 2 L L
Dy Q= SKDyFtang forgs (D)CT
Q= %KuDyL%r tan & + m K DyLe (L —
L L
L. )tand for 5> (E)c‘r
For D, <70% (%) =0.156D, +3.58
cr
For D, >70% (£) =145
Ccr
Shanker DI? N L3 ( 1
et al. Qu=my 2 3tan6/\tan@
(2007)

+ (cos 6 + K sinf) tan d))

K =(1-sing)(222)

tan ¢

16

14

12

10

@ Meyerhof (1973)

M Das (1983)

Measured uplift capacity (kN)
(o]

Shanker et al. (2007)

X ANN

0 2 4 6 8 10 12 14
Predicted uplift capacity (kN)

Figure 5 Predicted versus measured uplift capacity of pile in
sand
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Table 6 Predicted versus measured uplift capacity of 0.089 m piles in size embedded in sand for data collected from Al-Mhaidib

and Edil (1995)
Uplift capacity of pile (Qu) in (kN)
Point L~ Dy (kNm®) ¢ (Deg) & (Deg.) Meverhof Shank

(m) (%) Measured (?7933)0 Das (1983) af?zoe&;t ANN
1 1.54 9 15.69 30.5 12.2 2.94 141 0.69 4.05 2.03
2 1.65 9 15.69 30.5 12.2 3.06 1.61 0.75 4.87 2.36
3 1.65 9 15.69 30.5 12.2 3.01 1.61 0.75 4.87 2.36
4 1.67 9 15.69 30.5 12.2 2.95 1.65 0.76 5.03 242
5 1.54 9 15.69 30.5 12.2 3.11 141 0.69 4.05 2.03
6 1.65 9 15.69 30.5 12.2 3.21 1.61 0.75 4.87 2.36
7 1.54 9 15.69 30.5 12.2 3.11 141 0.69 4.05 2.03
8 1.63 9 15.69 30.5 12.2 2.92 1.58 0.74 4.72 2.30
9 1.51 85 17.45 39 39 10.88 10.98 10.75 9.74 11.70
10 1.51 85 17.45 39 39 10.98 10.98 10.75 9.74 11.70
11 1.51 85 17.45 39 39 11.8 10.98 10.75 9.74 11.70
12 1.48 85 1745 39 39 12.85 10.55 10.37 9.23 11.50
13 1.7 9 15.69 30.5 12.2 2.76 1.71 0.78 5.28 2.49
14 1.65 9 15.69 30.5 12.2 2.47 1.61 0.75 4.87 2.33
15 1.65 9 15.69 30.5 12.2 2.48 1.61 0.75 4.87 2.33
16 1.7 9 15.69 30.5 12.2 2.1 1.71 0.78 5.28 2.49
17 1.7 9 15.69 30.5 12.2 2.07 1.71 0.78 5.28 2.49
18 1.65 9 15.69 30.5 12.2 2.08 1.61 0.75 4.87 2.33
19 1.58 85 17.45 39 39 11.2 12.02 11.62 11.0 12.84
20 1.52 85 17.45 39 39 11.7 11.13 10.87 9.91 1241
21 1.65 85 17.45 39 39 14.9 13.11 12.49 12.37 13.32
22 1.52 85 17.45 39 39 13.48 11.13 10.87 9.91 12.41

7. CONCLUSIONS

This paper focuses on the application of an artificial neural network
(ANN) to predict the uplift capacity of both regular and enlarged piles
embedded in sand. Based on the research findings from this study,
several conclusions can be drawn:

The prediction of the uplift behavior of two types of piles (i.e.,
regular and enlarged piles) embedded in sand soil using one unified
machine learning model has proven its efficiency in giving reasonable
and accurate estimates compared to the measured data.

Four different algorithms implemented in this study were able to
give good predictions of the uplift capacity of piles in sand.

Artificial neural network (ANN) performed better over the
different algorithms used in this study in predicting piles’ uplift
capacity in the sand since it does not show overfitting on training and
test data sets.

For the artificial neural network, the Relu activation function had
the best results compared to other activation functions that were
considered in this study.

The accuracy and reliability of the prediction of piles’ uplift
capacity in sand using an artificial neural network could be enhanced
significantly by increasing the quantity and quality of training data.

The ANN model was more accurate than other theoretical models
in prediction the uplift capacity of piles.
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