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ABSTRACT: This paper presents an on-going development of Internet-of-Things (IoT) slope monitoring for landslide early warning system
in Thailand. The current system employs a variety of sensors, namely MEMs-based tensiometers, piezometers, soil moisture sensor, tiltmeter,
in-placed inclinometer and tipping bucket raingauge, all connected to Arduino-based microcontroller which relied on Narrowband, NB-IoT,
protocol for data transmission to the cloud server. A specially designed application platform was developed to convert the sensor readings to
engineering unit and ultimately geotechnical parameters, such as factor of safety, which enable engineers to readily understand the situation
and make an informed-decision based on such parameters. A weighted approach was proposed in calculating the overall landslide hazard level
based various kinds of sensor readings. A case history of Kratu-Patong Road Landslide in Phuket, Southern Thailand, taking place in Year
2022 was presented to demonstrate how the developed IoT system was used real-time together with geotechnical analysis to aid in traffic
management during the critical time. The warning event primarily stemmed from spikes in slope movement, spurred by heightened traffic
intensity. Rapid slope movement during the incident was characterized by a tilting magnitude of -2 to 1.2 degrees and a velocity ranging from
-1.7 to 1.8 degrees per hour. Notably, the calculation of the warning index based on tilting magnitude provides a continuous warning message,
in contrast to an intermittent message based on tilting velocity. The tensiometer effectively detected the decrease in suction caused by slope
movement, while the piezometer only registered changes in pore-water pressure when the groundwater table rose above the measurement point.
Finally, an Artificial Neural Network (ANN) model was used to predict the pore-water pressure at different depths based on 5 rainfall
parameters, namely, 5-min, 1-hour, 1-day, 3-day and 7-day antecedent rainfalls. The model demonstrated satisfactory predictive accuracy (R?
=(0.644, RMSE = 3.637 kPa), offering promising potential for integration with the IoT platform in the future.

KEYWORDS: IoT slope monitoring system, Slope stability, Landslide early warning, and Pore-water pressure.

1. INTRODUCTION web-based application in a real-time manner and thus makes this
approach more economically feasible.

Rainfall-induced landslides have been increasingly prevalent and
widespread worldwide, a trend attributable to climate change,
extreme weather events, and rapid development in hilly areas. As a
result, geotechnical engineers frequently encounter daunting
challenges when these natural disasters occur, particularly when road
networks are affected, leading to road blockages. The situation
becomes even more complex as rectification efforts become
necessary precisely when road users rely on the traffic lanes for their
transportation needs. The convergence of these circumstances places
geotechnical engineers in a critical position, requiring them to find
the delicate balance between ensuring the safety and stability of the
affected slopes and minimizing disruptions to the transportation
network. In such situation, a slope monitoring system is needed which
can provide real-time monitoring results, interpreted in such a manner
that engineers can readily grasp the essence of the slope behaviour
and use them for well-informed decision making.

In this study, an Internet of Things (IoT) slope monitoring system
was presented consisting of a variety of sensors, namely MEMs-based
tensiometers, piezometers, soil moisture sensor, tiltmeter, in-placed
inclinometer and tipping bucket raingauge, all connected to Arduino-
based microcontroller which relied on Narrowband, NB-IoT, protocol
for data transmission to the cloud server. A specially designed
application platform was developed to convert the sensor readings to
engineering unit, geotechnical parameters, and a landslide hazard
. . A . index that aid in decision making. A case history of Kratu-Paton
informally. The true value of these observations lies in their Road Landslide in Phuket, Southe%n Thailand, in gfyear 2022 was ther%

usefulness’. thh, is dependent on their tlrpely dlsplay and' clear presented to demonstrate how the system was used to aid in traffic
representation. This approach ensures that the information remains up management

to date and readily accessible for decision-making purposes. The
advent of Internet of Things (IoT) sensor technology enables
monitoring of various parameters in-situ that can be accessed via

Instrumentation has been pivotal in the advancement of the
geotechnical engineering profession from its beginning. By
employing field observation and monitoring data, geotechnical
engineers can effectively assess and make informed decisions
regarding the design, construction, and maintenance of earth
structures. Should the need arise, adjustments to the design can be
implemented during the construction phase, under the condition that
the gathered field information, supplemented by geotechnical
analysis, substantiates such modifications. This approach is
commonly referred to as the "learn as you go" method, coined by Karl
Terzaghi, or the observational method, as proposed by Ralph Peck
(Ridley, 2022).

The clarity of objectives is crucial when implementing
geotechnical instrumentations. As noted by Ralph Peck in Dunnicliff
and Green (1988), every instrument employed in a project should be
carefully selected and strategically placed to address a specific
question. Dunnicliff and Green (1988) identified multiple objectives
of geotechnical instrumentation, which include: 1) safety (i.e. early
warning system); 2) observational method; 3) construction control; 4)
legal protection; 5) public relations; and 6) advancing the State-of-
the-Art.

Ralph Peck, as highlighted in Ridley (2022), emphasizes the
significance of promptly presenting field observations in a manner
that effectively highlights the essential features, regardless of whether
they are conducted in an elaborate and precise manner or quickly and
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2. 10T SLOPE MONITORING SYSTEM
2.1 Sensors

The developed IoT slope monitoring system consists of a variety of
sensors schematically shown in Figure 1 (Jotisankasa et al., 2023).
The sensors include MEMs-based tensiometers/piezometers,
(Jotisankasa et al., 2015), soil moisture sensor, tiltmeter, in-placed
inclinometer (Jotisankasa et al., 2023) and tipping bucket raingauge
(Figure 2), all connected to Arduino-based microcontroller which
relied on Narrowband, NB-IoT, protocol for data transmission to the
cloud server. Both piezometer and tensiometer are based MEMs
pressure sensor technology, incorporated with low-air entry filter for
piezometer and high-air entry ceramic for tensiometer. The
tensiometer’s water reservior are carefully filled with deaired water
as explained by Jotisankasa et al. (2015) and capable of measuring
pore-water pressure in the range of -80 kPa to 700 kPa. While the
tensiometers can measure negative pore-water pressure (i.e. suction)
in slope, the piezometer can measure only positive pore-water
pressure and should only be installed at the depth below the
groundwater table.

The tiltmeter and in-place inclinometer utilize analog
accelerometers with a sensitivity of 140 mV/deg and a maximum
reading range of £15 degrees. While both instruments serve their
purpose, there are important distinctions between them. The tiltmeter
is comparatively easier to install, but its functionality is limited to
indicating slope surface movement only. The in-place inclinometer
can measure the slope movement at varying depths and be used to
estimate the lateral movement and thus determined the slip surface
location. Though giving more information on slope behaviour, the in-
place inclinometer requires specifically built borehole and is much
more expensive to install than the tiltmeter. For shallow slide
application, the tiltmeter, which is attached to a steel pole down to
about 1m depth, tend to be much more cost-effective and easier to
install. The primary advantage of both in-place inclinometer and
tiltmeter in this study lies in its ability to monitor continuous
movement in real-time, eliminating the need for frequent site visits to
take measurements, as is the case with conventional inclinometer
probes. This feature significantly reduces the hassle associated with
data collection and analysis.
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Figure 1 Schematic of the IoT sensors

Figure 2 Photographs of the sensors; a) tensiometer, b)
piezometer, c) soil moisture sensor, d) tiltmeter, e) in-place
inclinometer and f) raingauge and IoT datalogger station

2.1 On-Line Slope Monitoring Platform

A web-based application was developed on a cloud server in order to
process the data transmitted via the NBIoT network, specifically for
slope engineering purposes. The core application is called
Geotechnical Innovation Laboratory (GIL) platform. The transmitted
sensor reading in raw unit, e.g. voltage, counts, etc, can then be
converted to the engineering unit of interests (i.e. kPa, mm, degree,
etc), by a user-specified conversion linear equation as follows;

Y =(V-V))/s (1

where V is the sensor reading in raw unit, Y is the sensor reading in
engineering unit, V; is the initial zero the sensor reading (i.e. the
reading in raw unit corresponding to the zero value in engineering
unit, if Y = 0, V =Vj), and s is the sensor sensitivity. Typical values
of sensitivity and initial zero for different sensors are summarized in
Table 1. Notably, since the tensiometer and piezometer are based on
absolute pressure sensor, their initial zero readings are dependent on
the atmospheric pressure and thus on the elevation of the ground at
the point of installation. The soil moistures sensor’s calibration
coefficients are also dependent on soil type and thus a separate
calibration should be performed on the soil collected from the specific
site where the sensor is installed as also highlighted by Jotisankasa et
al. (2023). The GIL platform allows the users to specify all the
calibration coefficients and thus capable of displaying the sensor’s
reading in engineering units in a real-time manner.

Accuracy and reliability of these sensors may be affected in long
term deployment, particularly in adverse environmental conditions.
Erratic readings, such as significant fluctuations in measurements, are
indicative of sensor malfunction. It is advisable to conduct periodic
checks on the sensors' zero readings and sensitivities annually.
However, this process typically requires sensor removal and
reinstallation, which can be resource-intensive in terms of both
budget and time. These checks can be performed on-site for devices
like the tensiometer and piezometer. One method involves filling the
casing pipe with water to establish a known pressure head against
which the sensor's reading can be compared.

Table 1 Typical calibration coefficients for different sensors

Sensor type Sensitivity, s f::lt(l]?]llg, v zero
Tensiometer/Piezometer 6.6 mV/kPa 780 to 850 mV
Tiltmeter/Inclinometer -140 mV/Degree 2200-2600 mV
Soil moisture sensor -105 mV/% ~4700 mV
Raingauge 1 0
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2.1.1 Factor of Safety

For slope stability application, the factor of safety represents the main
index that engineers readily understand as a measure of safety and
stability of the slope. It is well known (e.g. Buscarnera, & di Prisco,
2011, Cascini et al., 2010, Jotisankasa et al., 2015) that for rainfall-
induced landslide, it is the pore-water pressure that controls the
effective stress, shear strength and ultimately the slope stability. The
developed platform was thus designed so that the factor of safety can
be processed and displayed in a real-time manner, based on the pore-
water pressure measurement. As a first step, the infinite slope model
was used to calculate the factor of safety, F, as shown in Equation (2)
below.

__ c'+cp+yz-cos?p tang’ —uytang’’
yz sinpf cosf

F

@

where y is the total unit weight of soil, z is the depth of failure plane,
B is slope angle, ¢’ is effective cohesion intercept, ¢, is root cohesion
which is related to plant root reinforcement and root area ratio (e.g.
Mahannopkul and Jotisankasa, 2019). The root cohesion can be
assumed either as constant or as functions of depth. ¢’ is effective
angle of shearing resistance, u,, is pore water pressure, and ¢" is the
angle of shearing resistance due to pore-water pressure (positive or
negative). For the case that u,,>0 (saturated soil), ¢"'equals ¢’. For
unsaturated soils, u,,<0 and ¢"'equals ¢~ tan=1(S,tang"). These
parameters can be defined by users in the platform. It is however
important to note that the infinite slope mode is used only as an initial
estimate of the factor of safety. In reality, the slip surface may be slip
circle or of irregular shape and the detailed slope stability analysis
should be conducted to find the variations of F with pore-water
pressure and used as input in the platform.

2.1.2 Critical Pore Water Pressure and Soil Moisture

It is noted that the threshold value of pore-water pressure at different
values of factor of safety, F, can be calculated by rearranging the
Equation (2) as follows.

¢’ +c,+yz-cos?B tangp’ —Fxyz sinf cosf
tang’’

3)

Uy cr =

This critical values of pore-water pressure at failure, u,, ., can
then be estimated by setting the factor of safety equal to 1 as shown
in Equation (3). Additional margin of safety can be added by inserting
different values of F. Once the critical values of u,, is determined,
the corresponding soil moisture at critical condition can then be
estimated using the relevant soil-water retention curve (e.g.
Kankanamge et al., 2018). It is interesting to note that an increase in
root cohesion, ¢, , due to slope vegetation can cause the critical pore-
water pressure to rise, thus increasing the threshold for landslide
warning. The effect of land cover on the landslide warning threshold
can be specified in this manner.

2.1.3 Critical Rainfall Envelope

The rain pattern, plotted as daily rainfall versus antecedent rainfall
(accumulated rain in previous few days), can provide a useful tool for
roughly estimating when slope failure is likely to occur, as suggested
by many previous researchers (e.g., Lumb, 1975, Crozier & Eyles,
1980, Mairaing et al., 2012). An example of such plot for a case
history of Kratu-Patong road landslide in phuket, presented thereafter,
is shown in Figure 3. The failure critical rainfall envelope demarcates
the rainfall patterns that induced major landslide from the others that
do not. The warning rainfall envelope sets the boundary of rain
pattern that induce minor landslide.
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Figure 3 Critical rainfall envelope for Kratu-Patong road 2022
landslide in Phuket

2.1.4 Critical Slope Movement

Soil movement is commonly used as an index for indicating slope
instability (e.g. Sheikh et al., 2021, Soralump et al., 2021, Jotisankasa
et al., 2023). Tiltmeter attached to a rod driven onto slope surface
(down to about 0.7 to 1 m deep) can be used to monitor the shallow
slope movement, while inclinometer is traditionally used for
detecting horizontal slope movement at greater depths. Either the
movement magnitude (degree or mm) or movement rate (deg/h or
mm/h) can be used to classify severity of movement. Based on Sheikh
et al. (2021) the movement type is classified as very slow (<0.004
degree/h), slow (0.004-0.04 degree/h), moderate (0.04-0.4 degree/h)
or rapid (>0.4 degree/h) (Sheikh et al., 2021). Alternatively, slope
deformation analysis (e.g. FEM) can be used to estimate the
magnitude of threshold movement (mm or degree) as warning
criteria. In the developed platform in this study, users have the
flexibility to configure either a critical threshold for slope movement
(in degrees or millimeters) or a slope movement rate (in degrees per
hour or millimeters per hour), as per their specific needs.

2.1.5 Weighted Hazard Index

In order to provide early warning based on an overall hazard index,
that take into account all measurement results from different types of
sensors (i.e. rainfall, pore-water pressure, soil moisture and
deformation), a simplified weighting approach is proposed in this
study. A normalization method was used to calculate the hazard
warning index, W;, for each sensor i as follows,

W; = 100 x Yi—Tmin,i) &)

(Tmax,i_Tmin,i)

where W; is the %warning, T;p, ; is the minimum reading of sensor i
Tinax,i is the maximum reading of sensor i and Y; is the current sensor
reading at any given time (see Figure 4). By normalizing the sensor
reading, the W; varies between 0 and 100% corresponding to the
prescribed minimum and maximum value of each sensor. The W;
value close to 100% indicates that the sensor reading is reaching the
maximum value which corresponds to the critical value (e.g. the pore-
water pressure at which factor of safety equal to 1 or critical rainfall
intensity) set earlier in the platform. It should be noted that for
tiltmeter or soil movement, both positive and negative sign can be
equally critical. Hence the absolute value is used when calculating the
warning index for soil movement as follows.

Yi=Tmin,i)

Wi - 100 X |(Tmax,i_Tmin,i) (5)

The overall warning index, OW, is then subsequently calculated
by combining all the %warning, W;, for each sensor from i to n,
based on the significance weight x; for each sensor as in the
following.

(6)
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Figure 4 Normalization approach for sensor reading (Y) to the
warning index W

The significance weight for each sensor, x;, could be determined
based on the level of confidence that each sensor holds, its accuracy,
relative position on slope, the proximity of the sensor to critical zone,
etc. The significance weight (x;) assigned to each sensor is dynamic
and can be fine-tuned within the platform. This flexibility enables
adjustments to be made as needed. For instance, if a sensor were to
experience a malfunction subsequently, its significance weight could
be promptly adjusted to zero. This adjustment would result in the
sensor's readings being excluded from the warning calculation. Any
dynamic adjustment of the weight factors within the platform has to
be done manually by experts. An illustrative example of this approach
is provided in the following section.

3. KRATU-PATONG ROAD 2022 LANDSLIDE
3.1 Background

The Kratu-Patong Road landslide occurred on October 16, 2022,
triggered by prolonged and heavy rainfall. The rainfall data from the
closest weather station revealed a daily rainfall exceeding 150 mm,
with a 3-day cumulative total surpassing 200 mm, as illustrated in
Figure 3. This intense precipitation led to a slope failure, resulting in
the complete collapse of one of the road lanes, as depicted in Figure
5.

Although the remaining road lanes were deemed precarious for
commuters, substantial pressure emerged from both local authorities
and private entities to reopen these lanes to the public. This urgency
arose due to the fact that this road represented the sole accessible
route to Patong Beach—an immensely popular beach resort town that
attracts a high volume of tourists.

Figure 5 Road damage due to Kratu-Patong 2022 landslide in
Phuket

Recognizing the immediate requirement, the Internet of Things (IoT)
slope monitoring system, previously pioneered by the Geotechnical
Innovation Laboratory at Kasetsart University, was swiftly deployed
on-site as an interim solution. Its purpose was to furnish a reliable
gauge for both local authorities and the Department of Highways.
This data-driven insight would aid in making informed judgments
regarding traffic management along the road during the ongoing slope
stabilization endeavors.

3.2 Field Investigation and Sensor Installation

A rapid site investigation revealed that the depth to bedrock extended
to approximately 6 meters, with the groundwater table positioned at a
depth of 1.5 meters (as illustrated in Figure 6). The upper layer of soil
was derived from biotite-muscovite granite and classified as
brownish-to-whitish grey clayey sand. Previous study (Jotisankasa &
Vathananukij, 2008) showed this granitic residual soil was prone to
landslide and typically contained 3% gravel, 39% sand, 21% silt, and
37% clay. Our subsequent actions included the deployment of a
piezometer at the 6-meter depth, a tensiometer at 2.67 meters, and two
soil moisture sensors at depths of 0.1 meters and 0.5 meters.
Additionally, three tiltmeters were strategically positioned on the
back slope and along the water channel further upslope, along with
the installation of a tipping bucket raingauge. It's worth noting that
although the most suitable location for sensor installation would have
been on the lower side of the slope, closer to the failed soil mass,
operational constraints compelled us to install the sensor arrays on the
upper side of the road, as visualized in Figure 7.
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Figure 7 Location of installed sensors; 1: Piezometer (6 m), 2:
Tensiometer (2.67 m), 3: Tiltmeter (back slope), 4: Tiltmeter
(upper channel), 5: Tiltmeter (water channel), 6: Soil moisture
(0.1 m), 7: Soil moisture (0.5 m) and 8: Rain gauge

3.3 Stability Analysis and Warning Criteria

An unmanned aerial vehicle (UAV) survey was conducted with the
objective of creating a three-dimensional model of the slope,
employing the photogrammetry method. The resulting 3D model, as
depicted in Figure 8, highlights the critical cross section that was then
utilized for subsequent slope stability analysis. A uniform soil profile
was specified based on in-situ SPT tests, with the strength parameters
set as follows, effective cohesion, ¢’ = 10 kPa, angle of shearing

resistance, ¢’ = 289 and unit weight,y = 18 % Figure 9 presents

the findings of the slope stability analysis, incorporating data from the
monitored pore-water pressure profile alongside the assumed pore-
water pressure values.
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Figure 8 3D-model of the slope based on UAYV survey
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02/11/2022

Prescribed warning critical pore-water
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Figure 9 Stability analysis results

Significantly, we utilized monitored pore-water pressures,
gathered from both piezometers and tensiometers, along with the
spring line's emergence point on the lower slope to establish the pore-
water pressure profile and phreatic line, as illustrated in Figure 10.
Subsequent to this data compilation, a sequence of analyses was
performed to derive the factor of safety variations in relation to pore-
water pressure at the monitoring station's location. These findings are
graphically depicted in Figure 11.

Location of

spring observed
on-site

Piezometer

Figure 10 Pore-water pressure profile from monitoring results

Evidently, there exists a nearly linear relationship between the
increase in pore-water pressure and the subsequent decrease in the
factor of safety. To ensure a comprehensive analysis that considers
the influence of road traffic, surcharge pressures of 10 or 20 kN/m?
were incorporated. As an initial safety measure, we designated a
pivotal indicator for slope instability warning: a threshold pore-water
pressure of 30 kPa, specifically at a depth of 6 meters. This threshold
is based on the slope stability analysis using the failed slope profile
and a surcharge ranging between 10 and 20 kPa (Figure 11),
corresponding to a factor of safety of approximately 1.15, providing
a 15% margin of safety. Such threshold is related to such factors as
soil strength parameters, unit weight, slope geometry and surcharge.
It's worth noting that additional factors such as soil cover and rainfall
contribute to the spatial and temporal variation of pore-water pressure
within the slope, consequently influencing slope stability. While a
detailed coupled rainfall stability analysis could shed light on this
aspect, such an investigation lies beyond the scope of this study. The
plant roots would also affect the shear strength and subsequently the
threshold pore-water pressure. However, at 6 m depth the presence of
plant roots is expected to be minimal and therefore the root cohesion
is not considered in the calculation.

Furthermore, it's important to highlight that any increase in
surcharge load significantly reduces the critical pore-water pressure
threshold. This underscores the critical importance of restricting
heavy traffic on the road while stabilization efforts were ongoing. To
address this, a well-compacted earth berm was implemented by local
authorities for stabilizing the collapsed slope. During construction,
some traffic was permitted on the upper road due to pressure from the
local community.

Piezometer reading- Failed profile ® surcharge 10 kPa

e Surcharge 20 kPa
1.35

13
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1.15

Factor of safety, F

11

1.05 y=-Qo072x+ 1.3268

?=0.9893

0 10 20 30 40 50 60
Pore-water pressure, kPa

Figure 11 Variation between factor of safety and pore-water
pressure from 6 m depth at the monitoring station

Notably, there was an approximately 45-day interim period
between the slope collapse incident (16/10/2022) and the completion
of stabilization berm (30/11/2022). During this time, continuous
monitoring and daily reporting of the ongoing stability status were
provided to the authorities to facilitate informed decisions regarding
traffic management. It is worth mentioning that due to the ongoing
alterations in the slope profile during the stabilization work,
adjustments were made to increase the threshold of pore-water
pressure. This adjustment was made to accommodate the additional
safety margin offered by the presence of the berm using stability
analysis of stabilized profile. Figure 12 depicts the variation in factor
of safety with pore-water pressure between two slope geometries: the
failed profile and the stabilized profile as of Date 19-11-22. By this
date, approximately half of the buttress berm had been completed (as
shown in Figures 12b and c), resulting in an increase in factor of
safety and a partial relaxation of the threshold for critical pore-water
pressure.

3.4  Warning Events

While the berm construction was in progress, there was mounting
pressure to reopen the road lane for regular four-wheel vehicles.
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Initially, only motorcycles were permitted on the road above the
failed slope. On November 5, 2022, the road was gradually reopened
for regular vehicles. However, this decision revealed signs of
movement, as demonstrated by tiltmeter readings (Figure 13). These
readings indicated initial backward movements (towards backslope)
followed by downhill movement between November 10th and 11th,
2022.
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Figure 12 Increase in factor of safety due to stabilization work
a) variation of factor of safety with pore-water pressure, b) UAV
photos used to determine new slope geometry and c) slope
profile as of Date 19-11-22 and stability analysis result

Notably, two out of three tiltmeters demonstrated a consistent
response, suggesting the initiation of slope movement. The velocity
of this movement was also computed on an hourly basis, expressed in
degrees per hour, utilizing linear regression, as depicted in Figure
13b. Negative values signify movement towards the hill (backwards),
whereas positive values denote downhill movement. Distinct spikes
in movement were observed, with peak values ranging from -1.7 to
1.8 degrees per hour, notably triggered by increased traffic intensity.
Such velocity exceeded the “rapid slope movement” threshold (>0.4
degree/hour) as suggested by Sheikh et al. (2021). This finding was
further corroborated by an increase in pore-water pressure (or a

decrease in suction) as recorded by the tensiometer (Figure 14). It is
also interesting to note that the tensiometer could capture the increase
in pore-water pressure in a negative range (in other words, the
reduction in suction) due to the traffic-induced slope movement. In
contrast, the piezometer failed to register any alteration in pore-water
pressure unless the groundwater table ascended above the filter point.
The consistent data from both types of sensors, namely, tensiometer
and tiltmeter, served as a significant alarm, prompting us to initiate
further discussions with local authorities. It should be noted that there
was an increase in pore-water pressure due to rainfall earlier during 7
to 8/11/2022, though there was no sign of slope movement as no
heavy traffic was still not allowed at the time.

While piezometers are valuable for monitoring pore-water
pressure, relying solely on them has limitations. They may miss
localized variations and rapid changes in pore-water pressure in the
negative range especially at shallow depths, which can be crucial for
detecting early signs of slope instability. Additionally, piezometers
only capture one aspect of slope behavior, neglecting factors like
excessive surcharge load, displacement, or runoff. To address this,
our study proposes an loT-based monitoring system integrating
multiple sensors to provide a more comprehensive understanding of
slope behavior, enabling better-informed decisions by geotechnical
engineers.
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Figure 13 Tiltmeter readings and rainfall during the warning
event

In light of these findings, the decision to reopen the road for four-
wheel vehicles was swiftly reversed, and traffic control was
reinstated, allowing only motorcycle users on the road. While this
policy shift may have initially raised concerns among the public, it
was grounded in engineering evidence, and the results from the
instrumentation provided the public with greater confidence and
understanding of the situation. Following the reinstatement of traffic
control measures, the tiltmeter readings revealed no indications of
further movement. This outcome bolstered our confidence in the
decision that had been taken. The focus was then shifted to
accelerating the berm construction to finish the stabilization work.
Figure 15 provides a visual representation of the slope condition as it
approached completion and afterward. It's important to note that the
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slope monitoring instruments continued to operate, ensuring ongoing
safety by detecting any movement on the backslope side.
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Figure 14 Pore-water pressure readings and rainfall during the
warning event

The lessons learned from this incident have motivated our
research team to develop a universal warning index derived from
sensor data for automated hazard level indication. The weighted
hazard index as explained earlier is one of such approaches. Figure
16 showed the calculated overall warning index, OW, based on
parameters shown in Table 2. It is noted that the normalization and
weight factors and threshold levels were re-adjusted in hindsight,
after the warning event was over, to reflect the decision reached
previously by expert panel during the incident. Regarding the soil
movement measured using tiltmeters, there were two ways to
calculate the warning index, namely Method 1 which used the
absolute tilting (in degree) and Method 2 which utilized the absolute
tilting rate (in degree per hour). The absolute values of tilting were
used in calculating the warning index, W;, for tiltmeter reading, since
both toward-hill and down-hill directions could equally be a precursor
to slope failure depending on the mechanism of the movement.

; ;‘$ﬁ AL, ;‘ S
b)
Figure 15 Slope condition in a) 28" November 2022; b)
February 2023

Table 2 Normalization parameter and significance weight
assumed for warning index calculation

Sensor, i Unit T . T significance
min max weight X
1:Piezometer kPa 0 30 2
(6 m)
2:Tensiometer kPa -15 10 3
(2.7m)
3: Tiltmeter 1 Degree* 0
(Back slope) Degree/hr 0 0.4
ek
4: Tiltmeter 2 Degree* 0 1 3
(Upper water
channel) Degree/hr 0 0.4 3
K3k
5: Tiltmeter 3 Degree* 0 1
(Water channel) Degree/hr 0 0.4
k3k
6: Soil moisture % 0 42 1
(0.1 m)
7: Soil moisture % 0 42 1
(0.5 m)
Rain gauge mm/5min =~ 0 8 2

* Method 1; ** Method 2
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Figure 16 Overall warning index calculated using a) Method 1
and b) Method 2

Upon comparing the warning indices derived from Methods 1 and
2, it becomes evident that Method 1, relying on tilting magnitude,
offers a continuous warning message. In contrast, Method 2, based on
tilting velocity, issues a brief warning pulse lasting 1-2 hours,
activated only when the velocity surpasses the predetermined
threshold. The transient nature of Method 2's warning could
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potentially be overlooked if not promptly addressed. Based on the
warning event in this study using Method 1, the first alarm threshold
for over warning could be set at 50% as indicated in Figure 16a.

In the context of Method 1, the warning message persists even
after the slope has apparently returned to a safe condition, as observed
from 12/12/22 onwards. This continuous alert will endure unless the
tiltmeter's zero reading is manually reset, necessitating human
intervention. It is clear that expert oversight in data presentation and
reporting remains essential for ensuring the accurate representation of
slope safety. The automated warning system is useful when no
personnel could remain at their post all the times. To issue warning,
panel discussion and expert judgement are still needed.

3.5  On-Going Monitoring Results

After the slope stabilization completion, the monitoring system has
still been in operation until September 2023 and the results over the
entire monitoring period are shown in Figures 17 to 20. During drying
period spanning from January until May 2023, the pore-water
pressure from the piezometer installed at 6 m depth (Figure 18)
indicated only zero reading during the dry season due to the inherent
limitation of the device as discussed earlier. A considerable rise in
ground water table and positive pore water pressure could be
observed on 19/08/2023 after the 1 day, 3 day and 7 day accumulated
rainfalls reached the values of 14.8 mm, 42.6 mm and 262.6 mm
respectively. However, the pore-water pressure at 2.67 m depth
measured using the tensiometer (Figure 18) became more negative
and reached the lowest value of about -50 kPa. The volumetric water
content, as illustrated in Figure 19, peaked at approximately 42%,
signifying saturation, and maintained a relatively stable level during
the crucial period in December 2022. Following stabilization efforts,
the soil surface was paved with concrete, expected to contribute to a
reduction in infiltration. Subsequently, during the dry season, the
water content decreased, reaching its lowest point at 30-35%. As the
rainy season returned in 2023, the volumetric water content
experienced a smaller peak at 39%, indicative of a less permeable
surface.
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Figure 17 Daily rainfall and accumulated rainfall from Oct
2022 to Sep 2023
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Volumetric water content, %

20 50
18
16 40 =X
t oy
[=
o w £
c
uE1 12 30 8
E s
g 10 £
- H
IS
£ 8 20 o
o< H
6 Q
£
S
1 10 &5
>
2
0 0
o~ o~ o~ o o o o m m o on o
o~ o~ o~ o o o o~ o~ o~ o o o~
o o o o o o o o o o o o
4 0Ly e g g g g s o9 a o
(=} Ll o~ p=l o o = [Ta) (%) ~ o0 D
o 2 24 2 9 L2 g £ g 2 £ 2
o0 ~ m~ O wn ~ O O "e] wn = o0
~ ~ o~ ~ ~ o~ ~ ~ o~ ~ ~ o~
Rain ——7: Soil moisture 2 (0.5m) 6: Soil moisture 1 (0.1m)
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The slope movement throughout the entire monitoring period is
illustrated in Figure 20, indicating a cessation of movement in the
water channel at the crest of the stabilized slope (Sensor 5: Tiltmeter
3). This cessation persists despite heavy rainfall observed in the year
2023, underscoring the effectiveness of the stabilization efforts.
However, noticeable movement is evident in the upper back slope,
which remains unstabilized. By the end of September 2023, the tilting
degree reached approximately 0.9 degrees. The average movement
rate for the back slope was calculated at 0.126 degrees per month,
equivalent to 0.000175 degrees per hour, categorizing it as a very
slow movement according to Sheikh et al. (2021).

Slope movement
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Figure 20 Slope movement and 5 min rainfall from Oct 2022 to
Sep 2023
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4. MODELLING OF SLOPE RESPONSE

In this section, a machine learning (ML) model, namely Artificial
Neural Network (ANN), was used to predict the pore-water pressure
at different depths based on various meteorological measurements,
namely 5-min, 1-hour, 1-day, 3-day and 7-day antecedent rainfalls.
The model was trained using the monitoring data from 4 November
2022 until 9 January 2023, 20% of which were used for testing, and
the remaining 80% for training. The objective is to demonstrate
correlation between rainfall parameters and pore-water pressure and
to suggest ways to modelling them for cases in which any of the
measuring equipment may not be available due to economical
constraint. For instance, there are many slopes in Phuket where only
rainfall data is available, yet none of the geotechnical measurement,
such as pore-water pressure or slope movement, exists in those sites.
Such ML models will be useful to provide a baseline prediction of
pore-water pressure response for sites of similar condition. Only ML
models were demonstrated in this section while the traditional
seepage finite element modelling (e.g. Jotisankasa et al., 2015) was
not included. This is because of the simplicity of the ML models and
their readiness to be included with the existing loT platform.

The neural network model architecture employed in this study
was defined using the TensorFlow and Keras framework with Python
code in Google Colab. The model was designed an input
dimensionality of 5 and a 2-dimensional output as shown in Figure
21. The input nodes comprised of 5-min, 1-hour, 1-day, 3-day and 7-
day antecedent rainfalls in mm, while the output nodes were pore-
water pressure in kPa at depths of 6 and 2.67 m. The choice of specific
antecedent rainfall intervals (5-min, 1-hour, 1-day, 3-day, 7-day) as
input features for pore-water pressure prediction was based on the
established research on critical rainfall envelopes (e.g., Lumb, 1975,
Crozier & Eyles, 1980, Mairaing et al., 2012) as discussed in Section
2.1.3. The pore-water pressure is expected to be mainly influenced by
both short-term and long-term antecedent rainfalls.

The neural network was constructed using the Sequential API, a
straightforward way to build a linear stack of layers. This architecture
is a type of feedforward neural network, where information flows
unidirectionally from the input layer through the hidden layers to the
output layer. The model comprises two dense (fully connected)
layers. The first dense layer processed the input data using the
rectified linear unit (ReLU) activation function. The first layer had 10
nodes, and each node was connected to the 5 input nodes. The second
dense layer with a linear activation refined the representation
obtained from the previous layer. This layer had 2 nodes, suitable for
tasks requiring a 2-dimensional output. The model addresses the
varying influences of rainfall on pore-water pressure at different
depths by incorporating two separate output nodes for depths of 6 and
2.67 meters. This approach recognizes that the travel distance of the
wetting front differs for each depth, impacting the response of pore-
water pressure. To accommodate these differences, distinct weight
factors and activation functions were utilized for each depth. The
choice of ReLU activation in the first layer and a linear activation in
the second layer aligned with common practices for regression tasks.
The model was configured for training using the Adam optimizer with
a custom learning rate of 0.01. The mean squared error loss function
was employed for optimization.

5min rain e E
lhour rain a g E Pore-water pressure
A . 0 at 6m
1day rain 9 7y ‘
! 0 Pore-water pressure
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Figure 21 ANN model architecture used in this study

The predictive accuracy of the model is visualized in Figure 22.
Key evaluation metrics, including the coefficient of determination
(R?) and root-mean-squared error (RMSE), were derived as 0.644 and
3.637 kPa, respectively. This level of fitting is deemed satisfactory
for an initial phase, laying the foundation for future advancements in
Artificial Neural Network (ANN) modeling within the Internet of
Things (IoT) framework.

It is essential to note that the current ANN model's applicability
and robustness is limited to sites with conditions resembling those
present in the training dataset. Other site conditions of different
geological settings and climates beyond the training dataset could
affect the robustness of the model. As the dataset expands to
encompass a more diverse range of slope types, geometries, and
geological settings through extensive field monitoring, the ANN
model can undergo refinement. This refinement process aims to
enhance the model's reliability and accuracy, making it more robust
for general application across varying conditions. This underlines the
potential for ongoing developments in ANN modeling, fostering its
integration into broader IoT platforms.
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Figure 22 Comparison between the ML predictions and true
values of pore-water pressure (in kPa) from two measurements
at depths of 6 and 2.67 m

5. CONCLUSIONS

This paper explores the use of [oT sensor technology in geotechnical
engineering, focusing on an ongoing IoT slope monitoring system in
Thailand. The system employs various sensors like MEMs-based
tensiometers, piezometers, and tiltmeters, all connected to an
Arduino-based microcontroller using NB-IoT for data transmission to
the cloud server. An application platform converts sensor readings
into geotechnical parameters, aiding engineers in making informed
decisions. The paper also introduces a weighted approach for
calculating landslide hazard levels based on sensor data.

The Kratu-Patong Road landslide, triggered by heavy rainfall in
October 2022, led to a road lane collapse and the implementation of
an [oT slope monitoring system. Pressure to reopen the remaining
lanes as the primary access route emerged, despite their riskiness. The
warning event primarily arose from spikes in slope movement
triggered by increased traffic intensity. Rapid slope movement during
the incident involved a tilting magnitude of -2 to 1.2 degrees and a
velocity ranging from -1.7 to 1.8 degrees per hour. Importantly, the
continuous warning message derived from the calculation of the
warning index based on tilting magnitude contrasts with an
intermittent message based on tilting velocity. The tensiometer
effectively identified the decrease in suction caused by slope
movement, while the piezometer registered changes in pore-water
pressure only when the groundwater table ascended above the
measurement point. Ensuring the accurate portrayal of slope safety
requires expert supervision in data presentation and reporting. The
automated warning system proves valuable in situations where
personnel cannot be present at all times. However, issuing warnings
still necessitates panel discussions and expert judgment.

Additionally, an Artificial Neural Network (ANN) model was
employed to predict pore-water pressure at various depths using 5
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rainfall parameters (5-min, 1-hour, 1-day, 3-day, and 7-day
antecedent rainfalls). The model exhibited satisfactory predictive
accuracy (R? = 0.644, RMSE = 3.637 kPa), showing promising
potential for future integration with the IoT platform.
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