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ABSTRACT: In use of clayey soils for reclamation, the stability against slip and future consolidation settlement should be examined during 
and after reclamation. For these purposes, a practical reclamation management system has been developed based on three types of analysis: 
artificial intelligence (AI) estimation of soil properties such as compression index, consolidation coefficient and undrained shear strength, 
deposition shape analysis; and consolidation settlement analysis for clayey soils dumped from a hopper barge. The AI estimation of soil 
properties is characterized by use of a convolutional neural network (CNN) based on information such as soil source, wet density, and 
photographed image obtained before reclamation works. In this study, the validity of each analysis model has been verified on an actual 
reclamation project by use of measured data such as deposition shape of dumped soils on the seabed, soil properties in the reclaimed ground 
and consolidation settlement after reclamation and soil improvement. 
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1. INTRODUCTION 

When land is reclaimed from the sea for the construction of a port, 
airport or other development, sandy soils are generally used as 
ground material. Meanwhile, much of the clayey soil generated by 
dredging of navigation channels and mooring basins etc. is disposed 
of in sediment disposal sites. In view of sustainable development of 
society, it is desirable to utilize clayey soils beneficially, which 
would reduce waste and minimize the use of sand resources for 
reclamation fill. Regarding beneficial utilization of dredged clayey 
soils, many geotechnical methods have been proposed in 
conventional studies such as stabilization by cement mixing (e.g., 
Kitazume, 2017), stabilization by mixing with steel slag (Hirai et al., 
2012), lightweight treatment by adding cement and air bubbles (e.g., 
Tsuchida and Egashira, 2017), mechanical dewatering (e.g., Kasama 
et al., 2007), and fabrication of particles solidified by cement 
addition (e.g., Shinsha and Kumagai, 2018). Furthermore, for 
extending the available period of a sediment disposal site, bulk 
compression for dredged clays by use of vacuum consolidation 
method has been proposed by Shinsha and Kumagai (2014). 

Regarding the use of dredged clayey soils for reclamation, Kit et 
al. (2020) reported practical examples for the construction of 
container terminals at the Port of Singapore. The use of clayey soils 
for reclamation is considered advantageous since large quantities of 
soil can generally be accepted. In view of the dredged materials that 
continue to be generated to maintain existing ports, the use of clayey 
soils for reclamation material is expected to become more prominent 
in the future’s port maintenance and development. For land that is 
reclaimed with soft clayey soils, the stability against slip failure 
during construction and future consolidation settlement of the 
ground are concerns as engineering problems. The properties on 
consolidation and shear strength of soft clays to be reclaimed should 
be ascertained during construction stage; however, it is not practical 
to conduct detailed in-situ investigations for the formed ground or 
various soil tests on the soils before reclamation is completed. 

In recent years, artificial intelligence (AI) techniques have been 
utilized in various fields for the treatment of large amounts of data, 
immediate and accurate evaluation and prediction, labor-saving 
automatic operation, etc. In the field of geotechnical engineering, 
conventional studies on application of AI were reviewed by 
Baghbani et al. (2022). In particular, Hanna et al. (2007) proposed a 
neural network model, which learns the relationship between soil 
and seismic parameters, to assess nonlinear liquefaction potential of 
soil. Abdalla et al. (2015) and Chakraborty and Goswami (2017) 

proposed neural network models to predict the factor of safety 
against slope failure in clayey soils based on the inclination and 
height of slope, the angle of internal friction, cohesion and unit 
weight of soil, the coefficient of pore water pressure, etc. Jang and 
Topal (2013) focused on the effects of geological parameters to the 
overbreak phenomenon in tunnel drilling, and applied a neural 
network to predict overbreak by use of rock mass rating data. As for 
an AI model with the performance of image recognition, Hata 
(2022) applied a multilayer deep neural network (DNN) proposed 
by Krizhevsky et al. (2012) based on a model of the convolutional 
neural network (CNN) for image recognition, which was originally 
proposed by LeCun et al. (1999), to evaluate a mountain tunnel’s 
rock mass. The rock mass properties such as degree of weathering, 
alteration and fracture are estimated from the inputting images of the 
excavation surface of the mountain tunnel. 

The authors proposed a reclamation management system that 
integrates the AI model to estimate soil properties with the 
deposition shape analysis model and settlement analysis model in 
Kumagai et al. (2020a). The AI model, which is based on 
convolutional neural network (CNN), estimates the consolidation 
properties of clayey soils that are loaded on a hopper barge and 
dumped for reclamation, from information on soil source, wet 
density, and photographed images. The main analysis models in the 
proposed system were developed through accumulated soil test data 
and experiments by use of a geotechnical centrifuge; however, the 
system was still relatively conceptual and its applicability in actual 
reclamation works was not yet verified. In this study, the validity of 
the models is verified by reproducing actual reclamation work and 
comparing the analyzed results with the various measured data 
including deposition shape of dumped soils on the seabed, soil 
properties in the reclaimed ground, and consolidation settlement 
after reclamation and soil improvement works. 
 
2. RECLAMATION MANAGEMENT SYSTEM 

For reclaiming clayey soils such as dredged clay and excavated clay, 
the direct dumping method is efficiently applied by use of a hopper 
barge together with a pusher boat as shown in Figure 1. After soils 
are loaded into the hopper of a barge and transported to the dumping 
zone, the hopper is opened to dump the soils. The reclamation 
management system proposed in Kumagai et al. (2020a) has a 
predictive function of analysis of consolidation settlement of the 
reclaimed ground based on the AI estimation of properties of clayey 
soils and the deposition shape of dumped soils at the seabed, which  
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Figure 1  Reclamation method of clayey soils by use of barge 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Flowchart of a series of analyses in the reclamation 
management system 

 
accumulate to form the composition of internal soil layers in the 
ground. Figure 2 shows the flowchart of a series of analyses in the 
reclamation management system. First, an AI model is used to 
estimate soil properties such as the consolidation constant and the 
undrained shear strength for clayey soils to be dumped from a 
hopper barge. Next, the shear strength of soil estimated by the AI 
model is taken into account in the analysis of the deposition shape of 
the dumped soils at the seabed, and finally, settlement analysis is 
performed based on the estimated consolidation constants, the 
deposition shapes, and the composition of internal layers in the 
reclaimed ground. 
 
2.1 AI Estimation of Soil Properties 

2.1.1 Overview 

As proposed in Kumagai et al. (2020a), the concept of model 
structure of machine learning using a CNN technique is shown in 
Figure 3. Once the information on soil source, wet density, 
photographed images, and firmness (hard or soft) based on tactile 
feeling is input in the model, the soil parameters such as 
compression and recompression indexes, consolidation coefficient 
and undrained shear strength are analyzed based on the correlations 
obtained in advance by machine learning with training database. The 
information on soil source means the origin location of soil (e.g., 
locations of dredging and onshore excavation).  

In the processing of the first part of machine learning, feature 
vectors are extracted from the photographed image, and the 
extracted feature vectors and other scalar information are integrated.  

In the latter part, the target variables are estimated by the deep 
neural network with multiple hidden layers based on the integrated 
data obtained from the previous process. With regard to the 
processing of image data in the first part, extracting valid features 
from images is important. A method of transfer learning is 
introduced utilizing an existing model that has already been trained 
by use of a huge data set for extracting valid features from images. 
In particular, the so-called VGG16 to be classified as a VGG model, 
which is defined as a model developed by the Visual Geometry 
Group (VGG) at Oxford University, proposed by Simonyan and 
Zisserman (2015) is utilized. Once new data are input to the model, 
which has been developed by optimizing weight parameters in the 
deep neural network so as to minimize estimation error using 
training data, the corresponding values of soil parameters are output 
as the objective variables. 

 
2.1.2 Applicability of Model 

The AI model were developed through machine learning of 
accumulated soil test data. In order to obtain training data for 
machine learning, 40 cases of standard consolidation tests, 60 cases 
of liquid limit and plastic limit tests, and vane shear tests for the 
cases of liquid limit and plastic limit tests were carried out. Dredged 
marine clays and excavated clays on land are expected to be fill 
materials for the current reclamation project in almost equal 
proportions. The specimens of soil tests were photographed from a 
distance of about 50 cm using a common digital camera with about 
10 million pixels. The examples of the images are shown in Figure 
4. 

At this point, we considered that it was necessary to increase the 
amount of training data for implementing effective machine 
learning. The number of photographed images was artificially 
increased by various processes of multiple cropping, rotating, 
flipping up/down or left/right, adjusting brightness and contrast, 
blurring, sharpening, etc. In addition, as the number of 
photographed images is increased by the above processes, noise is 
added to the associated input/output numeric data, effectively 
increasing the variety of numeric data. To add noise to numeric data, 
a method of statistical treatment was introduced in which the true 
value obtained from a soil test was taken as the mean value and the 
data was varied to follow a normal distribution with a coefficient of 
variation of 0.1. The machine learning was conducted by increasing 
the number of data points by 400 times, to 16,000, through the 
above data processing. 

Figure 5 shows the frequency distributions of the soil parameters 
on consistency and consolidation obtained by the tests. Figure 6 
shows the relationship between the normalized water content w/wL, 
which is water content divided by liquid limit wL, and undrained 
shear strength cu obtained by a vane shear test. The high correlation 
between these constants is obtained as Equation (1), suggesting that 
if the liquid limit of a clay is known, it is possible to calculate the 
water content from wet density and estimate the undrained shear 
strength using the normalized water content. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3  Model structure for machine learning 
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cu = 1.039 (w/wL) - 4.228                                     (1) 

For reference, a conventional formula of Equation (2) proposed by 
Tsuchida et al. (2002) is also shown in Figure 6, indicating that the 
formula proposed in this study provides results similar to those of a 
conventional formula. 

cu = 1.4 (w/wL) - 4.5                                         (2) 

In machine learning, the information on soil source, wet density, 
photographed images, and firmness (hard or soft) based on tactile 
feeling was set as input data, and compression and recompression 
indexes, consolidation coefficient, and liquid limit were set as 
output data, the objective variables. The undrained shear strength 
can be estimated by obtaining normalized water content from the 
estimated liquid limit and the previously known wet density, and 
using the relational equation of Equation (1). 
 
 
 
 
 
 

 

(a) Dredged marine clay 

 
 
 
 
 
 

(b) Excavated clay on land 

Figure 4  Sample clay images to be used in machine learning 
 
 
 
 
 
 
 
 
 
 

(a) Liquid limit 
 
 
 
 
 
 
 
 
 
 

(b) Compression index 
 
 
 
 
 
 
 
 
 
 

(c) Consolidation coefficient at confining pressure of 150 kPa 

Figure 5  Frequency distribution of soil constants 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Relationship between normalized water content and 
undrained shear strength 

 
Table 1  Hyper-parameters in the model of deep neural network 

Parameter name Method or value 

Method of scale transformation Min-max 
normalization 

Number of hidden layers 4 
Number of neurons in each hidden layer 200 
Activation function ReLU function 
Optimization method of weight parameters Adam 
Rate of dropout 0.1 
 
Table 1 lists the hyper-parameters to be used in the deep neural 
network (DNN) model. As a pre-processing of numeric data, a 
method of scale transformation called the min-max normalization 
was applied for non-dimensionalization. The structure of DNN 
consists of 4 hidden layers with 200 neurons respectively, and the 
rectified linear activation function (ReLU) is applied for 
transforming the summed weighted input from the node into the 
activation of the node or output for that input. For the optimization 
of weight parameters in a neural network, the Adam algorithm 
proposed by Kingma and Ba (2014) is applied. This algorithm is an 
extension to the conventional stochastic gradient descent algorithm 
and has been recently widely adopted in the field of DNN in recent 
years. In addition, to enhance generalization performance, it is 
important for machine learning to avoid overfitting, which is a 
condition in which the data set is overly fitted only to a specific 
characteristic data set. Regarding this problem, a method of dropout 
proposed by Srivastava et al. (2014), the concept of which is to 
randomly drop units (along with their connections) from the neural 
network during training, is applied. The method of dropout has been 
demonstrated to be highly effective in improving the performance of 
a neural network and has been widely adopted in recent years. 

In the process of machine learning, 80% of training data to be 
randomly selected were used for training to optimize the weight 
parameters, and the remaining 20% were used for model validation 
based on the hold-out method (Sammut and Webb, 2017), which is 
widely applied as a validation method evaluating the generalization 
performance of machine learning models. 

Comparisons of the actual values with the estimated results of 
AI focusing on compression index and liquid limit as representative 
soil parameters are shown in Figure 7. The mean error of the 
difference between the actual and estimated values with respect to 
the validation data was evaluated to be 0.02 for the compressive 
index and 3.7 % for the liquid limit, which is considered highly 
accurate. Figure 8 shows examples of estimated results of an AI 
model trained using only numeral variables such as soil source 
information and wet density without using photographed images as 
input data. The average errors for the AI model without images are 
quite large, indicating that image information is necessary to 
improve the accuracy of the estimation. At this time, it is not yet 
clarified how the color and texture of clay in an image contribute to 
the estimation of soil properties and how much the input parameters 

0

5

10

15

20

25

20 40 60 80 100 120 140

Fr
eq

ue
nc

y

Liquid limit (％)

Liquid limit

0

5

10

15

20

0.10 0.25 0.40 0.55 0.70 0.85 1.00 

Fr
eq

ue
nc

y

Compression index

Compression index

0

5

10

15

20

5 25 45 65 85 105 125

Fr
eq

ue
nc

y

Consolidation coefficient (m2/year)

Consolidation coefficient at 150 kPa

y = 1.0388x-4.228

0.01

0.1

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5U
nd

ra
in

ed
 sh

ea
r s

tre
ng

th
: 
c u

(k
N

/m
2 )

Normalized water content: w/wL

cu = 1.039 (w/wL) -4.228 

cu = 1.4 (w/wL) -4.5 

by Tsuchida et al. (2002) 



                  Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 54 No. 3 September 2023 ISSN 0046-5828 
 

 

70 

are quantitatively weighted in the estimation, which should be 
addressed in future works. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Compression index 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Liquid limit 

Figure 7  Comparisons of true values with the AI-estimated 
results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Compression index 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Liquid limit 

Figure 8  Comparisons of true values with the estimated results 
by AI without use of images 

2.2 Deposition Shape Analysis 

2.2.1 Overview 

An analysis model of the deposition shape at the seabed of soils 
dumped from hopper barges for reclamation was proposed in 
Kumagai et al. (2020a). In this model, after dividing the hold of a 
barge into small compartments as shown in Figure 9(a), the 
probability density function f (x,y) shown in Equation (3) is used to 
evaluate the spreading of soil (deposition shape at the bed) from 
each compartment of a barge. The overall shape of the soil deposited 
at the bed for each dumping is then expressed as the sum of the 
deposition shapes of soil derived from the small compartments. 

f(x,y) = exp [-(x2 + y2) / (2σ2)] / (2πσ2)                           (3) 

where σ is the standard deviation (diffusion parameter), which 
governs the extent of spreading at the seabed. 

The standard deviation σ is related with undrained shear strength 
of soil, which is estimated by the AI model. After multiple dumping 
of soils, the whole deposition shape and the composition of internal 
soil layers, which are shown in Figure 9(b), are estimated by the 
model. In addition, the information on soil properties estimated by 
AI model for each dumping of soil is stored in three-dimensional 
coordinates on the basis of the results of deposition shape analysis. 
 
2.2.2 Deposition Characteristics and Diffusion Parameter 

In order to clarify the deposition characteristics of clayey soils 
dumped from a hopper barge and to develop an analysis model of 
the shape to be expressed by Equation (3), centrifuge model 
experiments were conducted. The set-up of the experiments is 
shown as Figure 10.  A 1/90 model (466 mm long × 113 mm wide × 
68 mm high) of a hopper barge with a loading capacity of 1,500 m3 
was used in the experiment, and centrifugal acceleration of 90 G 
was applied. For the barge model, a device that can open the bottom 
of the barge was introduced to simulate the actual dumping of 
soils. 
 
 

 
 
 
 
 
 
 
 
 
 
 
(a) Deposition shape of soil dumped from each compartment 
 

 
 
 
 
 
 
 
(b) Deposition shape and internal layers of soils formed 

Figure 9  Schematic view of deposition shape analysis 
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(a) Barge model (1/90 scale) 
 
 
 
 
 
 

(b) Situation after dumping clay 
Figure 10  Implementation of centrifugal model experiments 

introduced to simulate the actual dumping of soils. 
 

It is also important to set the conditions of water depth considering 
the distance from the barge bottom to the bed in the assumed 
conditions at a practical site. The underwater falling behavior of a 
material dumped from a barge is expressed by Equation (4), which 
is a one-dimensional equation of motion given in Kumagai et al. 
(2020b). 

(M + ρw km V) dv/dt = 0.5ρw CD Av2 + (M - ρwV) g                (4) 

where M is Mass of object, ρw is fluid density, km is added mass 
coefficient, V is volume of the object, A is projected area of the 
object, v is falling velocity of the object, CD is drag coefficient. 

In the analysis of falling behavior, it is assumed that cohesive 
soils dumped from the barge fall as an integral lump without 
segregation. A fall velocity at a depth of 20 m in water under an 
actual condition corresponds to the fall velocity at a depth of 222 m 
in water or 30 mm in air under the 90 G centrifuge experimental 
condition assuming that the added mass and drag coefficients are 
standard values of 0.5 and 1.0 respectively. A fall velocity at a depth 
of 40 m in water under an actual condition corresponds to the 
velocity at a depth of 50 mm in air under 90 G centrifugal condition. 

In the experiments, four types of clayey soils were used, and the 
water contents and liquid limits of the soils are shown in Table 2. As 
shown by Equation (1), once the values of wet density and liquid 
limit of soil are obtained, the undrained shear strength can be 
estimated on  

 
 
 
 
 
 
 
 
 
 
 

(a) Specimen A (Excavated clay on land) 
 
 
 
 
 
 
 
 
 
 

(b) Specimen D (Dredged clay) 
Figure 11 Comparison of deposition shapes for the cases with 

different dumping heights 

Table 2  Physical properties of soils to be used in the experiment 

Specimen Source Natural  
water content 

Liquid 
limit 

A Excavated clay 
 on land 

15.0% 29.9% 
B 17.1% 37.5% 
C Dredged clay 57.3% 57.1% 
D 43.1% 50.4% 

 
Table 3  List of experimental cases 

Case Specimen Dumping 
height Water content of soil Falling 

condition 

1 

A 
30 mm 

15.0%  
(Natural water content) 

In air 2 29.9% (1.0* wL) 
3 44.9% (1.5* wL) 
4 50 mm 15.0% 
5 222 mm 29.9% (1.0* wL) In water 

6 

B 
30 mm 

17.1%  
(Natural water content) 

In air 7 37.5% (1.0* wL) 
8 56.3% (1.5* wL) 
9 50 mm 17.1% 
10 222 mm 37.5% (1.0* wL) In water 

11 

C 
30 mm 

57.3%  
(Natural water content, 
   almost same as wL) In air 

12 85.7% (1.5* wL) 
13 50 mm 57.3% 
14 222 mm 57.1% (1.0* wL) In water 

15 

D 
30 mm 

43.1% 
 (Natural water content) 

In air 16 48.3% (1.0* wL) 
17 75.6% (1.5* wL) 
18 50 mm 43.1% 
19 222 mm 48.3% (1.0* wL) In water 
 
the basis of the normalized water content using water content 
calculated from wet density. The experimental cases were set to 
compare the behaviors in water and in air under equivalent 
conditions of dumping height in terms of fall velocity of soil at 
reaching the bottom. The conditions of water content were varied to 
three conditions with respect to liquid limit. The experimental cases 
are listed in Table 3. 

Figure 11 shows the comparison of the deposition shape under 
the condition of in-air dumping at different heights for the 
specimens A and D. The conditions corresponding to the dumping 
of soils at water depths of 20 m and 40 m in actual scale were 
extracted. In all cases, not just the specimens A and D, it was 
confirmed that the dumping height, which causes a difference in the 
fall velocity of soil, had little effect on the deposition shape 
indicating that it is primarily affected by the strength of soils. 

The analysis model is applied to reproduce the deposition shapes 
obtained in the experiments, setting appropriate values of standard 
deviation. Figure 12 shows the comparisons between the results of 
experiments and analyses for the cases of different water contents 
(undrained shear strengths) of soil. The value of standard deviation 
in Equation (3) is expected to be set appropriately in relation to the 
undrained shear strength of soil. By examining appropriate values of 
standard deviation σ while reproducing the experimental results, 
including other cases, the relation with the undrained shear strength 
of soil is obtained as shown in Figure 13 and by Equation (5). 

σ = -2.189 cu + 12.16                                      (5) 
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Once the value of the normalized water content, which is the ratio of 
water content to liquid limit, is obtained, the undrained shear 
strength can be estimated by use of Equation (1), and the deposition 
shape analysis can be performed by inputting the value of the 
standard deviation to be estimated by use of Equation (5) into the 
model. 
 
2.3 Consolidation Settlement Analysis 

As proposed in Kumagai et al. (2020a), a quasi-three-dimensional 
analysis is carried out by dividing the original and reclaimed 
grounds into three-dimensional elements, as shown in Figure 14, on 
the basis of integration of one-dimensional consolidation analyses 
with the cc (compression index) method. In particular, after the 
deposition shapes of dumped soils at the seabed, including the 

 
 
 
 
 
 
 
 
 
 
 
 

(a) Specimen A (Excavated clay on land) 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Specimen D (Dredged clay) 

Figure 12  Reproduction of experimental results by analysis 
model for cases with different water contents 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13  Relationship between undrained shear strength and 

standard deviation in the analysis model 
 
composition of internal layers, are obtained by the deposition shape 
analyses, the newly formed and original grounds are divided into 
three-dimensional elements. The consolidation settlement analysis is 
performed by inputting the consolidation constants estimated by the 
AI model and stored in three-dimensional coordinates. 
 
 
 
 
 
 

The settlement is calculated by the following method: 
a) The amount of settlement is calculated independently for each 

soil element. The total settlement of the ground surface is 
obtained by summing the settlement of each element. 

b) Vertical stresses acting on each element in the ground are 
calculated using wet density of soils following Boussinesq's 
equation, which assumes the ground to be elastic. 

c) The consolidation rate in multi-layered ground may be 
analyzed by obtaining the equivalent coefficient of 
consolidation of the ground without vertical drains installed, or 
by using Barron's theory in case that drains are installed. 

 
3. APPLICABILITY OF ANALYSIS MODELS TO  
 ACTUAL RECLAMATION SITE 

The analysis models that consist of the proposed reclamation 
management system were developed through accumulated soil test 
data and experiments by use of a geotechnical centrifuge in 
Kumagai et al. (2020); however, the system was still relatively 
conceptual and its applicability in actual reclamation works was not 
yet verified. In this study, site investigation data, such as soil 

 
 

 
 
 
 
 
 
 
 

Figure 14  Schematic view of three-dimensional element division 
of the ground 

 
parameters of reclaimed materials, deposition shapes of dumped 
soils on top of seabed by bathymetry survey, monitored 
consolidation settlements, etc., which were obtained during and after 
reclamation process in an actual project, has been utilized to verify 
the validity of analyzed results. In this actual project, clayey soils, 
originated from various dredging and excavating sources, have been 
used as reclaimed material in an area of 400 m × 600 m. The 
practical applicability of the models is verified by comparing site 
investigation data with the results analyzed by the models 
reproducing this reclamation work. 

 
3.1 Deposition Shape Analysis 

The deposition shape analyses were performed to reproduce the 
measured deposition shape of the 1.25 million m3 reclaimed in 6 
months by 0.50 million m3 of dredged clays and 0.75 million m3 of 
excavated clays. The reclamation was carried out by dumping of 
soils 1,000 times by hopper barges, which have loading capacities of 
1,000 m3 and 1,500 m3. 

In the data management system on soil dumping, the information 
on the plane coordinates and bow direction of a barge at soil 
dumping, and the source, photographed image, measured wet 
density and tactile firmness of soil is recorded. The undrained shear 
strength of soil can be estimated using the normalized water content 
based on the liquid limit estimated by AI and the water content 
converted from the wet density measured on the barge. The standard 
deviation (diffusion parameter) as the input in the model is obtained 
by Equation (5), and the analysis is performed. 

The comparisons between the site measurements and analyzed 
results by shape model on the deposition shapes in the progress of 
reclamation are shown in Figure 15. Figure 16 shows a comparison 
at the cross section to show the profile of maximum deposition 
height in x-direction, indicating that the actual deposition shape can 
be estimated by the proposed analysis with high accuracy. 
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(a) Measurement 
 

 
 
 
 
 
 
 
 
 

(b) Analyzed results 

Figure 15  Comparison between the measured and analyzed 
 

 
results on deposition shapes (after 6 months) 

 
 
 
 
 
 
 
 

Figure 16 Comparison of measurement and analyzed results on 
deposition height 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) St. A                                        (b) St. B 

Figure 17  Comparison between the CPT tests and analyzed 
results on the profile of undrained shear strength 

 
Immediately after reclamation, i.e., before any significant change in 
soil properties, cone penetration tests (CPT) were conducted at two 
locations and the undrained shear strength cu was evaluated from the 
cone tip resistance qt and the total vertical stress σv0 using a formula 
of Equation (6) proposed by Robertson (2012), which is widely 
applied. 

cu = (qt - σv0) / Nkt                                            (6) 

where Nkt is the cone coefficient (set to 15). 

At two locations of St. A and St. B in the reclamation site, a 
comparison of the profiles of undrained shear strength in depth 
between the results evaluated by cone penetration tests and analyses 
are shown in Figure 17. Although evaluating undrained shear 
strengths from CPT tests by use of an empirical formula is not 
precise, it is confirmed that the distribution of undrained shear 
strength inside the reclaimed layer tends to be generally in 
agreement with the measured values in Figure 17, indicating a 
certain degree of validity of the proposed models of the AI 
estimation of soil properties and the deposition shape analysis.  

By using the models, the total deposition shape and the 
composition of internal soil layers can be determined. In addition, 
the property information estimated by the AI model can be labeled 
and stored in three-dimensional coordinates for each soil dumping. 
 
3.2 Consolidation Settlement Analysis 

Since the deposition shape analysis is carried out for each dumping 
of soil from a hopper barge, each dumped soil is labeled with an ID 
number of layer, and the composition of soil layers on the seabed 
shown as Figure 9(b) can be output simultaneously in three-
dimensional coordinates with the information on soil properties 
measured on a barge or estimated by the AI model such as water 
content (or wet density), liquid limit, compression and 
recompression indexes, consolidation coefficient and undrained 
shear strength. After conducting AI estimation of soil properties and 
deposition shape analysis for each dumped soil, the formed ground 
is divided into three-dimensional elements as shown in Figure 14, 
and settlement analysis can be performed by inputting the 
consolidation constants for each element estimated by the AI model, 
in accordance with assumed loads. 

The work sequences of reclamation and ground improvement are 
shown in Figure 18. After reclamation was completed for 
approximately 10,000 m2 with average reclamation height of 24.5 
m, the settlement analysis was conducted considering future 
surcharge loads during ground improvement by consolidation. 
Consolidation parameters for this settlement analysis were obtained 
from output of AI analysis and deposition shape analysis. Regarding 
ground investigation after reclamation, six surface settlement plates, 
SP-01 to SP-06, were installed to monitor the actual behaviors of 
consolidation settlement, and soil investigations (one boring survey 
and one cone penetration test (CPT) were conducted at the same 
location as SP-03 to investigate actual soil parameters. 
 
3.2.1 Properties of Deposited Soil 

Before improving the reclaimed ground, undisturbed samples of 
reclaimed soils were taken for every 3 m depth at the location of the 
boring survey, and laboratory tests were carried out to determine 
physical and consolidation properties of the soil samples. In 
particular, the soil parameters of wet density, water content, 
compression and recompression indexes, consolidation yield stress, 
and consolidation coefficient were obtained by the tests, and they 
were compared with analyzed results at the corresponding depths.  

Figure 19 shows comparisons of soil parameters in depth 
between the test results and the results of the AI estimation of soil 
properties and deposition shape analysis at the location of SP-03. 
The water content is calculated from wet density measured on a 
barge before soil dumping, and the test results for sampled soils 
generally agree with the analyzed results, indicating the validity of 
the analysis. Compared to the analyzed results, the test results 
tended to be smaller. Possibly this was because the reclaimed 
ground was affected by self-weight consolidation after the 
deposition at the seabed. The results of tests and analyses were in 
general agreement on consolidation constants of compression and 
recompression indexes and consolidation coefficients, which shows 
the validity of the AI estimation of soil properties and deposition 
shape analysis. 

 The fact that the reclaimed ground may be affected by self-
weight consolidation after the deposition at the seabed suggests that 
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a method for estimating consolidation yield stresses that considers 
the initial overburden pressure and over-consolidation ratio (OCR) 
needs to be investigated. Figure 20 shows the comparisons of the 
consolidation yield stress between the test results, the values directly 
estimated by the AI model, and the analyzed results assuming the  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18  Work sequences in reclamation and ground 

Improvement 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Water content                      (b) Compression index 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) Recompression index          (d) Consolidation coefficient at 

                                                          confining press. of 150 kPa 

Figure 19  Comparison of soil parameters in depth between the 
results of tests and analyses at SP-03 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20  Comparison of consolidation yield stress between the 
results of tests and analyses at SP-03 

 
change to normal consolidation state with OCR = 1. In the analysis, 
the initial overburden pressure is calculated by the distribution of 
estimated wet density of soils. The analyzed consolidation yield 
stresses, which increase with depth, showed a good agreement with 
the soil investigation results, which would conclude that the 
assumption of normal consolidation state is generally valid, while 
the estimated values by AI are significantly small. Based on these 
findings, a method is employed for estimating the consolidation 
yield stress to be input to the settlement analysis by considering the 
initial overburden pressure and over-consolidation ratio (OCR). 
 
3.2.2 Consolidation Settlement 

In the previous section, the validity of the AI estimation of soil 
properties and deposition shape analysis is confirmed by comparing 
the consolidation constants obtained from soil tests. As the next 
step, settlement analysis was conducted on the basis of the estimated 
composition of internal soil layers labeled with consolidation 
constants. For initial conditions of reclaimed ground before 
imposing surcharge loads, the state of normal consolidation with 
OCR = 1 was assumed according to the results of the previous 
section. The analysis reproduced the conditions of reclamation with 
the soil model shown in Figure 21 where prefabricated vertical 
drains were installed at 1.9 m spacing in a square arrangement, and  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21  Soil model in the reclamation area 
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(a) At the top of reclamation fill 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) At the top of original ground 

Figure 22  Planar distribution of analyzed final settlement 
 

surcharge was constructed at a height of approximately 13.5 m with 
a load of 240 kPa. Since only the 3 m thick diluvium clay lies as a 
compressible layer in the original ground, the consolidation 
settlement is expected to occur mainly in the reclamation layer. 

Figure 22 shows the planar distribution of analyzed final 
settlement at the tops of reclamation fill and original ground. It is 
confirmed that significant settlement appears in the reclaimed layer 
rather than in the original ground, and there is a considerable 
variation in the total settlement due to differences in soil properties. 
Figure 23 compares measured and analyzed settlement curves at the 
top of fill, including at SP-03, where the results of soil tests and 
analyses were compared in details. As shown in this figure, after the 
reclamation by clayey soils was completed, sand coverage was 
placed at a thickness of 2 m, and surcharge was constructed taking 
approximately 50 days for ground improvement by consolidation. 

Since consolidation rate of ground with drains installed is 
analyzed by use of Barron's simplified theory, the settlement 
behavior of the ground is analyzed with reference to the start of the 
surcharge construction while adjusting input loads acting on the 
ground to match the actual loads. In the figure, it turns out that the 
analyzed settlement behaviors generally agree with the measured 
data, though the consolidation rate of ground is slightly smaller, 
which might be due to slightly smaller estimate of consolidation 
coefficients by the AI model. 

Figure 24 show the comparison of final settlements between the 
site measurement and analysis at all locations of SP-01 to SP-06. It 
is confirmed that measured settlements are in good agreement with 
analysis results, with an error of only 10%, which would confirm the 
validity of the analyses. 
 
4. CONCLUSIONS 

A reclamation management system has been developed integrating 
the artificial intelligence (AI) estimation of soil properties, the 
deposition shape analysis, and the consolidation settlement analysis 
for clayey soils dumped from a hopper barge for reclamation. In 

particular, the consolidation parameters and undrain shear strengths 
of clayey soils, which are loaded on hopper barges and dumped for 
reclamation, can be estimated by the AI model from information on 
soil source, wet density and photographed images without detailed 
soil testing. 

In this study, the validity of the models in practical application  
 
 
 
 
 
 
 
 
 
 
 
 

(a) Location at SP-01 
 
 
 
 
 
 
 
 
 
 
 

(b) Location at SP-03 

Figure 23  Comparison of settlement behaviors under surcharge 
load between the measurements and analyses 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24  Comparison of final settlements between 
measurements and analyses for all locations of SP-01 to SP-06 

 
has been verified by reproducing actual reclamation work and 
comparing the measured data with the results analyzed by the 
models. Especially, the validity of the AI estimation of soil 
properties and deposition shape analysis was confirmed by 
comparing soil parameters obtained from soil tests and reproductive 
analyses after reclamation, as well as the deposition shapes during 
reclamation. Since it is found that the reclaimed ground may be 
affected by self-weight consolidation after the deposition at the 
seabed, a method is employed for estimating the consolidation yield 
stress to be input to the settlement analysis by considering the initial 
overburden pressure and over-consolidation ratio (OCR), instead of 
using the estimated values by AI. The validity of the settlement 
analysis is also confirmed by reproducing the measured settlements 
with an error limited to only 10 %. 
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In developing the AI model, the machine learning was 
performed with a limited number of cases (from 40 to 60) of soil test 
results. Hence, to improve the generalization and practical 
performance of the AI model, machine learning with use of a larger 
amount of training data is necessary as a future task. In addition, the 
analyzed consolidation rate may be slightly smaller than the actual 
rate. This might be because a single value is used for the 
consolidation coefficient under a representative confining pressure 
of 150 kPa, and the analysis model needs to be improved to vary the 
value according to actual confining pressure as a future task. 

By using the proposed system, of which practical applicability 
has been verified from actual reclamation project, the quality of 
reclamation is expected to be improved and required construction 
duration would also be shortened since the three-dimensional 
distribution of soil properties in the reclaimed ground could be 
estimated with considerable accuracy without any detailed soil 
investigations required. In addition, stability analysis and 
consolidation settlement can be conducted at any time during and 
after construction, leading to the realization of optimal design and 
construction management. 
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