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ABSTRACT: In use of clayey soils for reclamation, the stability against slip and future consolidation settlement should be examined during
and after reclamation. For these purposes, a practical reclamation management system has been developed based on three types of analysis:
artificial intelligence (Al) estimation of soil properties such as compression index, consolidation coefficient and undrained shear strength,
deposition shape analysis; and consolidation settlement analysis for clayey soils dumped from a hopper barge. The Al estimation of soil
properties is characterized by use of a convolutional neural network (CNN) based on information such as soil source, wet density, and
photographed image obtained before reclamation works. In this study, the validity of each analysis model has been verified on an actual
reclamation project by use of measured data such as deposition shape of dumped soils on the seabed, soil properties in the reclaimed ground

and consolidation settlement after reclamation and soil improvement.
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1. INTRODUCTION

When land is reclaimed from the sea for the construction of a port,
airport or other development, sandy soils are generally used as
ground material. Meanwhile, much of the clayey soil generated by
dredging of navigation channels and mooring basins etc. is disposed
of in sediment disposal sites. In view of sustainable development of
society, it is desirable to utilize clayey soils beneficially, which
would reduce waste and minimize the use of sand resources for
reclamation fill. Regarding beneficial utilization of dredged clayey
soils, many geotechnical methods have been proposed in
conventional studies such as stabilization by cement mixing (e.g.,
Kitazume, 2017), stabilization by mixing with steel slag (Hirai et al.,
2012), lightweight treatment by adding cement and air bubbles (e.g.,
Tsuchida and Egashira, 2017), mechanical dewatering (e.g., Kasama
et al., 2007), and fabrication of particles solidified by cement
addition (e.g., Shinsha and Kumagai, 2018). Furthermore, for
extending the available period of a sediment disposal site, bulk
compression for dredged clays by use of vacuum consolidation
method has been proposed by Shinsha and Kumagai (2014).

Regarding the use of dredged clayey soils for reclamation, Kit et
al. (2020) reported practical examples for the construction of
container terminals at the Port of Singapore. The use of clayey soils
for reclamation is considered advantageous since large quantities of
soil can generally be accepted. In view of the dredged materials that
continue to be generated to maintain existing ports, the use of clayey
soils for reclamation material is expected to become more prominent
in the future’s port maintenance and development. For land that is
reclaimed with soft clayey soils, the stability against slip failure
during construction and future consolidation settlement of the
ground are concerns as engineering problems. The properties on
consolidation and shear strength of soft clays to be reclaimed should
be ascertained during construction stage; however, it is not practical
to conduct detailed in-situ investigations for the formed ground or
various soil tests on the soils before reclamation is completed.

In recent years, artificial intelligence (Al) techniques have been
utilized in various fields for the treatment of large amounts of data,
immediate and accurate evaluation and prediction, labor-saving
automatic operation, etc. In the field of geotechnical engineering,
conventional studies on application of Al were reviewed by
Baghbani ef al. (2022). In particular, Hanna et al. (2007) proposed a
neural network model, which learns the relationship between soil
and seismic parameters, to assess nonlinear liquefaction potential of
soil. Abdalla et al. (2015) and Chakraborty and Goswami (2017)

proposed neural network models to predict the factor of safety
against slope failure in clayey soils based on the inclination and
height of slope, the angle of internal friction, cohesion and unit
weight of soil, the coefficient of pore water pressure, etc. Jang and
Topal (2013) focused on the effects of geological parameters to the
overbreak phenomenon in tunnel drilling, and applied a neural
network to predict overbreak by use of rock mass rating data. As for
an Al model with the performance of image recognition, Hata
(2022) applied a multilayer deep neural network (DNN) proposed
by Krizhevsky et al. (2012) based on a model of the convolutional
neural network (CNN) for image recognition, which was originally
proposed by LeCun et al. (1999), to evaluate a mountain tunnel’s
rock mass. The rock mass properties such as degree of weathering,
alteration and fracture are estimated from the inputting images of the
excavation surface of the mountain tunnel.

The authors proposed a reclamation management system that
integrates the Al model to estimate soil properties with the
deposition shape analysis model and settlement analysis model in
Kumagai et al. (2020a). The AI model, which is based on
convolutional neural network (CNN), estimates the consolidation
properties of clayey soils that are loaded on a hopper barge and
dumped for reclamation, from information on soil source, wet
density, and photographed images. The main analysis models in the
proposed system were developed through accumulated soil test data
and experiments by use of a geotechnical centrifuge; however, the
system was still relatively conceptual and its applicability in actual
reclamation works was not yet verified. In this study, the validity of
the models is verified by reproducing actual reclamation work and
comparing the analyzed results with the various measured data
including deposition shape of dumped soils on the seabed, soil
properties in the reclaimed ground, and consolidation settlement
after reclamation and soil improvement works.

2. RECLAMATION MANAGEMENT SYSTEM

For reclaiming clayey soils such as dredged clay and excavated clay,
the direct dumping method is efficiently applied by use of a hopper
barge together with a pusher boat as shown in Figure 1. After soils
are loaded into the hopper of a barge and transported to the dumping
zone, the hopper is opened to dump the soils. The reclamation
management system proposed in Kumagai et al. (2020a) has a
predictive function of analysis of consolidation settlement of the
reclaimed ground based on the Al estimation of properties of clayey
soils and the deposition shape of dumped soils at the seabed, which
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Figure 1 Reclamation method of clayey soils by use of barge
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Figure 2 Flowchart of a series of analyses in the reclamation
management system

accumulate to form the composition of internal soil layers in the
ground. Figure 2 shows the flowchart of a series of analyses in the
reclamation management system. First, an Al model is used to
estimate soil properties such as the consolidation constant and the
undrained shear strength for clayey soils to be dumped from a
hopper barge. Next, the shear strength of soil estimated by the Al
model is taken into account in the analysis of the deposition shape of
the dumped soils at the seabed, and finally, settlement analysis is
performed based on the estimated consolidation constants, the
deposition shapes, and the composition of internal layers in the
reclaimed ground.

2.1 Al Estimation of Soil Properties
2.1.1 Overview

As proposed in Kumagai et al. (2020a), the concept of model
structure of machine learning using a CNN technique is shown in
Figure 3. Once the information on soil source, wet density,
photographed images, and firmness (hard or soft) based on tactile
feeling is input in the model, the soil parameters such as
compression and recompression indexes, consolidation coefficient
and undrained shear strength are analyzed based on the correlations
obtained in advance by machine learning with training database. The
information on soil source means the origin location of soil (e.g.,
locations of dredging and onshore excavation).

In the processing of the first part of machine learning, feature
vectors are extracted from the photographed image, and the
extracted feature vectors and other scalar information are integrated.

In the latter part, the target variables are estimated by the deep
neural network with multiple hidden layers based on the integrated
data obtained from the previous process. With regard to the
processing of image data in the first part, extracting valid features
from images is important. A method of transfer learning is
introduced utilizing an existing model that has already been trained
by use of a huge data set for extracting valid features from images.
In particular, the so-called VGG16 to be classified as a VGG model,
which is defined as a model developed by the Visual Geometry
Group (VGG) at Oxford University, proposed by Simonyan and
Zisserman (2015) is utilized. Once new data are input to the model,
which has been developed by optimizing weight parameters in the
deep neural network so as to minimize estimation error using
training data, the corresponding values of soil parameters are output
as the objective variables.

2.1.2 Applicability of Model

The AI model were developed through machine learning of
accumulated soil test data. In order to obtain training data for
machine learning, 40 cases of standard consolidation tests, 60 cases
of liquid limit and plastic limit tests, and vane shear tests for the
cases of liquid limit and plastic limit tests were carried out. Dredged
marine clays and excavated clays on land are expected to be fill
materials for the current reclamation project in almost equal
proportions. The specimens of soil tests were photographed from a
distance of about 50 cm using a common digital camera with about
10 million pixels. The examples of the images are shown in Figure
4.

At this point, we considered that it was necessary to increase the
amount of training data for implementing effective machine
learning. The number of photographed images was artificially
increased by various processes of multiple cropping, rotating,
flipping up/down or left/right, adjusting brightness and contrast,
blurring, sharpening, etc. In addition, as the number of
photographed images is increased by the above processes, noise is
added to the associated input/output numeric data, effectively
increasing the variety of numeric data. To add noise to numeric data,
a method of statistical treatment was introduced in which the true
value obtained from a soil test was taken as the mean value and the
data was varied to follow a normal distribution with a coefficient of
variation of 0.1. The machine learning was conducted by increasing
the number of data points by 400 times, to 16,000, through the
above data processing.

Figure 5 shows the frequency distributions of the soil parameters
on consistency and consolidation obtained by the tests. Figure 6
shows the relationship between the normalized water content w/wy,
which is water content divided by liquid limit w;, and undrained
shear strength ¢, obtained by a vane shear test. The high correlation
between these constants is obtained as Equation (1), suggesting that
if the liquid limit of a clay is known, it is possible to calculate the
water content from wet density and estimate the undrained shear
strength using the normalized water content.

Convolutional neural network (CNN) I
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Figure 3 Model structure for machine learning
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cu=1.039 (w/wy) 4228 (1)

For reference, a conventional formula of Equation (2) proposed by
Tsuchida et al. (2002) is also shown in Figure 6, indicating that the
formula proposed in this study provides results similar to those of a
conventional formula.

cu= 1.4 (whwy) -45 )

In machine learning, the information on soil source, wet density,
photographed images, and firmness (hard or soft) based on tactile
feeling was set as input data, and compression and recompression
indexes, consolidation coefficient, and liquid limit were set as
output data, the objective variables. The undrained shear strength
can be estimated by obtaining normalized water content from the
estimated liquid limit and the previously known wet density, and
using the relational equation of Equation (1).

Figure 4 Sample clay images to be used in machine learning
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Figure 6 Relationship between normalized water content and
undrained shear strength

Table 1 Hyper-parameters in the model of deep neural network

Parameter name Method or value

Method of scale transformation Min-max
normalization

Number of hidden layers 4

Number of neurons in each hidden layer 200

Activation function ReLU function

Optimization method of weight parameters Adam

Rate of dropout 0.1

Table 1 lists the hyper-parameters to be used in the deep neural
network (DNN) model. As a pre-processing of numeric data, a
method of scale transformation called the min-max normalization
was applied for non-dimensionalization. The structure of DNN
consists of 4 hidden layers with 200 neurons respectively, and the
rectified linear activation function (ReLU) is applied for
transforming the summed weighted input from the node into the
activation of the node or output for that input. For the optimization
of weight parameters in a neural network, the Adam algorithm
proposed by Kingma and Ba (2014) is applied. This algorithm is an
extension to the conventional stochastic gradient descent algorithm
and has been recently widely adopted in the field of DNN in recent
years. In addition, to enhance generalization performance, it is
important for machine learning to avoid overfitting, which is a
condition in which the data set is overly fitted only to a specific
characteristic data set. Regarding this problem, a method of dropout
proposed by Srivastava et al. (2014), the concept of which is to
randomly drop units (along with their connections) from the neural
network during training, is applied. The method of dropout has been
demonstrated to be highly effective in improving the performance of
a neural network and has been widely adopted in recent years.

In the process of machine learning, 80% of training data to be
randomly selected were used for training to optimize the weight
parameters, and the remaining 20% were used for model validation
based on the hold-out method (Sammut and Webb, 2017), which is
widely applied as a validation method evaluating the generalization
performance of machine learning models.

Comparisons of the actual values with the estimated results of
Al focusing on compression index and liquid limit as representative
soil parameters are shown in Figure 7. The mean error of the
difference between the actual and estimated values with respect to
the validation data was evaluated to be 0.02 for the compressive
index and 3.7 % for the liquid limit, which is considered highly
accurate. Figure 8 shows examples of estimated results of an Al
model trained using only numeral variables such as soil source
information and wet density without using photographed images as
input data. The average errors for the Al model without images are
quite large, indicating that image information is necessary to
improve the accuracy of the estimation. At this time, it is not yet
clarified how the color and texture of clay in an image contribute to
the estimation of soil properties and how much the input parameters
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are quantitatively weighted in the estimation, which should be
addressed in future works.
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2.2 Deposition Shape Analysis
2.2.1 Overview

An analysis model of the deposition shape at the seabed of soils
dumped from hopper barges for reclamation was proposed in
Kumagai et al. (2020a). In this model, after dividing the hold of a
barge into small compartments as shown in Figure 9(a), the
probability density function f(x,y) shown in Equation (3) is used to
evaluate the spreading of soil (deposition shape at the bed) from
each compartment of a barge. The overall shape of the soil deposited
at the bed for each dumping is then expressed as the sum of the
deposition shapes of soil derived from the small compartments.

fxy) = exp [-(* +3%) / (26%)] / (2n0?) 3

where o is the standard deviation (diffusion parameter), which
governs the extent of spreading at the seabed.

The standard deviation o is related with undrained shear strength
of soil, which is estimated by the Al model. After multiple dumping
of soils, the whole deposition shape and the composition of internal
soil layers, which are shown in Figure 9(b), are estimated by the
model. In addition, the information on soil properties estimated by
Al model for each dumping of soil is stored in three-dimensional
coordinates on the basis of the results of deposition shape analysis.

2.2.2 Deposition Characteristics and Diffusion Parameter

In order to clarify the deposition characteristics of clayey soils
dumped from a hopper barge and to develop an analysis model of
the shape to be expressed by Equation (3), centrifuge model
experiments were conducted. The set-up of the experiments is
shown as Figure 10. A 1/90 model (466 mm long x 113 mm wide X
68 mm high) of a hopper barge with a loading capacity of 1,500 m?
was used in the experiment, and centrifugal acceleration of 90 G
was applied. For the barge model, a device that can open the bottom
of the barge was introduced to simulate the actual dumping of
soils.

—Z ]

Hopper barge

Compartments a /7 - <X\

Seabed

(a) Deposition shape of soil dumped from each compartment

Layer 4:
Soil dumped for the 4% time
Layer 1:
Soil dumped
for thel® time

Layer 3: Soil dumped for the 3 time

Layer 2: Soil dumped for the 2" time

Total deposition

(b) Deposition shape and internal layers of soils formed

Figure 9 Schematic view of deposition shape analysis
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(b) Situation after dumping clay
Figure 10 Implementation of centrifugal model experiments
introduced to simulate the actual dumping of soils.

It is also important to set the conditions of water depth considering
the distance from the barge bottom to the bed in the assumed
conditions at a practical site. The underwater falling behavior of a
material dumped from a barge is expressed by Equation (4), which
is a one-dimensional equation of motion given in Kumagai et al.
(2020b).

(M + py ki V) dv/dt = 0.5p,, Cp AV* + (M - pyV) g 4)

where M is Mass of object, p, is fluid density, k, is added mass
coefficient, V' is volume of the object, 4 is projected area of the
object, v is falling velocity of the object, Cp is drag coefficient.

In the analysis of falling behavior, it is assumed that cohesive
soils dumped from the barge fall as an integral lump without
segregation. A fall velocity at a depth of 20 m in water under an
actual condition corresponds to the fall velocity at a depth of 222 m
in water or 30 mm in air under the 90 G centrifuge experimental
condition assuming that the added mass and drag coefficients are
standard values of 0.5 and 1.0 respectively. A fall velocity at a depth
of 40 m in water under an actual condition corresponds to the
velocity at a depth of 50 mm in air under 90 G centrifugal condition.

In the experiments, four types of clayey soils were used, and the
water contents and liquid limits of the soils are shown in Table 2. As
shown by Equation (1), once the values of wet density and liquid
limit of soil are obtained, the undrained shear strength can be
estimated on
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Figure 11 Comparison of deposition shapes for the cases with
different dumping heights

Table 2 Physical properties of soils to be used in the experiment

Specimen  Sour Natural Liquid
pecime ource water content limit
A Excavated clay _15.0% 29.9%
B on land 17.1% 37.5%
C 57.3% 57.1%
D Dredged clay =57/ 50.4%

Table 3 List of experimental cases

. Dumping .. Falling
Case Specimen height Water content of soil condition
1 15.0%
(Natural water content)
2 N 30mm 56 904 (1.0% wy) In air
3 44.9% (1.5* wy)
4 50 mm 15.0%
5 222 mm _ 29.9% (1.0* wy) In water
6 17.1%
(Natural water content)
7 , 30mm 30 50 (1.0% ) In air
8 56.3% (1.5% wy)
9 50 mm 17.1%
10 222mm  37.5% (L.0* wp) In water
57.3%
11 (Natural water content,
30 mm almost same as wy) In air
12 C 85.7% (1.5* wy)
13 50 mm 57.3%
14 222mm  57.1% (1.0* wy) In water
0,
15 43.1%
(Natural water content)
16 30mm 48 394 (1.0% wy) In air
17 D 75.6% (1.5% wy)
18 50mm  43.1%
19 222 mm  48.3% (1.0* wy) In water

the basis of the normalized water content using water content
calculated from wet density. The experimental cases were set to
compare the behaviors in water and in air under equivalent
conditions of dumping height in terms of fall velocity of soil at
reaching the bottom. The conditions of water content were varied to
three conditions with respect to liquid limit. The experimental cases
are listed in Table 3.

Figure 11 shows the comparison of the deposition shape under
the condition of in-air dumping at different heights for the
specimens A and D. The conditions corresponding to the dumping
of soils at water depths of 20 m and 40 m in actual scale were
extracted. In all cases, not just the specimens A and D, it was
confirmed that the dumping height, which causes a difference in the
fall velocity of soil, had little effect on the deposition shape
indicating that it is primarily affected by the strength of soils.

The analysis model is applied to reproduce the deposition shapes
obtained in the experiments, setting appropriate values of standard
deviation. Figure 12 shows the comparisons between the results of
experiments and analyses for the cases of different water contents
(undrained shear strengths) of soil. The value of standard deviation
in Equation (3) is expected to be set appropriately in relation to the
undrained shear strength of soil. By examining appropriate values of
standard deviation ¢ while reproducing the experimental results,
including other cases, the relation with the undrained shear strength
of soil is obtained as shown in Figure 13 and by Equation (5).

6=-2.189¢,+12.16 (5)
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Once the value of the normalized water content, which is the ratio of
water content to liquid limit, is obtained, the undrained shear
strength can be estimated by use of Equation (1), and the deposition
shape analysis can be performed by inputting the value of the
standard deviation to be estimated by use of Equation (5) into the
model.

2.3  Consolidation Settlement Analysis

As proposed in Kumagai et al. (2020a), a quasi-three-dimensional
analysis is carried out by dividing the original and reclaimed
grounds into three-dimensional elements, as shown in Figure 14, on
the basis of integration of one-dimensional consolidation analyses
with the ¢, (compression index) method. In particular, after the
deposition shapes of dumped soils at the seabed, including the
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Figure 12 Reproduction of experimental results by analysis
model for cases with different water contents
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Figure 13 Relationship between undrained shear strength and
standard deviation in the analysis model

composition of internal layers, are obtained by the deposition shape
analyses, the newly formed and original grounds are divided into
three-dimensional elements. The consolidation settlement analysis is
performed by inputting the consolidation constants estimated by the
Al model and stored in three-dimensional coordinates.

The settlement is calculated by the following method:

a) The amount of settlement is calculated independently for each
soil element. The total settlement of the ground surface is
obtained by summing the settlement of each element.

b) Vertical stresses acting on each element in the ground are
calculated using wet density of soils following Boussinesq's
equation, which assumes the ground to be elastic.

c¢) The consolidation rate in multi-layered ground may be
analyzed by obtaining the equivalent -coefficient of
consolidation of the ground without vertical drains installed, or
by using Barron's theory in case that drains are installed.

3. APPLICABILITY OF ANALYSIS MODELS TO
ACTUAL RECLAMATION SITE

The analysis models that consist of the proposed reclamation
management system were developed through accumulated soil test
data and experiments by use of a geotechnical centrifuge in
Kumagai et al. (2020); however, the system was still relatively
conceptual and its applicability in actual reclamation works was not
yet verified. In this study, site investigation data, such as soil

"With the property information of |
1soil estimated by Al model :

Reclaimed area

11 ’
I 'AD%: z
|

||||'|IIIIII:||:|’-_ f
o) :E, __________________
: [ \:With the property information :
— 1based on boring surveys and
Original ground j laboratory tests !

Figure 14 Schematic view of three-dimensional element division
of the ground

parameters of reclaimed materials, deposition shapes of dumped
soils on top of seabed by bathymetry survey, monitored
consolidation settlements, etc., which were obtained during and after
reclamation process in an actual project, has been utilized to verify
the validity of analyzed results. In this actual project, clayey soils,
originated from various dredging and excavating sources, have been
used as reclaimed material in an area of 400 m x 600 m. The
practical applicability of the models is verified by comparing site
investigation data with the results analyzed by the models
reproducing this reclamation work.

31 Deposition Shape Analysis

The deposition shape analyses were performed to reproduce the
measured deposition shape of the 1.25 million m3 reclaimed in 6
months by 0.50 million m3 of dredged clays and 0.75 million m? of
excavated clays. The reclamation was carried out by dumping of
soils 1,000 times by hopper barges, which have loading capacities of
1,000 m? and 1,500 m?.

In the data management system on soil dumping, the information
on the plane coordinates and bow direction of a barge at soil
dumping, and the source, photographed image, measured wet
density and tactile firmness of soil is recorded. The undrained shear
strength of soil can be estimated using the normalized water content
based on the liquid limit estimated by Al and the water content
converted from the wet density measured on the barge. The standard
deviation (diffusion parameter) as the input in the model is obtained
by Equation (5), and the analysis is performed.

The comparisons between the site measurements and analyzed
results by shape model on the deposition shapes in the progress of
reclamation are shown in Figure 15. Figure 16 shows a comparison
at the cross section to show the profile of maximum deposition
height in x-direction, indicating that the actual deposition shape can
be estimated by the proposed analysis with high accuracy.

72



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 54 No. 3 September 2023 ISSN 0046-5828

20 (m)

635
4735 (m)

(a) Measurement

§ 20 (m)

4735 (m)
(b) Analyzed results

Figure 15 Comparison between the measured and analyzed

25
20

IIVAS
o[/ ]

‘ — Measurement —— Analyzed result ||
5 I I
4335 4435 4535 4635

——— |

Deposition height (m)

4735
x- coordinate (m)

Figure 16 Comparison of measurement and analyzed results on
deposition height

0 © Values converted from CPT 0 © Values converted from CPT
o Analyzed results © Analyzed results
5 B%ﬁ?o%ﬂ 5 f Ogg
s A
: e
= _ -
% 10 ngmo 10 .
A %
°co o o LRo® o g o
-15 = -15 5 g9
%ﬂ%
l& {e]
20 i 20
0 20 40 60 80 100 0 20 40 60 80 100
cu (kPa) cu (kPa)
() St. A (b)St. B

Figure 17 Comparison between the CPT tests and analyzed
results on the profile of undrained shear strength

Immediately after reclamation, i.e., before any significant change in
soil properties, cone penetration tests (CPT) were conducted at two
locations and the undrained shear strength ¢, was evaluated from the
cone tip resistance ¢, and the total vertical stress 6yo using a formula
of Equation (6) proposed by Robertson (2012), which is widely
applied.

Cu= (qt - GVO) /th (6)

where Ny, is the cone coefficient (set to 15).

At two locations of St. A and St. B in the reclamation site, a
comparison of the profiles of undrained shear strength in depth
between the results evaluated by cone penetration tests and analyses
are shown in Figure 17. Although evaluating undrained shear
strengths from CPT tests by use of an empirical formula is not
precise, it is confirmed that the distribution of undrained shear
strength inside the reclaimed layer tends to be generally in
agreement with the measured values in Figure 17, indicating a
certain degree of validity of the proposed models of the Al
estimation of soil properties and the deposition shape analysis.

By using the models, the total deposition shape and the
composition of internal soil layers can be determined. In addition,
the property information estimated by the Al model can be labeled
and stored in three-dimensional coordinates for each soil dumping.

3.2 Consolidation Settlement Analysis

Since the deposition shape analysis is carried out for each dumping
of soil from a hopper barge, each dumped soil is labeled with an ID
number of layer, and the composition of soil layers on the seabed
shown as Figure 9(b) can be output simultaneously in three-
dimensional coordinates with the information on soil properties
measured on a barge or estimated by the Al model such as water
content (or wet density), liquid limit, compression and
recompression indexes, consolidation coefficient and undrained
shear strength. After conducting Al estimation of soil properties and
deposition shape analysis for each dumped soil, the formed ground
is divided into three-dimensional elements as shown in Figure 14,
and settlement analysis can be performed by inputting the
consolidation constants for each element estimated by the Al model,
in accordance with assumed loads.

The work sequences of reclamation and ground improvement are
shown in Figure 18. After reclamation was completed for
approximately 10,000 m? with average reclamation height of 24.5
m, the settlement analysis was conducted considering future
surcharge loads during ground improvement by consolidation.
Consolidation parameters for this settlement analysis were obtained
from output of Al analysis and deposition shape analysis. Regarding
ground investigation after reclamation, six surface settlement plates,
SP-01 to SP-06, were installed to monitor the actual behaviors of
consolidation settlement, and soil investigations (one boring survey
and one cone penetration test (CPT) were conducted at the same
location as SP-03 to investigate actual soil parameters.

3.2.1 Properties of Deposited Soil

Before improving the reclaimed ground, undisturbed samples of
reclaimed soils were taken for every 3 m depth at the location of the
boring survey, and laboratory tests were carried out to determine
physical and consolidation properties of the soil samples. In
particular, the soil parameters of wet density, water content,
compression and recompression indexes, consolidation yield stress,
and consolidation coefficient were obtained by the tests, and they
were compared with analyzed results at the corresponding depths.

Figure 19 shows comparisons of soil parameters in depth
between the test results and the results of the Al estimation of soil
properties and deposition shape analysis at the location of SP-03.
The water content is calculated from wet density measured on a
barge before soil dumping, and the test results for sampled soils
generally agree with the analyzed results, indicating the validity of
the analysis. Compared to the analyzed results, the test results
tended to be smaller. Possibly this was because the reclaimed
ground was affected by self-weight consolidation after the
deposition at the seabed. The results of tests and analyses were in
general agreement on consolidation constants of compression and
recompression indexes and consolidation coefficients, which shows
the validity of the Al estimation of soil properties and deposition
shape analysis.

The fact that the reclaimed ground may be affected by self-
weight consolidation after the deposition at the seabed suggests that

73



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 54 No. 3 September 2023 ISSN 0046-5828

a method for estimating consolidation yield stresses that considers
the initial overburden pressure and over-consolidation ratio (OCR)
needs to be investigated. Figure 20 shows the comparisons of the
consolidation yield stress between the test results, the values directly

Consolidation yield stress: p. (kPa)

estimated by the Al model, and the analyzed results assuming the
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Figure 20 Comparison of consolidation yield stress between the
results of tests and analyses at SP-03

change to normal consolidation state with OCR = 1. In the analysis,
the initial overburden pressure is calculated by the distribution of
estimated wet density of soils. The analyzed consolidation yield
stresses, which increase with depth, showed a good agreement with
the soil investigation results, which would conclude that the
assumption of normal consolidation state is generally valid, while
the estimated values by Al are significantly small. Based on these
findings, a method is employed for estimating the consolidation
yield stress to be input to the settlement analysis by considering the
initial overburden pressure and over-consolidation ratio (OCR).

3.2.2 Consolidation Settlement

In the previous section, the validity of the Al estimation of soil
properties and deposition shape analysis is confirmed by comparing
the consolidation constants obtained from soil tests. As the next
step, settlement analysis was conducted on the basis of the estimated
composition of internal soil layers labeled with consolidation
constants. For initial conditions of reclaimed ground before
imposing surcharge loads, the state of normal consolidation with
OCR =1 was assumed according to the results of the previous
section. The analysis reproduced the conditions of reclamation with
the soil model shown in Figure 21 where prefabricated vertical
drains were installed at 1.9 m spacing in a square arrangement, and

+19.0 m—
Surcharge
(for ground improvement)
+7.0 —
+55m— Sand fill
PVD installed at 1.9 m spacing
to 1 m depth into the underlying :
stiff stratum ~ Multi-layered
N clayey fill
A
: Reclaimed ground
-16.7m— -
1
Sand ; Original
Diluvial clay
(SPT-N <30)

Figure 21 Soil model in the reclamation area
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Figure 22 Planar distribution of analyzed final settlement

surcharge was constructed at a height of approximately 13.5 m with
a load of 240 kPa. Since only the 3 m thick diluvium clay lies as a
compressible layer in the original ground, the consolidation
settlement is expected to occur mainly in the reclamation layer.

Figure 22 shows the planar distribution of analyzed final
settlement at the tops of reclamation fill and original ground. It is
confirmed that significant settlement appears in the reclaimed layer
rather than in the original ground, and there is a considerable
variation in the total settlement due to differences in soil properties.
Figure 23 compares measured and analyzed settlement curves at the
top of fill, including at SP-03, where the results of soil tests and
analyses were compared in details. As shown in this figure, after the
reclamation by clayey soils was completed, sand coverage was
placed at a thickness of 2 m, and surcharge was constructed taking
approximately 50 days for ground improvement by consolidation.

Since consolidation rate of ground with drains installed is
analyzed by use of Barron's simplified theory, the settlement
behavior of the ground is analyzed with reference to the start of the
surcharge construction while adjusting input loads acting on the
ground to match the actual loads. In the figure, it turns out that the
analyzed settlement behaviors generally agree with the measured
data, though the consolidation rate of ground is slightly smaller,
which might be due to slightly smaller estimate of consolidation
coefficients by the Al model.

Figure 24 show the comparison of final settlements between the
site measurement and analysis at all locations of SP-01 to SP-06. It
is confirmed that measured settlements are in good agreement with
analysis results, with an error of only 10%, which would confirm the
validity of the analyses.

4. CONCLUSIONS

A reclamation management system has been developed integrating
the artificial intelligence (AI) estimation of soil properties, the
deposition shape analysis, and the consolidation settlement analysis
for clayey soils dumped from a hopper barge for reclamation. In

particular, the consolidation parameters and undrain shear strengths
of clayey soils, which are loaded on hopper barges and dumped for
reclamation, can be estimated by the Al model from information on
soil source, wet density and photographed images without detailed
soil testing.

In this study, the validity of the models in practical application
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load between the measurements and analyses
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Figure 24 Comparison of final settlements between
measurements and analyses for all locations of SP-01 to SP-06

has been verified by reproducing actual reclamation work and
comparing the measured data with the results analyzed by the
models. Especially, the validity of the AI estimation of soil
properties and deposition shape analysis was confirmed by
comparing soil parameters obtained from soil tests and reproductive
analyses after reclamation, as well as the deposition shapes during
reclamation. Since it is found that the reclaimed ground may be
affected by self-weight consolidation after the deposition at the
seabed, a method is employed for estimating the consolidation yield
stress to be input to the settlement analysis by considering the initial
overburden pressure and over-consolidation ratio (OCR), instead of
using the estimated values by Al. The validity of the settlement
analysis is also confirmed by reproducing the measured settlements
with an error limited to only 10 %.
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In developing the AI model, the machine learning was
performed with a limited number of cases (from 40 to 60) of soil test
results. Hence, to improve the generalization and practical
performance of the Al model, machine learning with use of a larger
amount of training data is necessary as a future task. In addition, the
analyzed consolidation rate may be slightly smaller than the actual
rate. This might be because a single value is used for the
consolidation coefficient under a representative confining pressure
of 150 kPa, and the analysis model needs to be improved to vary the
value according to actual confining pressure as a future task.

By using the proposed system, of which practical applicability
has been verified from actual reclamation project, the quality of
reclamation is expected to be improved and required construction
duration would also be shortened since the three-dimensional
distribution of soil properties in the reclaimed ground could be
estimated with considerable accuracy without any detailed soil
investigations required. In addition, stability analysis and
consolidation settlement can be conducted at any time during and
after construction, leading to the realization of optimal design and
construction management.
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