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Abstract  

This research applies machine learning models to forecast water levels at the P.1 station (Nawarat Bridge), 

Chiang Mai Province, both for 6 and 9 hours in advance. The objectives are to identify suitable variables 

and to create models for forecasting water levels at the P.1 station. The study utilizes historical hourly water 

level data from the P.1 and P.67 stations, combined with Moving Average (MA) and Exponential Moving 

Average (EMA) data covering the years from 2017 to 2024, which has amounted to a total of 66,180 records. 

The dataset is divided into a training set (80%) and a testing set (20%). The experiment design involves 

creating artificial neural network models based on historical data from one station (P.1) and two stations 

(P.1 and P.67). The models consist of those using only historical data, those using historical data combined 

with MA, and those using historical data combine with EMA, resulting in a total of 12 models. The structure 

of each model was optimized to achieve the best forecasting results. The results indicate that the best model 

for the 6-hour forecasting is the P.1_6 + P.67_6 + EMA model. This model utilizes 18 input variables, with 

6 and 2 nodes in the first and second hidden layers, respectively, and 1 output node. This model achieved 

a Mean Absolute Error (MAE) of 0.0405, a Root Mean Square Error (RMSE) of 0.0578, and a coefficient 

of determination (R²) of 0.9859. For the 9-hour forecasting, the best model is the P.1_9 + P.67_9 + EMA 

model, which also employs 18 input variables, with 5 and 4 nodes in the first and second hidden layers, 

respectively, and one output node. This model achieved a MAE of 0.0562, an RMSE of 0.0776, and an R² 

of 0.9746.  Both models utilize data from two stations combined with EMA. 

Keywords:  Water Level Forecast, Machine Learning, Artificial Neural Network, Exponential Moving

Average 

1. Introduction

Flooding is considered one of the most severe 

natural disasters, causing significant damage to 

human lives, agriculture, infrastructure, and social 

and economic systems. Consequently, studies on 

flood disaster management systems and flood 

forecasting have gained increased importance. 

Accurate forecasting of flood occurrences and 

their progression poses a considerable challenge. 

Estimating water levels and flow speeds over 

extensive areas necessitates the integration of data, 

and the development of flood propagation models, 

which involve complex computations [1]. Water 

level forecasting is essential for effective water 

resource management and flood prevention [2]. 

Especially in regions like Chiang Mai, which has 

experienced severe flooding events, including the 

major flood of 2011 [3] and the 2022 flood caused 

by Tropical Storm "Noru". The storm led to a 

significant increase in the water volume of 

tributaries of the Ping River. The Regional 

Irrigation Office 1 measured and recorded the 

water level at the P.1 station on October 3rd, 2022, 

at 03:00 AM to be 4.14 meters, which was 0.44 

meters above the critical water level. With 

continuous inflow from upstream, the water level 

subsequently rose up to 4.30 meters [4]. The most 

recent flood in the city of Chiang Mai occurred on 
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October 5th, 2024, when the water level of the 

Ping River peaked at 5.28 meters. This 

measurement was 1.58 meters above the riverbank 

level and exceeded the critical flood barrier level 

of 4.20 meters by 1.08 meters [5]. This situation 

affected key economic areas within the Chiang 

Mai city municipality, leading to damage to living 

conditions, property, businesses, and urban 

infrastructure. Therefore, monitoring water levels 

in Chiang Mai’s economic zones is essential. The 

public can access information on water levels at 

the P.1 station, which is located at Nawarat Bridge, 

and this serves as the most important monitoring 

point for flood situations along the Ping River as it 

flows through the city of Chiang Mai. This station 

provides crucial indicators of flood risks that 

impact vital economic areas in the urban center. 

Currently, the Royal Irrigation Department 

utilizes data from the P.67 station through a 

telemetry system to forecast water levels at the P.1 

station. When water levels at the P.67 station 

reaches 4 meters, and with a flow rate of 530 cubic 

meters per second, it is anticipated that within 6 to 

7 hours that water will overflow into urban areas, 

resulting in the water level at the P.1 station to 

overflow the riverbank. The public can monitor 

nearby water levels through the Chiang Mai Office 

of Irrigation 1’s website, and the SWOC mobile 

application [6]. However, there is currently no 

advanced water level forecasting system that using 

machine learning models. An accurate forecasting 

system would significantly enhance preparedness 

for all stakeholders: government agencies such as 

the Royal Irrigation Department could issue timely 

flood warnings, and effectively manage reservoirs 

and drainage systems. Chiang Mai Municipality 

could also prepare pumps and flood prevention 

equipment in advance; Disaster response units 

could plan evacuations proactively; businesses 

would have the opportunity to safeguard their 

assets and inventory; hotels and tourist attractions 

could warn visitors and prepare appropriate 

responses; industrial sectors could adjust 

production and logistics accordingly; and residents 

could evacuate, move valuables to safety, 

stockpile essential supplies, and plan alternative 

routes in anticipation of flooded roads. 

Presently, machine learning models play a 

critical role in the developing of forecasting 

models, particularly in the field of hydrology [7]. 

This study involved the collection of historical 

water level data from the P.1 and P.67 stations. The 

water levels at P.1 station exhibit a strong 

correlation with those at P.67 [8], as P.67 station is 

situated on the main river and serves as the 

upstream station for P.1 station, as illustrated in 

Figure 1. 

Figure 1.  Hydrological diagram of the Ping River

Basin [9] 

Due to the geographical relationship between 

the two stations, the water level at the P.67 station 

significantly impacts the water level at the P.1 

station. Consequently, data from the P.67 station is 

a critical variable for forecasting the water levels 

at the P.1 station [8]. The utilization of upstream 

data enhances the efficiency of forecasting models 

while reducing potential errors associated with 

relying solely on data from a single station. 

Therefore, data from the P.1 and P.67 stations are 

employed to develop an hourly water level 
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forecasting model specifically for P.1 station, 

which provides forecasts at 6-hour and 9-hour 

intervals. The 6-hour forecast is designed to enable 

relevant agencies to prepare for and respond 

promptly to flooding events, while the 9-hour 

forecast serves as a mid-range projection to assist 

in flood disaster planning and efficient water 

resource management. 

Additionally, time series analysis techniques 

were employed, specifically the Simple Moving 

Average (MA) and Exponential Moving Average 

(EMA) methods to reduce data volatility and filter 

out unwanted noise [10]. The MA method 

computes a simple average, whereas the EMA 

method assigns greater weight to more recent data, 

thereby making the forecasts more responsive to 

changes [11]. The MA and EMA techniques have 

been shown to enhance the predictive accuracy of 

machine learning models, as demonstrated in [12] 

and [13]. Furthermore, the Stepwise Regression 

method was employed to identify the most 

appropriate variables for the development of the 

forecasting model. This method is efficient in 

filtering independent variables from large datasets 

by considering those with the highest correlation 

to the outcome, and systematically adding or 

removing variables to determine the optimal set. 

This improves forecast accuracy and reduces 

model complexity, enabling faster and more 

efficient computation [14]. 

This research aims to develop a machine 

learning-based model to forecast water levels 6 

and 9 hours in advance, leveraging data from MA 

and EMA of water levels at the P.1 and P.67 

stations, along with the most up-to-date data for 

model creation and testing. While previous 

forecasting models at station P.1 employed the 

Moving Average (MA) approach to improve 

prediction accuracy [15], [16], the limitations of 

this method became evident during the 2024 flood 

event, when water levels fluctuated rapidly. To 

address this, this study proposes integrating EMA 

into the forecasting process, hypothesizing that 

EMA’s ability to respond more effectively to rapid 

changes will enhance predictive accuracy. The 

results of this study will support the development 

of flood warning systems and water management 

strategies in the upper Ping River basin, enabling 

timely and effective decision-making. 

Additionally, the model will aid businesses in risk 

management, reducing asset losses, and improving 

operational efficiency and sustainability, 

particularly in transportation, goods handling, and 

production planning. 

This research aims to study the following 

objectives: 

To identify the appropriate variables for 

forecasting the water level at Station P.1 (Nawarat 

Bridge), Chiang Mai Province, using historical 

water level data from Station P.1 and P.67, as well 

as MA and EMA values. 

To develop an artificial intelligence model for 

forecasting the water level at Station P.1 for 6-hour 

and 9-hour ahead predictions, comparing the 

accuracy of the model using data from a single 

station with the model using data from two stations, 

and considering the effect of using MA and EMA 

to enhance the model's performance. 

2. Literature Review

2.1. Moving Average Techniques (MA and EMA)

Time Series Analysis is an essential tool in 

finance, economics, and engineering for 

understanding data that changes over time. Among 

the various techniques used, Moving Average is 

widely adopted to smooth out data fluctuations, 

making underlying trends more visible [10]. 

• Simple Moving Average (MA) calculates

the average of data over a specific period by 

assigning equal weights to all data points. While 

simple to use and interpret, MA tends to respond 

slowly to data changes as it gives equal importance 

to all data, regardless of recency [17]. 

• Exponential Moving Average (EMA)

assigns greater weight to more recent observations, 

allowing it to respond more quickly to new trends. 

This makes EMA particularly useful for rapidly 

changing data [11] such as stock prices or water 

levels during storms. 

2.2. Application of MA and EMA in Neural

Network Models 

MA and EMA have been applied to enhance 

the performance of ANN, particularly during the 

preprocessing phase of time-series modeling. 
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• A 5-day MA combined with ANN and

Particle Swarm Optimization (PSO) was 

implemented for stock price forecasting. The use 

of MA as a preprocessing technique significantly 

improved model accuracy [12]. 

• EMA was combined with Neural Networks

to forecast wireless channel quality based on the 

Frame Delivery Ratio. The EMA-enhanced model 

reduced Mean Squared Error (MSE) by 20-30%, 

particularly in scenarios involving sudden and 

nonlinear signal variations [13]. 

2.3. Forecasting Models

• Streamflow forecasting at the Huanren

station in China was investigated using both 

individual models-Long Short-Term Memory 

(LSTM), Support Vector Machine (SVM), Random 

Forest (RF), and Artificial Neural Network (ANN)-

and hybrid models incorporating signal 

decomposition techniques such as Empirical Mode 

Decomposition-LSTM (EMD-LSTM), Variational 

Mode Decomposition-LSTM (VMD-LSTM), and 

Wavelet Analysis-LSTM (WA-LSTM). LSTM 

showed the highest accuracy among single models, 

particularly during high-flow days, while VMD-

LSTM outperformed other hybrid models in all 

performance metrics, achieving the lowest RMSE 

(52.14 m³/s), the highest NSE (0.96), and the 

lowest BIAS (-0.002) during testing [18]. 

The study highlighted that signal 

decomposition (e.g., VMD) can effectively 

remove noise and isolate critical frequency 

components, thereby enhancing model 

performance significantly. Table 1 represents the 

strengths and limitations of the models. 

Table 1 Comparison of Models 
Model Strengths Limitations 

LSTM Excellent for time series, 

high accuracy, retains 

long-term dependencies 

Complex 

structure, long 

training time 

SVM Suitable for 

linear/separable data, 

good with balanced 

datasets 

Poor for large or 

nonlinear datasets, 

requires kernel 

selection 

RF Robust to noise/outliers, 

user-friendly, avoids 

overfitting 

Lower accuracy in 

sequential data 

ANN Flexible architecture, 

broadly applicable, low 

overall bias 

Sometimes less 

accurate for time 

series compared to 

LSTM 

2.4. Water Level Forecasting at P.1 Station,

Chiang Mai 

Artificial Neural Networks (ANNs) were 

applied to forecast water levels at the P.1 station in 

northern Thailand using historical hourly water 

levels from stations P.1, P.67, and P.75, along with 

dam discharge data and corresponding MA values 

[15]. A comparison of learning algorithms-

Levenberg-Marquardt (LM) and Bayesian 

Regularization (BR)-revealed that the LM 

algorithm with 75% hidden nodes provided the 

best performance for both 6- and 12-hour ahead 

forecasts. 

A subsequent study compared ten ANN 

training algorithms, including LM, BR, Gradient 

Descent with Momentum and Adaptive Learning 

Rate (GDX), Resilient Backpropagation (RP), 

Broyden-Fletcher-Goldfarb–Shanno (BFG), and 

Scaled Conjugate Gradient (SCG) [16]. LM 

consistently delivered the highest accuracy for 

short-term forecasting (t+6 hours), followed by 

BR. The number of hidden nodes had minimal 

impact on performance, except for longer forecast 

horizons (t+18 hours). 

2.5. Research Gap

To date, there has been no study that utilizes 

historical water level data from only two stations 

(P.1 and P.67) in combination with EMA-

transformed data for short-term forecasting at 

station P.1. This study addresses this gap by 

minimizing the number of input sources while 

leveraging EMA to enhance the performance of an 

ANN. Focusing on a smaller number of well-

processed inputs helps mitigate the risks 

associated with missing or erroneous data, thereby 

improving the reliability of the model. The EMA’s 

responsiveness to short-term signal changes makes 

it a suitable choice for increasing model accuracy 

in such contexts. 

This study differs from previous works [15], 

[16] in that it employs input data from only two 

stations (P.1 and P.67) and applies EMA for 

forecasting enhancement, whereas those studies 

used data from three stations-P.1, P.67, and P.75-

as well as dam discharge volumes and MA of dam 

discharge. 
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3. Materials and Methods

3.1. Research Data

The hourly water level data from the P.1 and 

P.67 stations, collected from April 2017 to October 

2024, comprise a total of 66,180 data points 

(Figure 2). These timeframes were selected for

their completeness and reliability, characterized by 

nearly complete data coverage with only minimal 

data loss. This selection was made to minimize

potential errors in calculating the MA and EMA 

values. Secondary data used for research purposes

were collected by the Upper Northern Hydrology 

Center of the Royal Irrigation Department 

(Irrigation Office 1, Chiang Mai) [6]. Notable 

flooding events occurred from October 2nd to 5th, 

2022, September 24th to 28th, 2024, and from 

October 3rd to 7th, 2024.

Figure 2. Hydrograph of data from April 2017 to October 2024

3.2. Research Tools 

The tools used in this research include:  

1) Microsoft Excel for data collection and

preparation.

2) MATLAB for processing artificial neural

network models. 

3) SPSS for variable selection using Stepwise

regression  

3.3. Data Preparation

1) The water level data from the P.1 and P.67

stations were stored for the past 0 to 24 hours with 

variable names P1t-0 to P1t-24 and P67t-0 to P67t-

24 in decimal format with two decimal places.  

2) The Moving Average (MA) is a statistical

method used to calculate the average water level 

over a specific period. This technique facilitates 

the identification of water level trends by 

smoothing out short-term fluctuations and 

reducing data variability. The MA method is also 

commonly applied in various fields, particularly in 

financial markets such as stocks, cryptocurrencies. 

MA water level data for the P.1 and P.67 stations

were prepared for the past 0 to 24 hours, with each 

time point (t) representing the calculation of the 

hourly moving average of water levels over a 

period of *k* hours, where *k* ranges from 2 to 24. 

The formula for calculating the MA water level 

data [19] is as follows. 

 MAt,k=(Pt+Pt-1+…+Pt-(k-1))/k       (1) 

3) The Exponential Moving Average (EMA)

is a technical analysis tool similar to the MA and 

is widely used in financial markets such as stocks 

and cryptocurrencies. While it shares similarities 

with the MA, a key distinction is that the EMA 

assigns greater weight to more recent data, 

allowing it to respond more quickly to changes in 

the dataset. Therefore, in this study, the EMA is 

utilized alongside historical water level data to 

forecast future water levels. Furthermore, the 

study compares the forecasting performance 

between using only historical water level data and 

using historical data in conjunction with the MA. 

EMA water level data for the P.1 and P.67 stations 

were prepared for the past 0 to 24 hours, with each 

time point representing the calculation of the 

hourly EMA of water levels over a period ranging 
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from 2 to 24 hours. The formula for calculating the 

EMA water level data [20] is as follows. 

EMAt= (Pt×
2

n+1
)+EMAt-1 (1-

2

n+1
)   (2) 

3.4. Variable selection

Variable selection was performed using 

Stepwise Regression [21] to create a total of 12 

forecasting models from the prepared dataset. 

3.5. Model Development

The machine learning models in this study 

were developed using an Artificial Neural 

Network (ANN) with a Feed-Forward Back 

Propagation (FFBP) technique [22]. The 

Feedforward Neural Network (FFNN) is a type of 

ANN in which data flows in one direction, from 

the input layer to the output layer. The input layer 

receives external data, with the number of neurons 

determined by the number of features or variables 

relevant to the learning and forecasting tasks. The 

hidden layers process the input data through the 

application of activation functions, such as 

sigmoid, tanh, and ReLU. The configuration of 

these layers, including the number of neurons in 

each, must be appropriately selected based on the 

specific problem under investigation. The hidden 

layers enable the network to model complex, 

nonlinear relationships, which is particularly 

important for tasks such as water level forecasting. 

The output layer provides the final prediction, with 

a single neuron representing the forecasted water 

level in this study. The training process employs 

the backpropagation technique, which adjusts the 

weights and biases within the network to minimize 

the discrepancy between the predicted outputs and 

the actual target values, ensuring optimal accuracy 

in the final results. 

Each model in this study was constructed 

using the "newff" package. The parameters of each 

model were set as follows [15], [16], [23]. 

- Learning function: trainlm 

- Hidden layer activation function: tanh 

- Output layer activation function: purelin 

- Maximum epochs: 1,000 

- Learning goal (target): 1e-5 

To obtain the most suitable model for each 

dataset, the number of nodes in the input layer for 

each model was determined based on the number 

of features, which were selected through the 

Stepwise Regression process. The number of 

hidden layers was limited to a maximum of two to 

prevent excessive consumption of computational 

resources, while still maintaining a sufficiently 

high level of forecasting performance. For 

determining the number of nodes in each hidden 

layer, a trial-and-error method was employed [15], 

[16]. The first hidden layer was assigned a range 

of 1 to 20 neurons, while the second hidden layer 

was set to none, with the number of neurons also 

ranging from 1 to 20, to find the most appropriate 

network structure.  

Each dataset is divided into 80% for training 

and 20% for testing [24], using a chronological 

split method that preserves the natural time 

order from April 2017 to October 2024. The goal 

is to identify the most efficient model for 

forecasting 6 and 9 hours ahead. The models 

evaluated for performance comparison are as 

follows: 

3.5.1 Six-Hour Ahead Water Level Forecasting

Models for the P.1 station 

- Data from P.1 (P.1_6) 

- Data from P.1 and MA (P.1_6 + MA) 

- Data from P.1 and EMA (P.1_6 + EMA) 

- Data from P.1 and P.67 (P.1_6 + P.67_6) 

- Data from P.1, P.67, and MA for both 

stations (P.1_6 + P.67_6 + MA) 

- Data from P.1, P.67, and EMA for both 

stations (P.1_6 + P.67_6 + EMA) 

3.5.2 Nine-Hour Ahead Water Level Forecasting 

Models for the P.1 station 

- Data from P.1 (P.1_9) 

- Data from P.1 and MA (P.1_9 + MA) 

- Data from P.1 and EMA (P.1_9 + EMA) 

- Data from P.1 and P.67 (P.1_9 + P.67_9) 

- Data from P.1, P.67, and MA for both 

stations (P.1_9 + P.67_9 + MA) 

- Data from P.1, P.67, and EMA for both 

stations (P.1_9 + P.67_9 + EMA) 

3.6. Model Evaluation

The performance of the models was evaluated 

based on the following metrics 

- Mean Absolute Error (MAE) 

It is an indicator used to calculate the Mean 

Absolute Error (MAE) of forecast values 
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compared to actual values [25], computed using 

the formula. 

MAE=
1

n
∑ |y

i
-ŷ

i
|n

i=1                                                            (3)

-Root Mean Square Error (RMSE) 

It is a metric used to measure the deviation 

between predicted and actual values, giving more 

weight to larger errors by squaring the deviations 

before averaging and then taking the square root 

[25]. 

RMSE=√
1

n
∑ (y

i
-ŷ

i
)

2n
i=1 (4)

-R-squared (R²)

It is a metric used to measure how well the 

predicted data explains the variance of the actual 

values [26]. It ranges between 0 and 1 and is 

calculated using the formula. 

R2=1-
∑(yi-ŷi)

2

∑(yi-y̅)
2 (5)

The MAE and RMSE values should be as low 

as possible, while the R² value should be as high 

as possible (close to 1) to indicate that the model 

can explain the variability in the data effectively 

[27]. 

4. Results and Discussion

4.1. Results of Variable Selection Using Stepwise

Regression 

Variable selection for model development was 

conducted using Stepwise Regression, starting with 

no independent variables and progressively adding 

them one at a time based on their significance in 

explaining the dependent variable, according to 

predefined criteria. The results of the variable 

selection for each forecasting model are as follows: 

Model P.1_6 included 7 variables; Model P.1_6 + 

MA included 10 variables; Model P.1_6 + EMA 

included 8 variables; Model P.1_6 + P.67_6 

included 16 variables; Model P.1_6 + P.67_6 + MA 

included 19 variables; Model P.1_6 + P.67_6 + 

EMA included 18 variables; Model P.1_9 included 

7 variables; Model P.1_9 + MA included 8 

variables; Model P.1_9 + EMA included 9 

variables; Model P.1_9 + P.67_9 included 17 

variables; Model P.1_9 + P.67_9 + MA included 18 

variables; and Model P.1_9 + P.67_9 + EMA 

included 18 variables. The selected variables for 

each model are summarized in Table 2.

Table 2 Results of Variable Selection for Forecasting 

Models Using Stepwise Regression 

Model Variable Selection 

P.1_6 P1t-0 P1t-1 P1t-2 

P1t-3 P1t-12 P1t-19 

P1t-24 

P.1_6 + 

MA 

P1t-0 P1t-1 P1t-3 

P1t-12 P1t-0_MA2 P1t-0_MA18 

P1t-18_MA24 P1t-23_MA11 P1t-24_MA3 

P1t-24_MA24 

P.1_6 + 

EMA 

P1t-0 P1t-0_EMA2 P1t-0_EMA4 

P1t-1_EMA2 P1t-1_EMA3 P1t-12EMA24 

P1t-14_EMA20 P1t-20_EMA3 

P.1_6 + 

P.67_6 

P1t-0 P1t-1      P1t-2 P67t-24 

P1t-3 P1t-12 P1t-19 

P1t-24 P67t-0 P67t-1 

P67t-5 P67t-6 P67t-7 

P67t-8 P67t-9 P67t-12 

P.1_6 + 

P. 67_6 

+ MA 

P1t-0 P1t-1_MA2 P1t-2 

P1t-3 P1t-12_MA3 P1t-13_MA22 

P1t-18_MA2 P1t-20_MA2 P1t-24_MA20 

P1t-24_MA24 P67t-0 P67t-0_MA2 

P67t-0_MA9 P67t-1_MA16 P67t-5_MA2 

P67t-7_MA2 P67t-18_MA22 P67t-24_MA5 

P67t-24_MA24 

P.1_6 + 

P. 67_6 

+ EMA 

P1t-0 P1t-0_EMA23 P1t-1_EMA2 

P1t-4 P1t-2 P1t-10_EMA5 

P1t-19 P1t-20_EMA9 P1t-24_EMA3 

P1t-24_EMA24 P67t-0_EMA2 P67t-0_EMA5 

P67t-6 P67t-7_EMA6 P67t-20_EMA18 

P67t-23_EMA24 P67t-24_EMA3 P67t-24_EMA20 

P.1_9 P1t-0 P1t-1 P1t-2 

P1t-3  P1t-24 P1t-12 P1t-17  

P.1_9 + 

MA 

P1t-0 P1t-1 P1t-1_MA2 

P1t-3 P1t-10_MA3 P1t-13_MA24 

P1t-21_MA11 P1t-24_MA2 

P.1_9 + 

EMA 

P1t-0 P1t-1_EMA2 P1t-2 

P1t-4_EMA2 P1t-12_EMA24 P1t-14_EMA18 

P1t-14_EMA21 P1t-18_EMA9 P1t-24_EMA2 

P.1_9 + 

P.67_9 

P1t-0 P1t-1 P1t-2 

P1t-3 P1t-12 P1t-16 

P67t-0 P67t-1 P67t-3 

P67t-4 P67t-5 P67t-6 

P67t-7 P67t-8 P67t-9 

P67t-11 P67t-24 

P.1_9 + 

P. 67_9 

+ MA 

P1t-0 P1t-0_MA2 P1t-0_MA20 

P1t-1_MA2 P1t-2 P1t-7_MA2 

P1t-11_MA6 P1t-17_MA3 P1t-24_MA7 

P1t-24_MA24 P67t-0 P67t-3_MA2 

P67t-3_MA10 P67t-5_MA2 P67t-7_MA2 

P67t-24_MA3 P67t-24_MA13 P67t-24_MA24 

P.1_9 + 

P. 67_9 

+ EMA 

P1t-0 P1t-1_EMA2 P1t-2_EMA14 

P1t-5 P1t-9 P1t-13_EMA_3 

P1t-17 P1t-21_EMA_12 P1t-23_EMA_5 

P67t-0 P67t-1 P67t-3 

P67t-4_EMA_8 P67t-8_EMA_2 P67t-17_EMA_3 

P67t-21 P67t-24_EMA_21 P67t-24_EMA_24 
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The meanings of the variables listed in Table 2 are further explained in Table 3, which provides 

descriptions of each variable used in the study. 

 Table 3 Definitions of the variables.

Variable Type Description 

Pnt-k Water level at station Pn at t-k hours prior to 

the current time, where Pn represents 

the station code (i.e., P1 or P67), and t-k 

indicates the time lag of  k hours from the 

present. 

Pnt-k_MAp Moving Average (MA) of the water level at 

station Pn, calculated from time t-k to t-k-       

(p-1), totaling p values. 

Pnt-k_EMAq Exponential Moving Average (EMA) of the 

water level at station Pn, starting from time 

t-k and using q past values (or q periods). 

4.2. Results of Water Level Forecasting Models for

Station P.1

The Feed-Forward Back Propagation (FFBP) 

artificial neural network was used to develop 

forecasting models for the water level at the P.1 

stations, both for 6-hour and 9-hour forecasts, 

using data from either one station (P.1) or two 

stations (P.1 and P.67). The models varied in terms 

of the number of nodes in the input layer, the 

number of hidden layers, the number of nodes in 

the hidden layers, and the number of nodes in the 

output layer, as shown in Table 4. 

Table 4 Structures of Forecasting Models for 

Station P.1

Model 
Input 

layer 

Hidden 

layer 
Output 

layer 
1 2 

P.1_6 7 7 - 1 

P.1_6 + MA 10 6 4 1 

P.1_6 + EMA 8 6 3 1 

P.1_9 7 6 - 1 

P.1_9 + MA 8 6 2 1 

P.1_9 + EMA 9 6 2 1 

P.1_6 + P.67_6 17 7 - 1 

P.1_6 + P.67_6 + MA 19 6 - 1 

P. 1_6 + P. 67_6 + 

EMA 

18 6 2 1 

P.1_9 + P.67_9 17 6 2 1 

P.1_9 + P.67_9 + MA 19 6 1 1 

P.1_9 + P.67_9 + EMA 18 5 4 1 

4.3. Results of the 6-Hour Water Level Forecasting 

Models for Station P.1 

Upon analyzing the hydrograph lines for the 

6-hour forecast, as illustrated in Figures 3-5 

(where the green line represents the model 

utilizing data from two stations, and the red line 

represents the model utilizing data from one 

station), it was determined that the model using 

data from two stations provided better forecast 

results. A comparison of the use of water level 

data with MA and EMA data revealed that the 

model employing water level data combined 

with MA could forecast higher peak water 

levels than the model using water level data 

alone (Figure 4, green line). However, when 

water level data was combined with EMA, the 

model's ability to forecast peak water levels 

improved (Figure 5, green line). Additionally, 

for the model using data from only one station, 

adding EMA data enhanced the model’s 

performance (Figure 5, red line). Therefore, 

based on the hydrograph analysis, the model 

that combined water level data with EMA from 

two stations (P.1_6 + P.67_6 + EMA) was 

selected as the best model. This conclusion is 

consistent with the statistical comparison 

results shown in Table 5.
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Figure 3 Comparison of the forecasting results between the P.1_6 model and the P.1_6 + P.67_6 model

Figure 4 Comparison of the forecasting results between the P.1_6  + MA model and the P.1_6 + P.67_6  + 
MA model 

Figure 5 Comparison of the forecasting results between the P.1_6 + EMA model and the P.1_6 + P.67_6 + 

EMA model 
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4.4. Results of the 9-Hour Water Level Forecasting

Model for Station P.1

The forecasting results for the 9- hour water 

level forecasting at the P.1 station are presented in 

Figure 6, where the red line represents data from 

one station and the green line represents data from 

two stations.  It was observed that using data from 

one station provided better forecasts, particularly 

for predicting the peak water levels, compared to 

using data from two stations.  However, when 

actual data was combined with MA and EMA data 

(Figures 7 and 8, respectively), it was found that 

the models using data from both one station and 

two stations showed improved performance, 

especially the models that used data from two 

stations (Figures 7- 8).  Adding EMA data to the 

two- station model continued to yield the best 

overall results (Figure 8), which is consistent with 

the statistical comparison results presented in 

Table 6.

Figure 6 Comparison of the forecasting results between the P.1_9 model and the P.1_9 + P.67_9 model

Figure 7 Comparison of the forecasting results between the P.1_9 + MA model and the P.1_9 + P.67_9 + 

MA model
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Figure 8 Comparison of the forecasting results between the P.1_9 + EMA model and the P.1_9 + P.67_9 + 

EMA model 

4.5. Comparison of the Performance of the 6-Hour

Water Level Forecasting Model for Station P.1

The results of comparing the 6- hour water 

level forecasting models for the P.1 station showed 

that the model P. 1_6 + EMA performed the best 

for the single station (P.1), as it yielded the lowest 

MAE, RMSE, and the highest R².  This was 

followed by the P. 1_6 + MA model, and then the 

P.1_6 model. For the two-stations model (P.1 and 

P.67), the P.1_6 + P.67_6 + EMA model showed 

the best performance, with the lowest MAE, 

RMSE, and the highest R², followed by the P. 1_6 

+ P. 67_6 + MA model and the P. 1_6 + P. 67_6 

model, respectively.  Additionally, the models 

using data from two stations outperformed those 

using data from only one station.  Therefore, the 

P. 1_6 + P. 67_6 + EMA model is considered the 

most suitable for forecasting the 6-hour water level 

at Station P.1, as shown in Table 5. 

Table 5 MAE, RMSE, and R² values for the 6-hour

water level forecasting model for Station P.1

Model 
Performance 

MAE RMSE R² 

P.1_6 0.0470 0.0679 0.9805 

P.1_6 + MA 0.0461 0.0675 0.9808 

P.1_6 + EMA 0.0447 0.0655 0.9818 

P.1_6 + P.67_6 0.0412 0.0587 0.9854 

P.1_6 + P.67_6 + MA 0.0410 0.0582 0.9857 

Model 
Performance 

MAE RMSE R² 

P.1_6 + P.67_6 + EMA 0.0405 0.0578 0.9859 

4.6. Comparison of the Performance of the 9-hour

Water Level Forecasting Model for Station P.1

The comparison of the 9- hour water level 

forecasting models for the P. 1 station, using data 

from only P. 1 station, revealed that the model 

P. 1_9 + EMA performed the best performance, 

with the lowest MAE, RMSE, and the highest R², 

followed by the P. 1_9 + MA model, and then the 

P.1_9 model, respectively.  For models using data 

from the P.1 and P.67 stations, the P.1_9 + P.67_9 

+ EMA model provided the best results, followed 

by the P.1_9 + P.67_9 + MA model, and then the 

P.1_9 + P.67_9 model. Additionally, the group of 

models using data from two stations performed 

better than those using data from only one station. 

Therefore, the P. 1_9 + P. 67_9 + EMA model 

demonstrated the best performance and is the most 

suitable for forecasting the 9- hour water levels at 

Station P.1, as shown in Table 6. 

Table 6 MAE, RMSE, and R² values for the 9-hour

water level forecasting model for Station P.1

Model 
Performance 

MAE RMSE R² 

P.1_9 0.0649 0.0939 0.9628 

P.1_9 + MA 0.0657 0.0933 0.9456 
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P.1_9 + EMA 0.0643 0.0908 0.9652 

P.1_9 + P.67_9 0.0572 0.0798 0.9732 

P.1_9 + P.67_9 + MA 0.0568 0.0779 0.9744 

P.1_9 + P.67_9 + EMA 0.0562 0.0776 0.9746 

5. Conclusions

This study investigates the development of 

machine learning models for forecasting the water 

levels 6-hour and 9-hour ahead at the P.1 station. 

The primary objectives were to identify 

appropriate variables for forecasting water levels 

at the P. 1 station, and to create the most suitable 

machine learning models for forecasting water 

levels at the same station for 6- hour and 9- hour 

periods. The results are summarized as follows: 

Using data from the P. 1 and P. 67 stations 

showed better accuracy forecasting for both the 6-

hour and 9- hour forecasts compared to using data 

from the P. 1 station alone.  Additionally, the 

inclusion of supplementary variables using EMA 

and MA techniques improved forecasting 

performance when compared to using only past 

water level data.  Among these, EMA provided 

better improvement in model performance than 

MA. 

For model development, the study used a 

Feed-Forward Back Propagation (FFBP) Artificial 

Neural Network (ANN) based on data from either 

one station (P. 1) or two stations (P. 1 and P. 67). 

EMA and MA techniques were used to compare 

model performance, and variable selection was 

performed using Stepwise Regression.  

For the 6- hour water level forecasting, the 

P. 1_6 + P. 67_6 + EMA model demonstrated the 

best performance, with the model structure 

comprising 18 input nodes; 6 and 2 nodes in the 

two hidden layers, and 1 output node.  The model 

used 18 variables, including data from P.1 (P1t-0, 

P1t-2, P1t-4, P1t-19), EMA variables for P.1 (P1t-

0_EMA23, P1t- 1_EMA2, P1t- 10_EMA5, etc. ), 

data from P. 67 (P67t- 6, P67t- 20), and EMA 

variables from P.67. This model achieved MAE = 

0.0280, RMSE = 0.0431, and R² = 0.9780 for the 

training dataset, and MAE = 0. 0405, RMSE = 

0. 0578, and R² = 0. 9859 for the testing dataset.

These are the best values among the models for 6-

hour forecasting. 

For the 9- hour water level forecasting, the 

P. 1_9 + P. 67_9 + EMA model achieved the best 

performance, with the model structure consisting 

of 18 input nodes, 4 nodes in each of the two 

hidden layers, and 1 output node. The model used 

18 variables, including data from P.1 (P1t-0, P1t-

5, P1t- 9, P1t- 17), EMA variables for P. 1 (P1t-

1_EMA2, P1t- 2_EMA14, etc. ), data from P. 67 

(P67t- 0, P67t- 1, P67t- 3, P67t- 21), and EMA 

variables for P. 67.  This model produced MAE = 

0.0387, RMSE = 0.0564, and R² = 0.9627 for the 

training dataset, and MAE = 0. 0562, RMSE = 

0. 0776, and R² = 0. 9746 for the testing dataset.

These were the best values for the 9- hour 

forecasting models. 

In conclusion, the models for forecasting 6-

hour and 9- hour water levels using past data from 

two stations combined with EMA performed better 

overall than those using past data from a single 

station alone or in combination with MA. 

Additionally, the 6- hour forecast models showed 

higher accuracy than the 9-hour forecast models. 

For forecasting water levels at station P.1 six 

hours in advance, the best-performing model 

presented in this research utilized hourly historical 

water level data from two stations, P.1 and P.67, 

combined with the EMA of the historical water 

level data from both stations. This model produced 

forecasts consistent with the model proposed in 

[16], which used hourly historical data from 

stations P.1, P.67, P.75, and the water discharge 

volume from a dam, along with the MA of the 

dam's discharge volume. That model achieved an 

RMSE of less than 0.1 for 6-hour-ahead 

forecasting. In contrast, the study in [16] did not 

include a 9-hour-ahead forecast. However, the 

model proposed in this study still achieved an 

RMSE of less than 0.1 even at the 9-hour forecast 

horizon. 

The reason why using data from two stations 

yields better results than using data from only one 

station is due to the direct correlation between P.1 

and the upstream station P.67, which is located 

approximately 32 kilometers away. The water 

mass takes about 6–7 hours to travel from P.67 to 

P.1 [28]. Therefore, incorporating historical hourly 

water level data from both stations for forecasting 

water levels at P.1 6–9 hours in advance is likely 
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to result in more accurate predictions compared to 

using data from only P.1. 

In addition, using historical hourly water level 

data from P.1 and P.67 along with the EMA of the 

historical data from both stations provided better 

performance than using MA or raw historical data 

alone. This is because EMA is more responsive 

to short- and medium-term changes in data [11], 

making it suitable for trend analysis in such 

timeframes. EMA assigns greater weight to the 

most recent data and gradually reduces the 

weight for older data, whereas MA gives equal 

weight to all data points (refer to Equations 1 

and 2). On the other hand, using only the 

historical hourly water level data from P.1 and 

P.67 without any smoothing technique yielded 

the lowest performance, as the burden of 

learning trends fell solely on the Artificial 

Neural Network (ANN). Improving the model’s 

performance in such cases would depend heavily 

on adjusting the architecture and hyper 

parameters. Therefore, the most appropriate 

model for forecasting 6- and 9-hour-ahead water 

levels at station P.1 is the one that uses historical 

hourly water level data from both P.1 and P.67 

combined with the EMA of historical water level 

data from both stations—an approach not 

previously reported for model development at 

station P.1. 

Practical Applications 

The forecasting model for water levels at 

station P.1 proposed in this study can be 

effectively applied to flood warning systems in the 

urban area of Chiang Mai Province. One of its key 

advantages is the simplicity of the artificial neural 

network (ANN) architecture, which consists of 

only an input layer, a hidden layer, and an output 

layer. This streamlined structure enables faster 

processing compared to models with more 

complex architectures, facilitating easier 

development into practical applications. 

Furthermore, using data from only two 

stations helps mitigate issues related to data loss, 

which often arise when relying on multiple data 

sources and can hinder model performance. The 

developed model can also be integrated to 

enhance previously developed flood warning 

applications [29], improving both forecasting 

accuracy and the overall efficiency of the 

warning system. 

The practical implementation of this model is 

expected to increase the safety of residents in 

Chiang Mai’s urban area by providing more 

reliable flood warnings, thereby protecting lives 

and property. Additionally, it can significantly 

reduce the overall economic losses caused by 

flooding, contributing to improved quality of life 

and economic stability within the community. 

Suggestions for Future Research 

- For the 9-hour water level forecasting 

models, it is recommended to include data from 

additional upstream stations to further improve 

forecasting accuracy. 

- It would be beneficial to experiment with 

combining both MA and EMA data to compare 

forecasting performance. 

- Other variable selection techniques should 

be explored alongside ANN models to further 

enhance the water level forecasting models and 

compare their effectiveness. 

- Consideration could be given to using 

other deep learning models for water level 

forecasting and comparing their forecasting 

performance with the current models. 
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