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Abstract

This research applies machine learning models to forecast water levels at the P.1 station (Nawarat Bridge),
Chiang Mai Province, both for 6 and 9 hours in advance. The objectives are to identify suitable variables
and to create models for forecasting water levels at the P.1 station. The study utilizes historical hourly water
level data from the P.1 and P.67 stations, combined with Moving Average (MA) and Exponential Moving
Average (EMA\) data covering the years from 2017 to 2024, which has amounted to a total of 66,180 records.
The dataset is divided into a training set (80%) and a testing set (20%). The experiment design involves
creating artificial neural network models based on historical data from one station (P.1) and two stations
(P.1 and P.67). The models consist of those using only historical data, those using historical data combined
with MA, and those using historical data combine with EMA, resulting in a total of 12 models. The structure
of each model was optimized to achieve the best forecasting results. The results indicate that the best model
for the 6-hour forecasting is the P.1_6 + P.67_6 + EMA model. This model utilizes 18 input variables, with
6 and 2 nodes in the first and second hidden layers, respectively, and 1 output node. This model achieved
a Mean Absolute Error (MAE) of 0.0405, a Root Mean Square Error (RMSE) of 0.0578, and a coefficient
of determination (R?) of 0.9859. For the 9-hour forecasting, the best model is the P.1_9 + P.67_9 + EMA
model, which also employs 18 input variables, with 5 and 4 nodes in the first and second hidden layers,
respectively, and one output node. This model achieved a MAE of 0.0562, an RMSE of 0.0776, and an R2
of 0.9746. Both models utilize data from two stations combined with EMA.
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resource management and flood prevention [2].
Especially in regions like Chiang Mai, which has
experienced severe flooding events, including the
major flood of 2011 [3] and the 2022 flood caused

1. Introduction

Flooding is considered one of the most severe
natural disasters, causing significant damage to
human lives, agriculture, infrastructure, and social

and economic systems. Consequently, studies on
flood disaster management systems and flood
forecasting have gained increased importance.
Accurate forecasting of flood occurrences and
their progression poses a considerable challenge.
Estimating water levels and flow speeds over
extensive areas necessitates the integration of data,
and the development of flood propagation models,
which involve complex computations [1]. Water
level forecasting is essential for effective water

by Tropical Storm "Noru". The storm led to a
significant increase in the water volume of
tributaries of the Ping River. The Regional
Irrigation Office 1 measured and recorded the
water level at the P.1 station on October 3rd, 2022,
at 03:00 AM to be 4.14 meters, which was 0.44
meters above the critical water level. With
continuous inflow from upstream, the water level
subsequently rose up to 4.30 meters [4]. The most
recent flood in the city of Chiang Mai occurred on
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October 5th, 2024, when the water level of the
Ping River peaked at 5.28 meters. This
measurement was 1.58 meters above the riverbank
level and exceeded the critical flood barrier level
of 4.20 meters by 1.08 meters [5]. This situation
affected key economic areas within the Chiang
Mai city municipality, leading to damage to living
conditions, property, businesses, and urban
infrastructure. Therefore, monitoring water levels
in Chiang Mai’s economic zones is essential. The
public can access information on water levels at
the P.1 station, which is located at Nawarat Bridge,
and this serves as the most important monitoring
point for flood situations along the Ping River as it
flows through the city of Chiang Mai. This station
provides crucial indicators of flood risks that
impact vital economic areas in the urban center.

Currently, the Royal Irrigation Department
utilizes data from the P.67 station through a
telemetry system to forecast water levels at the P.1
station. When water levels at the P.67 station
reaches 4 meters, and with a flow rate of 530 cubic
meters per second, it is anticipated that within 6 to
7 hours that water will overflow into urban areas,
resulting in the water level at the P.1 station to
overflow the riverbank. The public can monitor
nearby water levels through the Chiang Mai Office
of Irrigation 1’s website, and the SWOC mobile
application [6]. However, there is currently no
advanced water level forecasting system that using
machine learning models. An accurate forecasting
system would significantly enhance preparedness
for all stakeholders: government agencies such as
the Royal Irrigation Department could issue timely
flood warnings, and effectively manage reservoirs
and drainage systems. Chiang Mai Municipality
could also prepare pumps and flood prevention
equipment in advance; Disaster response units
could plan evacuations proactively; businesses
would have the opportunity to safeguard their
assets and inventory; hotels and tourist attractions
could warn visitors and prepare appropriate
responses; industrial sectors could adjust
production and logistics accordingly; and residents
could evacuate, move valuables to safety,
stockpile essential supplies, and plan alternative
routes in anticipation of flooded roads.

Presently, machine learning models play a
critical role in the developing of forecasting
models, particularly in the field of hydrology [7].
This study involved the collection of historical
water level data from the P.1 and P.67 stations. The
water levels at P.1 station exhibit a strong
correlation with those at P.67 [8], as P.67 station is
situated on the main river and serves as the
upstream station for P.1 station, as illustrated in
Figure 1.
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Figure 1. Hydrological diagram of the Ping River
Basin [9]

Due to the geographical relationship between
the two stations, the water level at the P.67 station
significantly impacts the water level at the P.1
station. Consequently, data from the P.67 station is
a critical variable for forecasting the water levels
at the P.1 station [8]. The utilization of upstream
data enhances the efficiency of forecasting models
while reducing potential errors associated with
relying solely on data from a single station.
Therefore, data from the P.1 and P.67 stations are
employed to develop an hourly water level
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forecasting model specifically for P.1 station,
which provides forecasts at 6-hour and 9-hour
intervals. The 6-hour forecast is designed to enable
relevant agencies to prepare for and respond
promptly to flooding events, while the 9-hour
forecast serves as a mid-range projection to assist
in flood disaster planning and efficient water
resource management.

Additionally, time series analysis techniques
were employed, specifically the Simple Moving
Average (MA) and Exponential Moving Average
(EMA) methods to reduce data volatility and filter
out unwanted noise [10]. The MA method
computes a simple average, whereas the EMA
method assigns greater weight to more recent data,
thereby making the forecasts more responsive to
changes [11]. The MA and EMA techniques have
been shown to enhance the predictive accuracy of
machine learning models, as demonstrated in [12]
and [13]. Furthermore, the Stepwise Regression
method was employed to identify the most
appropriate variables for the development of the
forecasting model. This method is efficient in
filtering independent variables from large datasets
by considering those with the highest correlation
to the outcome, and systematically adding or
removing variables to determine the optimal set.
This improves forecast accuracy and reduces
model complexity, enabling faster and more
efficient computation [14].

This research aims to develop a machine
learning-based model to forecast water levels 6
and 9 hours in advance, leveraging data from MA
and EMA of water levels at the P.1 and P.67
stations, along with the most up-to-date data for
model creation and testing. While previous
forecasting models at station P.1 employed the
Moving Average (MA) approach to improve
prediction accuracy [15], [16], the limitations of
this method became evident during the 2024 flood
event, when water levels fluctuated rapidly. To
address this, this study proposes integrating EMA
into the forecasting process, hypothesizing that
EMA’s ability to respond more effectively to rapid
changes will enhance predictive accuracy. The
results of this study will support the development
of flood warning systems and water management
strategies in the upper Ping River basin, enabling

timely and effective decision-making.
Additionally, the model will aid businesses in risk
management, reducing asset losses, and improving
operational  efficiency and  sustainability,
particularly in transportation, goods handling, and
production planning.

This research aims to study the following
objectives:

To identify the appropriate variables for
forecasting the water level at Station P.1 (Nawarat
Bridge), Chiang Mai Province, using historical
water level data from Station P.1 and P.67, as well
as MA and EMA values.

To develop an artificial intelligence model for
forecasting the water level at Station P.1 for 6-hour
and 9-hour ahead predictions, comparing the
accuracy of the model using data from a single
station with the model using data from two stations,
and considering the effect of using MA and EMA
to enhance the model's performance.

2. Literature Review
2.1.Moving Average Techniques (MA and EMA)

Time Series Analysis is an essential tool in
finance, economics, and engineering for
understanding data that changes over time. Among
the various techniques used, Moving Average is
widely adopted to smooth out data fluctuations,
making underlying trends more visible [10].

e Simple Moving Average (MA) calculates
the average of data over a specific period by
assigning equal weights to all data points. While
simple to use and interpret, MA tends to respond
slowly to data changes as it gives equal importance
to all data, regardless of recency [17].

e Exponential Moving Average (EMA)
assigns greater weight to more recent observations,
allowing it to respond more quickly to new trends.
This makes EMA particularly useful for rapidly
changing data [11] such as stock prices or water
levels during storms.

2.2. Application of MA and EMA in Neural
Network Models

MA and EMA have been applied to enhance
the performance of ANN, particularly during the
preprocessing phase of time-series modeling.
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e A 5-day MA combined with ANN and
Particle Swarm Optimization (PSO) was
implemented for stock price forecasting. The use
of MA as a preprocessing technique significantly
improved model accuracy [12].

e EMA was combined with Neural Networks
to forecast wireless channel quality based on the
Frame Delivery Ratio. The EMA-enhanced model
reduced Mean Squared Error (MSE) by 20-30%,
particularly in scenarios involving sudden and
nonlinear signal variations [13].
2.3.Forecasting Models

o Streamflow forecasting at the Huanren
station in China was investigated using both
individual models-Long Short-Term  Memory
(LSTM), Support Vector Machine (SVM), Random
Forest (RF), and Artificial Neural Network (ANN)-
and hybrid models incorporating  signal
decomposition techniques such as Empirical Mode
Decomposition-LSTM (EMD-LSTM), Variational
Mode Decomposition-LSTM (VMD-LSTM), and
Wavelet Analysis-LSTM (WA-LSTM). LSTM
showed the highest accuracy among single models,
particularly during high-flow days, while VMD-
LSTM outperformed other hybrid models in all
performance metrics, achieving the lowest RMSE
(52.14 m3/s), the highest NSE (0.96), and the
lowest BIAS (-0.002) during testing [18].

The study highlighted that signal
decomposition (e.g., VMD) can effectively
remove noise and isolate critical frequency
components,  thereby  enhancing model
performance significantly. Table 1 represents the
strengths and limitations of the models.

Table 1 Comparison of Models
Model Strengths Limitations
LSTM Excellent for time series, | Complex
high accuracy, retains structure, long
long-term dependencies | training time
SVM Suitable for Poor for large or
linear/separable data, nonlinear datasets,
good with balanced requires kernel

datasets selection

RF Robust to noise/outliers, | Lower accuracy in
user-friendly, avoids sequential data
overfitting

Sometimes less
accurate for time
series compared to
LSTM

ANN Flexible architecture,
broadly applicable, low
overall bias

24. Water Level Forecasting at P.1 Station,
Chiang Mai

Artificial Neural Networks (ANNSs) were
applied to forecast water levels at the P.1 station in
northern Thailand using historical hourly water
levels from stations P.1, P.67, and P.75, along with
dam discharge data and corresponding MA values
[15]. A comparison of learning algorithms-
Levenberg-Marquardt (LM) and Bayesian
Regularization (BR)-revealed that the LM
algorithm with 75% hidden nodes provided the
best performance for both 6- and 12-hour ahead
forecasts.

A subsequent study compared ten ANN
training algorithms, including LM, BR, Gradient
Descent with Momentum and Adaptive Learning
Rate (GDX), Resilient Backpropagation (RP),
Broyden-Fletcher-Goldfarb—Shanno (BFG), and
Scaled Conjugate Gradient (SCG) [16]. LM
consistently delivered the highest accuracy for
short-term forecasting (t+6 hours), followed by
BR. The number of hidden nodes had minimal
impact on performance, except for longer forecast
horizons (t+18 hours).
25.Research Gap

To date, there has been no study that utilizes
historical water level data from only two stations
(P.1 and P.67) in combination with EMA-
transformed data for short-term forecasting at
station P.1. This study addresses this gap by
minimizing the number of input sources while
leveraging EMA to enhance the performance of an
ANN. Focusing on a smaller number of well-
processed inputs helps mitigate the risks
associated with missing or erroneous data, thereby
improving the reliability of the model. The EMA’s
responsiveness to short-term signal changes makes
it a suitable choice for increasing model accuracy
in such contexts.

This study differs from previous works [15],
[16] in that it employs input data from only two
stations (P.1 and P.67) and applies EMA for
forecasting enhancement, whereas those studies
used data from three stations-P.1, P.67, and P.75-
as well as dam discharge volumes and MA of dam
discharge.
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3. Materials and Methods
3.1.Research Data

The hourly water level data from the P.1 and
P.67 stations, collected from April 2017 to October
2024, comprise a total of 66,180 data points
(Figure 2). These timeframes were selected for
their completeness and reliability, characterized by
nearly complete data coverage with only minimal
data loss. This selection was made to minimize

potential errors in calculating the MA and EMA
values. Secondary data used for research purposes

were collected by the Upper Northern Hydrology
Center of the Royal Irrigation Department
(Irrigation Office 1, Chiang Mai) [6]. Notable
flooding events occurred from October 2" to 5%,
2022, September 24" to 28", 2024, and from
October 3" to 7', 2024.

Water Level vs Bank Level at P.1 station
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Figure 2. Hydrograph of data from April 2017 to October 2024

3.2.Research Tools
The tools used in this research include:

1) Microsoft Excel for data collection and
preparation.

2) MATLAB for processing artificial neural
network models.

3) SPSS for variable selection using Stepwise
regression
3.3.Data Preparation

1) The water level data from the P.1 and P.67

stations were stored for the past 0 to 24 hours with
variable names P1t-0 to P1t-24 and P67t-0 to P67t

24 in decimal format with two decimal places.

2) The Moving Average (MA) is a statistical
method used to calculate the average water level
over a specific period. This technique facilitates
the identification of water level trends by
smoothing out short-term fluctuations and
reducing data variability. The MA method is also
commonly applied in various fields, particularly in
financial markets such as stocks, cryptocurrencies.
MA water level data for the P.1 and P.67 stations

were prepared for the past 0 to 24 hours, with each
time point (t) representing the calculation of the

hourly moving average of water levels over a
period of k= hours, where =k ranges from 2 to 24.

The formula for calculating the MA water level
data [19] is as follows.

MAt,k:(Pt+Pt-l+' . '+Pt-(k-l))/k (1)

3) The Exponential Moving Average (EMA)
is a technical analysis tool similar to the MA and
is widely used in financial markets such as stocks
and cryptocurrencies. While it shares similarities
with the MA, a key distinction is that the EMA
assigns greater weight to more recent data,
allowing it to respond more quickly to changes in
the dataset. Therefore, in this study, the EMA is
utilized alongside historical water level data to
forecast future water levels. Furthermore, the
study compares the forecasting performance
between using only historical water level data and
using historical data in conjunction with the MA.
EMA water level data for the P.1 and P.67 stations
were prepared for the past 0 to 24 hours, with each
time point representing the calculation of the
hourly EMA of water levels over a period ranging
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from 2 to 24 hours. The formula for calculating the
EMA water level data [20] is as follows.

EMA= (P =) +EMA,, (1-=) (2)

3.4.Variable selection

Variable selection was performed using
Stepwise Regression [21] to create a total of 12
forecasting models from the prepared dataset.
3.5.Model Development

The machine learning models in this study
were developed using an Artificial Neural
Network (ANN) with a Feed-Forward Back
Propagation (FFBP) technique [22]. The
Feedforward Neural Network (FFNN) is a type of
ANN in which data flows in one direction, from
the input layer to the output layer. The input layer
receives external data, with the number of neurons
determined by the number of features or variables
relevant to the learning and forecasting tasks. The
hidden layers process the input data through the
application of activation functions, such as
sigmoid, tanh, and ReLU. The configuration of
these layers, including the number of neurons in
each, must be appropriately selected based on the
specific problem under investigation. The hidden
layers enable the network to model complex,
nonlinear relationships, which is particularly
important for tasks such as water level forecasting.
The output layer provides the final prediction, with
a single neuron representing the forecasted water
level in this study. The training process employs
the backpropagation technique, which adjusts the
weights and biases within the network to minimize
the discrepancy between the predicted outputs and
the actual target values, ensuring optimal accuracy
in the final results.

Each model in this study was constructed
using the "newff" package. The parameters of each
model were set as follows [15], [16], [23].

- Learning function: trainlm

- Hidden layer activation function: tanh

- Output layer activation function: purelin

- Maximum epochs: 1,000

Learning goal (target): 1e-5
To obtain the most suitable model for each
dataset, the number of nodes in the input layer for
each model was determined based on the number

of features, which were selected through the
Stepwise Regression process. The number of
hidden layers was limited to a maximum of two to
prevent excessive consumption of computational
resources, while still maintaining a sufficiently
high level of forecasting performance. For
determining the number of nodes in each hidden
layer, a trial-and-error method was employed [15],
[16]. The first hidden layer was assigned a range
of 1 to 20 neurons, while the second hidden layer
was set to none, with the number of neurons also
ranging from 1 to 20, to find the most appropriate
network structure.

Each dataset is divided into 80% for training
and 20% for testing [24], using a chronological
split method that preserves the natural time
order from April 2017 to October 2024. The goal
is to identify the most efficient model for
forecasting 6 and 9 hours ahead. The models
evaluated for performance comparison are as
follows:

35.1 Six-Hour Ahead Water Level Forecasting

Models for the P.1 station
- Data from P.1 (P.1_6)
- Data from P.1 and MA (P.1_6 + MA)
- Data from P.1 and EMA (P.1_6 + EMA)
- Data from P.1 and P.67 (P.1_6 + P.67_6)
- Data from P.1, P.67, and MA for both
stations (P.1_6 + P.67_6 + MA)
- Data from P.1, P.67, and EMA for both
stations (P.1_6 + P.67_6 + EMA)
3.5.2 Nine-Hour Ahead Water Level Forecasting
Models for the P.1 station
- DatafromP.1(P.1 9)
- Data from P.1 and MA (P.1_ 9 + MA)
- Data from P.1 and EMA (P.1_9 + EMA)
- Data from P.1 and P.67 (P.1_ 9 + P.67_9)
- Data from P.1, P.67, and MA for both
stations (P.1_9 + P.67_9 + MA)
- Data from P.1, P.67, and EMA for both
stations (P.1_9 +P.67_9 + EMA)
3.6. Model Evaluation
The performance of the models was evaluated
based on the following metrics
- Mean Absolute Error (MAE)
It is an indicator used to calculate the Mean
Absolute Error (MAE) of forecast values
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compared to actual values [25], computed using
the formula.

MAE=L32 3.9, G)

-Root Mean Square Error (RMSE)
It is a metric used to measure the deviation

between predicted and actual values, giving more
weight to larger errors by squaring the deviations
before averaging and then taking the square root
[25].

RMSE= ['32, (v,9,)’ 4)

-R-squared (R?)

It is a metric used to measure how well the
predicted data explains the variance of the actual
values [26]. It ranges between 0 and 1 and is
calculated using the formula.

22
R2:1_ Z(yi'yi) 5
Tos) &)

The MAE and RMSE values should be as low

as possible, while the R2 value should be as high

as possible (close to 1) to indicate that the model

can explain the variability in the data effectively

[27].

4. Results and Discussion
4.1 Results of Variable Selection Using Stepwise

Regression

Variable selection for model development was
conducted using Stepwise Regression, starting with
no independent variables and progressively adding
them one at a time based on their significance in
explaining the dependent variable, according to
predefined criteria. The results of the variable
selection for each forecasting model are as follows:
Model P.1_6 included 7 variables; Model P.1 6 +
MA included 10 variables; Model P.1_ 6 + EMA
included 8 variables; Model P.1 6 + P.67_6
included 16 variables; Model P.1_6+P.67 6+ MA
included 19 variables; Model P.1 6 + P.67 6 +
EMA included 18 variables; Model P.1_9 included
7 variables; Model P.1 9 + MA included 8
variables; Model P.1 9 + EMA included 9
variables; Model P.1 9 + P.67_9 included 17
variables; Model P.1 9+ P.67 9+ MA included 18

variables; and Model P.1 9 + P.67_ 9 + EMA
included 18 variables. The selected variables for
each model are summarized in Table 2.

Table 2 Results of Variable Selection for Forecasting
Models Using Stepwise Regression

Model Variable Selection

P.1 6 P1t-0 P1t-1 pP1t-2
P1t-3 P1t-12 P1t-19
P1t-24

P.1 6+ | P1t-0 P1t-1 P1t-3

MA P1t-12 P1t-0 MA2 P1t-0 MA18
P1t-18 MA24 | P1t-23 MA11l P1t-24 MA3
P1t-24 MA24

P.1 6+ | P1t-0 P1t-0 EMA2 P1t-0 EMA4

EMA P1t-1 EMA2 | P1t-1 EMA3 P1t-12EMA24
P1t14 EMA20 | P1t-20 EMA3

P.1 6+ | P1t-0 P1t-1 P1t-2 | P67t-24

P.67_6 | P1t-3 pP1t-12 P1t-19
P1t-24 P67t-0 P67t-1
P67t-5 P67t-6 P67t-7
P67t-8 P67t-9 P67t-12

P.1 6+ | P1t-0 P1t-1 MA2 P1t-2

P. 67_6 | P1t-3 P1t-12 MA3 P1t-13_MA22

+MA | P1t-18 MA2 | P1t-20 MA2 | P1t-24 MA20
P1t-24 MA24 | P67t-0 P67t-0 MA2
P67t-0 MA9 | P67t-1 MA16 P67t-5 MA2
P67t-7 MA2 | P67t-18 MA22 P67t-24 MAb
P67t-24 MA24

P.1 6+ | P1t-0 P1t-0 EMA23 | P1t-1 EMA?

P. 67 _6 | P1t-4 P1t-2 P1t-10 EMAS

+EMA | P1t-19 P1t-20 EMA9 | P1t-24 EMA3
P1t-24 EMA24 | P67t-0 EMA2 | P67t-0 EMAS
P67t-6 P67t-7 EMAG6 | P67t20 EMA18
P67t23 EMA24 | P67t-24 EMA3 | P67t:24 EMA20

P19 P1t-0 P1t-1 pP1t-2
P1t-3 P1t-24 | P1t-12 pP1t-17

P.1 9+ | P1t-0 P1t-1 P1t-1 MA2

MA P1t-3 P1t-10_ MA3 P1t-13 MA24
P1t21 MA11 P1t-24 MAZ2

P.1 9+ | P1t-0 P1t-1 EMA2 P1t-2

EMA P1t-4 EMA2 | P1t-12 EMA24 | P1t-14 EMA18
Pit-14 EMA21 | P1t-18 EMA9 | P1t-24 EMA2

P.1 9+ | P1t-0 P1t-1 P1t-2

P.67_9 P1t-3 P1t-12 P1t-16
P67t-0 P67t-1 P67t-3
P67t-4 P67t-5 P67t-6
P67t-7 P67t-8 P67t-9
P67t-11 P67t-24

P.1 9+ | P1t-0 P1t-0 MA2 P1t-0 MA20

P.67_9 | P1t-1 MA2 P1t-2 P1t-7 MA2

+ MA P1t-11 MA6 | P1t-17 MA3 P1t-24 MA7
P1t-24 MA24 | P67t-0 P67t-3 MA2
P67t-3 MA10 | P67t-5 MA2 P67t-7 MA2
P67t-24 MA3 | P67t-24 MA13 | P67t-24 MA24

P.1 9+ | P1t-0 P1t-1 EMA2 Pi1t-2 EMA14

P. 67_9 | P1t-5 P1t-9 P1t-13 EMA 3

+EMA | P1t-17 P1t21 EMA 12 | P1t-23_ EMA 5
P67t-0 P67t-1 P67t-3
P67t4 EMA 8 | P67t8 EMA 2 | P67t17 EMA 3
P67t-21 P67t-24 EMA 21 | P67t24 EMA 24
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The meanings of the variables listed in Table 2 are further explained in Table 3, which provides
descriptions of each variable used in the study.

Table 3 Definitions of the variables.

Variable Type Description

Pnt-k Water level at station Pn at t-k hours prior to
the current time, where Pn represents
the station code (i.e., P1 or P67), and t-k
indicates the time lag of k hours from the
present.

Pnt-k_MAp Moving Average (MA) of the water level at
station Pn, calculated from time t-k to t-k-
(p-1), totaling p values.

Pnt-k_ EMAq Exponential Moving Average (EMA) of the
water level at station Pn, starting from time
t-k and using q past values (or q periods).

42.Results of Water Level Forecasting Models for 4.3. Results of the 6-Hour Water Level Forecasting
Station P 1. Models for Station P.1

) Upon analyzing the hydrograph lines for the
_-_”_]e Feed-Forward Back Propagation (FFBF) 6-hour forecast, as illustrated in Figures 3-5
artificial neural network was used to develop (where the green line represents the model
forgcastlng models for the water level at the P.1 utilizing data from two stations, and the red line
sta}tlons, both for_6-hour and 9'“0‘” forecasts, represents the model utilizing data from one
usmg data from either one station (P_.l).or two station), it was determined that the model using
stations (P.1and P.67). The_ model_s varied in terms data from two stations provided better forecast
of the numb_er of nodes in the input layer, tr_1e results. A comparison of the use of water level
number of hidden layers, the number of nodes in data with MA and EMA data revealed that the
the hidden layers, and the number of nodes in the model employing water level data combined
output layer, as shown in Table 4.

| ‘ ] s f with MA could forecast higher peak water
Table 4 Structures of Forecasting Models for levels than the model using water level data

Station P.1 alone (Figure 4, green line). However, when
Model Input ":;d‘ii” Output water level data was combined with EMA, the
layer —Ll > layer model's ability to forecast peak water levels
P16 7 7 _ 1 improved (Figure 5, green line). Additionally,
P.1 6+MA 10 6 4 1 for the model using data from only one station,
P.1 6+EMA 8 6 3 1 adding EMA data enhanced the model’s
§:1:8+MA ; 2 2 i performance (Figure 5, red Iine_). Therefore,
P1 9+EMA 9 6 2 1 based on the hydrograph analysis, the model
P.1 6+P.67 6 17 7 - 1 that combined water level data with EMA from
P16+P6/6+MA 19 6 - 1 two stations (P.1_6 + P.67_6 + EMA) was
P.16 +P.676 + 18 6 1

EMA selected as the best model. This conclusion is

P19+P67 9 17 6 2 1 consistent with the statistical comparison
P19+P67 9+MA 19 6 1 1 results shown in Table 5.
P19+P67 9+EMA 18 5 4 1
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6-hour ahead water level forecasting using historical data.
_‘ Actual Water Level ! ! !
Forecast from P.1

5 Forecast fromP.1 + P.67

River Bank Level /\A\ f/ \
450 ‘[4{- -
F e

4 — ’ \ d

{meters)
w
W w
S
e —
Y//’
-
—
_—
-
P
”

©
325 J V
-
3 ' 4§
% //‘x p.
T ol ‘
g /N :
\L__,.,_J . .
v
150 1
1
05 x - L 1
. 123 1.24 125 1.26 1.27 1.28 129 1.30 1.31 132 4
Data Sequence pao

Figure 3 Comparison of the forecasting results between the P.1_6 model and the P.1_6 + P.67_6 model

6-Hour Ahead Water Level Forecasting Using Historical Data and Moving Average (MA)
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Figure 4 Comparison of the forecasting results between the P.1_6 + MA model andthe P.1_6 +P.67_6 +
MA model

6-Hour Ahead Water Level Forecasting Using Historical Data and Exponential Moving Average (EMA)
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Figure 5 Comparison of the forecasting results between the P.1_6 + EMA model and the P.1_6 +P.67_6 +
EMA model
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4.4 Results of the 9-Hour Water Level Forecasting
Model for Station P.1

The forecasting results for the 9-hour water
level forecasting at the P.1 station are presented in
Figure 6, where the red line represents data from
one station and the green line represents data from
two stations. It was observed that using data from
one station provided better forecasts, particularly
for predicting the peak water levels, compared to
using data from two stations. However, when

actual data was combined with MA and EMA data
(Figures 7 and 8, respectively), it was found that
the models using data from both one station and
two stations showed improved performance,
especially the models that used data from two
stations (Figures 7-8). Adding EMA data to the
two- station model continued to yield the best
overall results (Figure 8), which is consistent with
the statistical comparison results presented in
Table 6.

9-Hour Ahead Water Level Forecasting Using Historical Data.
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Figure 6 Comparison of the forecasting results between the P.1_9 model and the P.1_9 + P.67_9 model
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Figure 7 Comparison of the forecasting results between the P.1_9 + MA model and the P.1_9 + P.67_9 +

MA model

Volume 10 Issue 2 July - December 2025



RMUTL. Eng. J Q

Rajamangala University of Technology Lanna (RMUTL) Engineering Journal

9-Hour Ahead Water Level Forecasting Using Historical Data and Exponential Moving Average (EMA)
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Figure 8 Comparison of the forecasting results between the P.1_9 + EMA model and the P.1_9+P.67 9 +

EMA model

45.Comparison of the Performance of the 6-Hour
Water Level Forecasting Model for Station P.1

The results of comparing the 6- hour water
level forecasting models for the P.1 station showed
that the model P.1_6 + EMA performed the best
for the single station (P.1), as it yielded the lowest
MAE, RMSE, and the highest R2. This was
followed by the P.1_6 + MA model, and then the
P.1 6 model. For the two-stations model (P.1 and
P.67),the P.1_6 + P.67_6 + EMA model showed
the best performance, with the lowest MAE,
RMSE, and the highest R, followed by the P.1 6
+ P.67_6 + MA model and the P.1 6 + P.67_6
model, respectively. Additionally, the models
using data from two stations outperformed those
using data from only one station. Therefore, the
P.1 6 + P.67_6 + EMA model is considered the
most suitable for forecasting the 6-hour water level
at Station P.1, as shown in Table 5.

Table 5 MAE, RMSE, and R2 values for the 6-hour
water level forecasting model for Station P.1

Performance
Model MAE | RMSE | R?
P.1 6+P.67 6+EMA | 0.0405 | 0.0578 | 0.9859

4.6. Comparison of the Performance of the 9-hour
Water Level Forecasting Model for Station P.1

The comparison of the 9- hour water level
forecasting models for the P.1 station, using data
from only P. 1 station, revealed that the model
P.1 9 + EMA performed the best performance,
with the lowest MAE, RMSE, and the highest R?,
followed by the P.1_9 + MA model, and then the
P.1 9 model, respectively. For models using data
from the P.1 and P.67 stations, the P.1_9 + P.67_9
+ EMA model provided the best results, followed
by the P.1 9+ P.67_9 + MA model, and then the
P.1 9+ P.67_9 model. Additionally, the group of
models using data from two stations performed
better than those using data from only one station.
Therefore, the P.1 9 + P.67_9 + EMA model
demonstrated the best performance and is the most
suitable for forecasting the 9-hour water levels at
Station P.1, as shown in Table 6.

Model Performance Table 6 MAE, RMSE, and R? values for the 9-hour
MAE | RMSE R? . .
P16 00470 1 00679 | 0.9805 water level forecasting model for Station P.1
P.1 6+ MA 0.0461 | 0.0675 | 0.9808 Model Performance
P.L 6+EMA 0.0447 | 0.0655 | 0.9818 ode MAE | RMSE | R?
P.1 6+P.67 6 0.0412 | 0.0587 | 0.9854 P.19 0.0649 | 0.0939 | 0.9628
P.1 6+P.67 6+MA | 0.0410 | 0.0582 | 0.9857 P.1 9+ MA 0.0657 | 0.0933 | 0.9456
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P.1 9+ EMA 0.0643 | 0.0908 | 0.9652
P.1 9+P.67 9 0.0572 | 0.0798 | 0.9732
P.1 9+P.67. 9+ MA | 0.0568 | 0.0779 | 0.9744
P.1 9+P.67 9+EMA | 0.0562 | 0.0776 | 0.9746

5.Conclusions

This study investigates the development of
machine learning models for forecasting the water
levels 6-hour and 9-hour ahead at the P. 1 station.
The primary objectives were to identify
appropriate variables for forecasting water levels
at the P.1 station, and to create the most suitable
machine learning models for forecasting water
levels at the same station for 6-hour and 9-hour
periods. The results are summarized as follows:

Using data from the P.1 and P.67 stations
showed better accuracy forecasting for both the 6-
hour and 9-hour forecasts compared to using data
from the P. 1 station alone. Additionally, the
inclusion of supplementary variables using EMA
and MA techniques improved forecasting
performance when compared to using only past
water level data. Among these, EMA provided
better improvement in model performance than
MA.

For model development, the study used a
Feed-Forward Back Propagation (FFBP) Artificial
Neural Network (ANN) based on data from either
one station (P.1) or two stations (P.1 and P.67).
EMA and MA techniques were used to compare
model performance, and variable selection was
performed using Stepwise Regression.

For the 6- hour water level forecasting, the
P.1 6 + P.67_6 + EMA model demonstrated the
best performance, with the model structure
comprising 18 input nodes; 6 and 2 nodes in the
two hidden layers, and 1 output node. The model
used 18 variables, including data from P.1 (P1t-0,
P1t-2, P1t-4, P1t-19), EMA variables for P.1 (P1t-
0_EMAZ23, P1t-1_EMAZ2, P1t-10_EMADS, etc.),
data from P. 67 (P67t- 6, P67t- 20), and EMA
variables from P.67. This model achieved MAE =
0.0280, RMSE = 0.0431, and R? = 0.9780 for the
training dataset, and MAE = 0. 0405, RMSE =
0.0578, and R2 = 0.9859 for the testing dataset.
These are the best values among the models for 6-
hour forecasting.

For the 9- hour water level forecasting, the
P.1 9+ P.67_9 + EMA model achieved the best
performance, with the model structure consisting
of 18 input nodes, 4 nodes in each of the two
hidden layers, and 1 output node. The model used
18 variables, including data from P.1 (P1t-0, P1t-
5, P1t-9, P1t-17), EMA variables for P.1 (P1t-
1 EMA2, P1t-2 EMA14, etc.), data from P.67
(P67t- 0, P67t- 1, P67t- 3, P67t- 21), and EMA
variables for P.67. This model produced MAE =
0.0387, RMSE = 0.0564, and R? = 0.9627 for the
training dataset, and MAE = 0. 0562, RMSE =
0.0776, and R2 = 0.9746 for the testing dataset.
These were the best values for the 9- hour
forecasting models.

In conclusion, the models for forecasting 6-
hour and 9- hour water levels using past data from
two stations combined with EMA performed better
overall than those using past data from a single
station alone or in combination with MA.
Additionally, the 6-hour forecast models showed
higher accuracy than the 9-hour forecast models.

For forecasting water levels at station P.1 six
hours in advance, the best-performing model
presented in this research utilized hourly historical
water level data from two stations, P.1 and P.67,
combined with the EMA of the historical water
level data from both stations. This model produced
forecasts consistent with the model proposed in
[16], which used hourly historical data from
stations P.1, P.67, P.75, and the water discharge
volume from a dam, along with the MA of the
dam's discharge volume. That model achieved an
RMSE of less than 0.1 for 6-hour-ahead
forecasting. In contrast, the study in [16] did not
include a 9-hour-ahead forecast. However, the
model proposed in this study still achieved an
RMSE of less than 0.1 even at the 9-hour forecast
horizon.

The reason why using data from two stations
yields better results than using data from only one
station is due to the direct correlation between P.1
and the upstream station P.67, which is located
approximately 32 kilometers away. The water
mass takes about 67 hours to travel from P.67 to
P.1[28]. Therefore, incorporating historical hourly
water level data from both stations for forecasting
water levels at P.1 6-9 hours in advance is likely
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to result in more accurate predictions compared to
using data from only P.1.

In addition, using historical hourly water level
data from P.1 and P.67 along with the EMA of the
historical data from both stations provided better
performance than using MA or raw historical data
alone. This is because EMA is more responsive
to short- and medium-term changes in data [11],
making it suitable for trend analysis in such
timeframes. EMA assigns greater weight to the
most recent data and gradually reduces the
weight for older data, whereas MA gives equal
weight to all data points (refer to Equations 1
and 2). On the other hand, using only the
historical hourly water level data from P.1 and
P.67 without any smoothing technique yielded
the lowest performance, as the burden of
learning trends fell solely on the Artificial
Neural Network (ANN). Improving the model’s
performance in such cases would depend heavily
on adjusting the architecture and hyper
parameters. Therefore, the most appropriate
model for forecasting 6- and 9-hour-ahead water
levels at station P.1 is the one that uses historical
hourly water level data from both P.1 and P.67
combined with the EMA of historical water level
data from both stations—an approach not
previously reported for model development at
station P.1.

Practical Applications

The forecasting model for water levels at
station P.1 proposed in this study can be
effectively applied to flood warning systems in the
urban area of Chiang Mai Province. One of its key
advantages is the simplicity of the artificial neural
network (ANN) architecture, which consists of
only an input layer, a hidden layer, and an output
layer. This streamlined structure enables faster
processing compared to models with more
complex architectures, facilitating  easier
development into practical applications.

Furthermore, using data from only two
stations helps mitigate issues related to data loss,
which often arise when relying on multiple data
sources and can hinder model performance. The
developed model can also be integrated to
enhance previously developed flood warning
applications [29], improving both forecasting

accuracy and the overall efficiency of the
warning system.

The practical implementation of this model is
expected to increase the safety of residents in
Chiang Mai’s urban area by providing more
reliable flood warnings, thereby protecting lives
and property. Additionally, it can significantly
reduce the overall economic losses caused by
flooding, contributing to improved quality of life
and economic stability within the community.
Suggestions for Future Research

- For the 9-hour water level forecasting
models, it is recommended to include data from
additional upstream stations to further improve
forecasting accuracy.

- It would be beneficial to experiment with
combining both MA and EMA data to compare
forecasting performance.

- Other variable selection techniques should
be explored alongside ANN models to further
enhance the water level forecasting models and
compare their effectiveness.

- Consideration could be given to using
other deep learning models for water level
forecasting and comparing their forecasting
performance with the current models.
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