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Abstract

The purpose of this study is to use a variety of models to create prediction models for Chiang Mai's PM2.5
levels. To improve the accuracy of our predictions, we take into account outside variables that might
influence PM2.5 levels. Among the variables that we include in the data are PM2.5 concentrations,
temperature, wind speed, precipitation, cloud cover, relative humidity, and other external factors. Before
using the model, the researcher used basic statistical analysis, seasonal analysis, and stationary analysis to
assess the data. The team of researchers carried out both data transformation and data cleansing. We tested
the ARIMA, SARIMA, and SARIMAX forecasting models. First, we use ARIMA to forecast and assess
results. The SARIMA model more accurately captured the seasonal connection in the data when we
included a seasonal component. The model was able to forecast PM2.5 levels more precisely at times when
seasonal patterns recurred thanks to this improvement. As the last step, we used the SARIMAX model to
improve performance by adding exogenous variables. In the end, we assessed the accuracy and performance
of each forecast using the MAE and RMSE numbers. The ARIMA model yielded MAE values of 7.34 and
RMSE 7.95. The SARIMA model MAE values of 5.76 and RMSE 6.54. The SARIMAX model, when
incorporating humidity, had the lowest MAE values of 4.36 and RMSE 5.25, representing improvements
MAE of 40.6% and RMSE 34% compared to ARIMA.
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1. Introduction

Dust, a common environmental issue, has
detrimental effects on both human health and the
ecosystem. Dust is a term that refers to the minute
particles that are floating in the atmosphere. These
particles may vary greatly in size and composition,
with some even being tiny enough to enter an
individual's respiratory system. There are a
number of major health hazards associated with
small particles, including cardiovascular and
pulmonary issues. We often divide small particles
into categories of PM10 and PM2.5 categories.
Due to its interactions with environmental
systems, dust not only impacts health, but also
influences climate change; especially when it
contains harmful greenhouse gases. Finding
solutions that improve the environment and human
health requires an understanding of the sources,
effects, and necessary mitigation techniques of

dust pollution. PM2.5 may originate from a
number of sources, such as vehicle emissions,
wildfires, and industrial operations. By reducing
air quality, PM2.5 worsens environmental
problems, including poor sight and climate
change, in addition to its negative health impacts.
Knowledge of PM2.5 sources, effects, and
mitigation strategies is essential for improving
human health and protecting the environment. The
forecast of PM2.5 levels is essential for
maintaining air quality and safeguarding human
health. Serious health risks may arise from
particulate matter with a diameter of 2.5
micrometers or smaller, or PM2.5, which can enter
the bloodstream and penetrate deeply into the
lungs. Accurate PM2.5 level estimates may help
individuals and communities prevent exposure,
take effective action, and anticipate and solve air
quality issues.
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In today's world of rapid change, data mining
has grown in importance due to the exponential
growth in data collecting. Data mining uses
sophisticated techniques rather than just extracting
data to find valuable information hidden in
massive datasets. In order to develop sophisticated
artificial intelligence models, find patterns, and
facilitate informed decision-making, it involves
using deep technologies and complex algorithms.
Businesses, academic institutions, and other
organizations of various kinds may utilize this
ability to identify important trends across a range
of industries. Many different areas, including
forecasting commercial trade, targeted marketing
plan development, and medical research, employ
data mining.

The use of data mining techniques has made it
possible to develop new methods for displaying
and analyzing data. Regression analysis
accomplishes the separation of dependent factors
and independent variables [1], classification
models make educated guesses about the
categories that individuals belong to, anomaly
detection [2] pinpoints problems, association rule
mining [3] illustrates the connectivity of data, and
text mining [4] extracts meaning from text data.
Time series analysis (ARIMA) [5] examines and
forecasts data gathered over time. Hierarchical
structures are used by decision trees [6] to assist
individuals in  making decisions. Ensemble
approaches use multiple models to make
predictions more accurate. And neural networks
[7] try to work like the brain. The optimal data
mining technique depends on the specific goals
and types of data.

This project aims to develop prediction models
for PM2.5 levels in the Thai region of Chiang Mai,
which has annual PM2.5 dust pollution. We have
evaluated the forecast model using three models:
SARIMA, ARIMA, and SARIMAX. ARIMA is
used for modeling time-dependent data that exhibit
trends and autocorrelation. SARIMA is built upon
ARIMA by including seasonal components, which
are essential for capturing the yearly patterns often
observed in environmental data such as PM2.5.
Forecasting is further enhanced by SARIMAX
through the incorporation of external variables,
such as weather conditions, which are known to

influence PM2.5 levels. These models are widely
applied to support early warning systems and
inform environmental policies aimed at reducing
public health risks.

In the test, the test component used data from
January 2023 to December 2023 for 12 months,
while a 60-month data from January 2018 to
December 2022 was used to predict the PM2.5
levels for the whole year of 2023. The structure of
this work describes the setup as follows: Section 2
provides a review of various earlier studies directly
related to this subject, while Section 3 discusses
the technique. Section 5 concludes this article with
a presentation and discussion of the results from
Section 4.

2. Literature review

According to research, PM2.5 and PM10 are
two different kinds of dust, each having its own
origins and chemical makeup [8]. The particles
that make up particle pollution are separated into
two categories, according to Chen et al [9], PM10
contains particles as tiny as 10 microns, whereas
PM2.5 contains particles as small as 2.5 microns.
PM2.5 contains carbonaceous material and metal
compounds that may be harmful to both people
and the environment The atmosphere disperses
these particles in different ways, according to
Singh et al [10], and PM10 often reflects coarse-
mode PM, such as dust carried by the wind. The
study used the Nested Regional Climate and
Chemistry Model (NRCM-Chem) to predict
PM2.5 concentrations over the northern peninsula
of Southeast Asia during 2020-2029 under the
RCP8.5 scenario. The model showed good
agreement with observed data, with an Index of
Agreement (I0A) between 0.63 and 0.80, although
it slightly underestimated temperature and
precipitation and overestimated PM2.5 levels [11].

The intersection of big data, machine learning,
and data mining is a fast-growing subject with
enormous potential for a broad variety of possible
applications at every stage of its development.
Singh highlights how machine learning may be
able to help with the difficulties that come with
large data analytics [12]. Yang C, Huang Q, and et
al [13] both stress the value of data mining as a
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technique for drawing insightful conclusions from
large and intricate data sets. Furthermore, they
look at the different kinds of big data and the
difficulties that come with them. Wang S and Cao
J’s [14] article delves deeper into the use of data
mining methods and the applications of big data
processing. The research looks more closely at
various applications and focuses on the diverse
nature of huge data.

ARIMA has been the subject of several
research studies in the fields of data mining and
projected outcomes. Diaz-Robles LA, Ortega JC
and et al [15] used an upgraded ARIMA model for
air quality prediction and achieved better results by
using a sliding window technique and forecasted
data. The integration of the data made this
possible. Lee, Dongwon, and et al [16] achieved a
low average error rate, while Khashei M and Bijari
M [17] likewise discovered that ARIMA was
effective in predicting time series data. Shivhare
N, Rahul AK, and et al [18] has developed tools
for daily weather forecasting and proposed an
ARIMA method for weather data mining that is
based on Hadoop. These research findings
illustrate the utility of ARIMA in data mining and
prediction activities. Other research results
demonstrate the usefulness of ARIMA in other
fields. The results of this research illustrate the
adaptability and use of ARIMA in the field of data
mining.

According to earlier research, there were a
number of obstacles in PM2.5 forecasting, such as
significant environmental variability, difficulties
in capturing abrupt pollution spikes, and
limitations in data completeness and resolution. To
address these challenges, models were required
that could manage missing or inconsistent data,
incorporate  external factors, and handle
seasonality. The combination of many forecasting
models, such as ARIMA, SARIMA, and
SARIMAX, plus the addition of other exogenous
factors to increase predicted accuracy set this study
apart from earlier investigations. This study
examined the relative effectiveness of several
models and showed how external meteorological
elements might greatly improve forecasting
accuracy, while previous studies often relied on a
single model or just looked at past PM2.5 data.

3. Methodology

A structured time series forecasting flowchart
was the primary program of the proposed
algorithm, as shown in Figure 1. Data entry comes
first, followed by analysis and cleaning. Before
establishing the ARIMA, SARIMA, and
SARIMAX models, we made changes to the
cleaned data. With this model, we made
predictions and we corrected for poor model
performance. The technique produced excellent
analysis and outcomes. This method generated
accurate forecasts by fine-tuning the model in
response to performance assessments.

Maodel
Input Data Data Transform Performance
Evaluation

Define Model
-ARIMA
- SARIMA
-SARIMAX

Satisfied
with the
results?

Model

Data Analysis Fine-Tuning

Model

Data Cleaning Prodotion

Figure 1 the primary program of the suggested
approach.

3.1 Dataset

The comprehensive data from several
sources was included in the dataset used to study
PM2.5 levels, which improved the analysis's
resilience. The PM2.5 information came from
Berkeley  Earth  (https://berkeleyearth.org),
which provided detailed records of particulate
matter concentrations [19]. Visual Crossing
(https://www.visualcrossing.com) provided
essential meteorological context by retrieving
external data; including temperature, cloud
cover, relative humidity, and wind speed. An
additional source of environmental information
was rainfall data from the Hydrological
Information Institute (https://www.hii.or.th)
[20]. By combining these datasets, the research
was able to more accurately identify the factors
influencing PM2.5 levels more accurately,
yielding more useful conclusions and
recommendations for managing air quality and
understanding environmental impacts.
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3.2 Data preprocessing

We formatted the obtained data in this stage
so that it cloud be used for other forecast. Data
preparation is an essential step in the data analysis
pipeline that ensured the data was accurate,
consistent, and ready for analysis. We converted
raw data into a format suitable for analysis,
cleaning, and transformation to achieve for
more accurate and insightful results. To identify
stationary, seasonality, and seasonal
decomposition data, we examined the processes
involved in the data analysis procedure. After that,
the data transformation procedure included
converting daily data into monthly data, removing
anomalies, and using averages to fill in the missing
days.

— pm2.5
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2018 2l)|19 2D|20 20|21 20|22 20|23
datetime
Figure 2 Chiang Mai, Thailand's basic information
on PM2.5 levels.

The 2218-day collection of PM2.5 data for
Thailand’s Chiang Mai province provided crucial
information on the air quality in that area. Data
transformation involved several steps. Outliers
were removed, and missing values were filled
using the average of the available data. The daily
data were then aggregated and converted into
monthly data. For model evaluation, the dataset
was divided into two parts. The training set
consisted of 60 months of monthly data, from
January 2018 to December 2022. The testing set
included 12 months of data, from January 2023 to
December 2023, and was used to forecast the
PM2.5 values for the entire year of 2023. The

average PM2.5 level was 27.24 pg/m3, which was
considered moderate pollution by the Air Quality
Index (AQI). Air quality fluctuated significantly,
as seen by the standard deviation of 19.41 pg/ms,
which demonstrated substantial variability in daily
pollution levels. The variability was further shown
by the data, which displayed a broad range of
PM2.5 values, from a low of 3.67 pg/m? to a
maximum of 126.44 pg/ms3. According to the
distribution analysis, the 25th percentile (Q1) was
12.51 pg/mé, meaning that the air was
comparatively clean for 25% of the days. PM2.5
levels were at or below this threshold on half of
those days, as shown by the median (Q2) of 20.84
pg/m3. The 75th percentile (Q3), which indicated
that 25% of those days had greater pollution levels,
was 37.24 pg/md. Even though Chiang Mai
occasionally experiences low pollution levels, the
city frequently experiences moderate to high
PM2.5 levels, with notable daily fluctuations.
Figure 2 illustrates how important this data is for
planning public health initiatives, and for those
who are sensitive to changes in air quality.

A time series analysis’s ability to determine
whether the data is stationary or if its statistical
properties remain constant across time was
essential for its success. There were a number of
ways to do this. For visual assessment, we plotted
the data to see whether the mean and variation
were seasonal and stable. It was possible to
determine the unit root using statistical methods
like the Augmented Dickey-Fuller (ADF) test.
Without it, the data remains stagnant. When the
autocorrelation function (ACF) and the partial
autocorrelation function (PACF) were analyzed, it
was possible to determine whether or not the
relationships in the data had deteriorate with time.

Time series analysis requires determining
whether the data was stable and if its statistical
features stayed constant. To find a unit root, one
can either display the data and determine whether
the mean and variance remain constant, or they can
use statistical tests such as the Augmented Dickey-
Fuller (ADF) test, as outlined in Eq. (1). Both null
hypotheses assume unsteady data. This test should
have a p-value of 0.05 or less to reject the null
hypothesis.
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where Ay, the time series' initial difference,

Vi, yve—1 the time series' delayed level,

a is an optional constant term,

[t is an optional trend term,

et is the error term,

p is the model's number of lag differences,

Y7 81Ay, e is the Sum of time series
lagged differences to adjust for higher-order
autocorrelation.

The following were the ADF test results:
There were 60 observations, the p-value was
0.766, and we employed 11 lags. These findings
implied that we were unable to rule out the ADF
test's null hypothesis, which showed that the
time series was not stationary. The results of
the ADF test suggest that we could validate the
unit root or non-stationary nature of this data
with a p-value of 0.05.

After that, time series analysis used
the autocorrelation (ACF) and partial
autocorrelation (PACF) functions to understand
the correlations between the data [21]. The ACF
method evaluated the connection between the
present data value and the future data value (lag)
without taking into consideration any additional
factors in the data. Through the consideration of
intermediate lag correlations, PACF was able to
discover independent links between the values
of the present data and those of the distant data.

The Autocorrelation Function (ACF) for a
time series {Xi} at lag k is defined as seen by Eq.

).
Py 2
where Yy is Cov(X,X) for any i.
Cov(X,X) is the covariance between X,
t0 X, .
Y, is the variance of the stochastic process.

Autocorrelation Function (ACF)

0 10 20 30 40 50

Figure 3 The autocorrelation (ACF).

From Figure 3. The ACF graph shows the
relationship between current and lag values. Its
periodic decline reveals seasonality. The ACF
graph's cyclical rise and fall validates data
seasonality by showing a recurrent and consistent
correlation across periods.

The Partial Autocorrelation Function (PACF)
is a statistical tool that quantifies the degree of
correlation between a time series and its delayed
values. This function took into consideration the
influence of intermediate delays. In the PACF at
lag k, the direct link between X; and X;_;. was
calculated after the contributions of intermediate
delays had taken into consideration. In the next
regression model, Eq. (3) shows how to estimate
the PACF at lag k, which is shown by & as the
coefficient of X;_j.

Xi= D1 X1 F0oi Xeo +e o AD1e1y X (k- 1) TE¢ (3)

where X; is the partial autocorrelation coefficient
at lag k,
€; denotes the residual.

For an autoregressive (AR) process, PACF
may be computed using recursive connections
derived from the Yule-Walker equations. To
calculate the PACF at lag k, use Eq. (4).

D= Corr(Xy, Xog | Xictsee s Xiiee1)) 4)

The PACF (Partial Autocorrelation Function)
graph that is shown in Figure 4 indicates a direct
link that exists between the current values and the
lagged values. This graph takes into consideration
the effect of other lagged data as well. The
existence of substantial spots in the PACF graph at
lags that correspond to seasonal periods, i.e.
around 12 months, is additional evidence that the
data exhibited seasonality. This was evidenced by
the fact that the PACF graph contains significant
spots. The evidence of seasonal patterns was
enhanced by these notable spikes, which
demonstrate that there was a clear association
between the data and values from previous
seasonal periods. This gives credence to the notion
that seasonal patterns existed.
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Figure 4 The partial autocorrelation (PACF).

In the last step of data analysis, seasonal
decomposition breaks down the data to better
understand its patterns and properties. Separating
the trend, seasonal, and residual data. This was a
typical seasonal breakdown. The trend component
showed a long-term data evolution to identify
long-term growth or reduction. Seasonality
captures trends that occur monthly, quarterly, or
annually to indicate short-term changes that follow
a cycle. Once we eliminated trends and seasonal
effects, the residual component reveals random
data fluctuations or deviations that neither a trend
nor seasonal factors can explain. Breaking the data
into various components helped us understand and
analyze the time series.

Figure 5 illustrates the seasonality and non-
stationarity of Chiang Mai’s PM2.5 data from
2018 to 2023. The ADF test and seasonal
decomposition analysis p-values over 0.05
indicated data instability. The breakdown graph
shows trends and seasonality components in the
data. The monthly PM2.5 data for Chiang Mai
shows distinct seasonal patterns and trends.
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Figure 5 2018-2023 Chiang Mai PM2.5 seasonal
component decomposition.

3.3 Model prediction

To assess the study's prediction effectiveness
based on the examination of PM 2.5 data in Chiang
Mai Province, the researchers used three models:
ARIMA, SARIMA, and SARIMAX [22].

A technique known as ARIMA, which is an
acronym that stands for autoregressive integrated
moving average, was used by us for the aim of
assessing and predicting time series data that
displays seasonality, patterns, or instability.
ARIMA is comprised of three components: MA, I,
and AR. We made use of differencing in order to
decrease trends and stabilize the data; MA makes
use of moving averages of prediction mistakes in
order to boost accuracy; and AR makes use of past
values in order to anticipate future values. All of
these techniques were used in parallel. ARIMA is
able to manage time-series data that is both
unstable and intricate when both components are
mixed inside the model.

It was possible to represent the ARIMA model
equation in terms of its constituent parts. Eq. (5)
displays the generic form of the ARIMA (p, d, q)
model for a time series Y.

y=ct@ry,  t.. .+(Dpyt_p-91 €117+ -0g€q e (5)

where Y, is the actual value at time t,
c is a constant term,
@; are coefficients for autoregressive terms,
0; are the coefficients for moving average
terms,
€, is the time-t error term.

When d>0, replace Y; with its A4 differences
A%Y, for stationarity, as described in Eq. (6)-(7).
ARIMA successfully models and forecasts time
series data using AR, differencing, and MA terms.

AY= Y- Yoy (6)
AYY =AY )

SARIMA adds seasonal components to the
ARIMA model. The SARIMA model is defined as
SARIMA (p, d, q) x (P, D, Q)s, Eq. (8) represents
the SARIMA model.
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@1 €5 "®Q€1—Qs+€t (8)

where L is the lag operator,
@; and @; are Coefficients of the non-

seasonal AR terms,

0; and ©; are Coefficients of the non-
seasonal MA terms,

€; is the white noise,

s is the seasonal period.

SARIMAX adds exogenous regressors to the
SARIMA model. SARIMAX incorporates wind
speed, rainfall, relative humidity, temperature, and
cloud cover. We added one external variable to
each test. The SARIMAX model is defined as (p,
d, q) x (P, D, Q)s with exogenous variables X;;.
Eg. (9) represents the SARIMAX model.

yt:C+®1yt-1+' . .+®pyt_p—61€1_1-. -
qut_q+q)1yt_s+. . '+q)Pyt—Ps-®1 €lg=-.."
G)Qct_anL[f)IX1 e .+[3ka e 9)

where L is the operator of lag,

@; and @; are the parameters of AR, 6; ,

©; are the parameters of MA,

B, are coefficients of the exogenous
variables.

€ Is the forecast error,

X, are the exogenous variables.
3.4 Model performance evaluation

For the purpose of the test, the data was
collected over a period of twelve months,
commencing in January 2023 and finishing in
December 2023. On the other hand, the data for the
train component was collected over a period of
sixty months, beginning in January 2018 and
ending in December 2022. A total of three models,
namely ARIA, SARIMA, and SARIMAX, was
used by us in order to carry out the procedure.
Through the use of two distinct optimization
methodologies, we were able to enhance the
correctness of the product. First, the SARIMA
model's parameters were adjusted using grid
search. Grid Search lets you change the model's
parameters by giving each parameter a range, and
carefully examining every possible combination.
This process finds the set of parameters that yields
the highest accuracy. Grid search systematically

looks at every potential combination of parameters
to improve prediction accuracy and optimize
model performance.

In an effort to achieve more precision, we
included external components into the SARIMAX
model. We made observations on the amount of
precipitation, relative humidity, temperature,
cloud cover, and wind speed. The model
incorporates these variables to increase forecast
accuracy by adding crucial components that may
affect time series data. We used MAE and RMSE
to test the SARIMAX model with these external
regressors. These metrics, which compute the
average magnitude of errors and the square root of
the average of squared errors, demonstrate the
accuracy of the model. Our prediction model
accuracy statistic is Mean Absolute Error (MAE).
Mean absolute error (MAE) shows prediction
errors' average magnitude regardless of direction.
Since it provides the precise difference between
predicted and actual values, this statistic helps
evaluate a model. The formula calculates the
average absolute discrepancies between the
predicted and actual values. The MAE formula is
in Eqg. (10).

MAE=-32, | Y;-Y; | (10)

RMSE= \/ﬁzgll (v:-%,)° (11)

where n is the quantity of occurrences.,

Y; is the actual value at occurrences i,

Y, is the predicted value at occurrences i

| Y;-Y; | reflects each occurrence’s absolute
error.

The Root Mean Squared Error (RMSE)
statistic is often used by predictive models in order
to carry out an evaluation with a degree of
accuracy that they possess. We were able to
calculate the difference between the numbers that
were predicted and those that were actually
observed by using the square root of the average of
the squared deviations. This allows us to determine
the difference between the two sets of numbers.
RMSE is one of the measures that was used to
evaluate how well the predictions made by the
model fit the actual data. Due to the fact that this
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measure squares differences, it provides more weight
to larger errors that are the result of the squared
differences approach. As a consequence of this,
major deviations and outliers have the ability to have
a large impact on the root mean square error
(RMSE). Because it presents a degree of mistakes in
the same units as the data that was initially gathered,
Eq. (11) was a useful indicator for assessing the
overall performance of a model. This was because it
displays the errors in the same units.

4. Result and discussion

The dataset gathers PM2.5 data for the Thai
province of Chiang Mai over a period of 2,218 days,
spanning 60 months, from January 2018 to December
2022. The test data was obtained between January
2023 and December 2023. In addition to exterior
factors like temperature, cloud cover, relative
humidity, wind speed, and rainfall, it includes 52,584
records with PM2.5 values. This large dataset made it
gasier to accurately measure and predict PM2.5 levels
while taking a variety of meteorological factors into
consideration.
Table 1 2023 monthly actual data vs. numerous
predicting systems.

Best SARIM

Year Actual  ARIMA  SARIM AX
2023
A (temp)
January 43.446 33.618 36.128 36.562
February 36.796 31.159 28.069 28.186
March 34.467 29.069 31.440 31.596
April 37.329 28.022 26.984 25.839
May 24.240 26.419 18.962 17.965
June 17.774 26.636 20.838 20.311
July 17.697 27.769 28.543 28.317
August 20.482 28.506 18.045 17.806
September 17.800 28.844 24.221 23.661
October 20.949 28.918 27.487 27.339
November 29.446 28.579 24572 24.244
December 37.117 28.187 36.822 35.973

Table 2 2023 monthly actual data vs. numerous
predicting systems (con.).
SARIM

SARIM

v s U TR s
2023 ity) (Cloud (Wind nfall)
Y Cover) Speed)
January 36.040 37.094 35.842 35.995
February 29.131 30.272 27.094 28.516
March 33.864 33.683 30.662 32.459
April 33.207 30.380 27.190 27.465
May 21.957 21.737 19.795 20.996
June 20.701 20.622 22.288 20.620
July 28.667 28.642 30.571 28.790
August 18.818 18.182 17.942 20.428
September 23.140 24.241 25.184 23.613
October 24.270 25.824 28.374 25.515
November 24.876 25.296 24.706 25.331
December 35.649 36.808 36.538 36.938

On the other hand, the PM2.5 levels for each
month of 2023 are shown in Tables 1 and 2, and
the forecasts for each model reveal the PM2.5
values in Chiang Mai Province. Please refer to
both tables displayed down below. Examples of
models that are provided in this package include
ARIMA, the best SARIMA, and a number of other
SARIMAX models. These models consider a
variety of parameters, including temperature,
humidity, cloud cover, wind speed, and rainfall.
One example of a forecast with an actual value of
43.446, was recorded for the month of January, as
shown by the data in Table 1. It is worth noting that
the year 2023 saw the highest rating for PM2.5.
The ARIMA model anticipated 33.618, whereas
the best SARIMA model projected 36.128.
Additionally, for this month, a number of models
generated forecasts that were different from one
another. The SARIMAX models, while factoring
in a wide range of meteorological factors,
generated the following predictions: 36.562 for
temperature, 36.040 for humidity, 37.094 for cloud
cover, 35.842 for wind speed, and 35.995 for
rainfall.

—e— Actual
== ARIMA
Best SARIMA
+— SARIMAX (Temp)
—=+— SARIMAX (Humidity)
+— SARIMAX (Cloud Cover)
+— SARIMAX (Wind Speed)
SARIMAX (Rainfall)

Comparison of Actual Data vs. ARIMA/SARIMAX Models (2023)

[
2
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Figure 6 Many predicting methods compared to
2023 monthly data.

The graph in Figure 6 presents a comparison
between the actual levels of PM2.5 in Chiang Mai
for the year 2023 and the predictions generated by
a number of models. These models include
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ARIMA, SARIMA, and numerous SARIMAX
models, all of which consider a variety of
meteorological factors, such as temperature,
humidity, cloud cover, wind speed, and rainfall.
During the month of January, the actual PM2.5
value reached its maximum point, which was far
greater than any model's projection. The
SARIMAX model, which took into consideration
cloud cover, produced the most accurate estimate
of the data. These models have a tendency to
reflect the trend of the actual values during the
course of the year; nevertheless, they typically
overestimate or underestimate the highs and lows
that occur throughout the year. The existence of
this gap draws attention to the challenges
associated with accurately calculating PM2.5
levels and the influence that a wide range of
environmental factors has on air quality. Table 3
and Figure 7 both show a comparison of the
prediction error to the MAE and RMSE values. We
can use metrics such as the RMSE and MAE to
compare the forecast error. These metrics provide
a numerical depiction of the prediction accuracy.
Table 3 Compare predicted error to MAE and
RMSE.

Model MAE RMSE
1. ARIMA 7.34 7.95
2. Best SARIMA 5.76 6.54
3. SARIMAX (Cloud Cover) 458 5.43
4. SARIMAX (Humidity) 4.36 5.25
5. SARIMAX (Rain) 4.96 6.05
6. SARIMAX (Temperature) 5.85 6.60
7. SARIMAX (Wind Speed) 6.31 7.15
Model Performance Comparison (MAE vs RMSE)
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Figure 7 RMSE and MAE should be compared to
prediction error.

The mean absolute error (MAE) and the root
mean square error (RMSE) are two measurements
that may be used in order to assess the prediction
mistakes that are associated with the different

models. The ARIMA model has a more significant
degree of prediction error, as seen by its 7.95
RMSE and 7.34 MAE values. An RMSE of 6.54
and an MAE of 5.75 were the results of the best
SARIMA model, which performed better. The
SARIMAX models, which took into account a
wide variety of climate-related parameters,
provided a variety of results. The humidity
SARIMAX model performed better than the
temperature model, which has an RMSE of 6.60
and an MAE of 5.85. The humidity model has an
RMSE of 5.25 and an MAE of 4.36 with a mean
absolute error of 4.36. The SARIMAX cloud cover
model, which has an RMSE of 5.43 and an MAE
of 4.58, is shown to have better accuracy (see
Figure 6), which displays the enhanced accuracy.
The SARIMAX (wind speed) model, on the other
hand, results in a greater number of mistakes, with
an RMSE of 7.15 and an MAE of 6.31. The
SARIMAX rainfall model is in the middle of the
pack as it has a root mean square error of 6.05, and
a mean absolute error of 4.96. When it comes to
reliably estimating PM2.5 levels, the SARIMAX
models which took into consideration cloud cover
and humidity performed the best overall. This
highlights the significance of these meteorological
elements. We can direct future improvements in
prediction accuracy by comparing these error
measurements to acquire a better understanding of
the relative advantages and downsides of each
model. This has allowed us to guide future
forecasting improvements.

Table 4 MAE's performance metrics.

Q1 Q2 Q3 Q4
Model MAE MAE MAE  MAE

1. Best SARIMA  6.36 6.23 6.57 3.9

2. ARIMA 6.95 6.78 9.71 5.92

3. SARIMAX 4.55 4.1 6.56 3.11
(Cloud Cover)

4. SARIMAX 5.22 311 5.99 3.12

(Humidity)

5. SARIMAX 5.91 5.32 5.65 2.95
(Rain)

6. SARIMAX 6.12 6.77 6.39 4.25
(Temperature)

7. SARIMAX 7.03 6.37 7.6 4.24
(Wind Speed)

The mean absolute error (MAE) and the root
mean square error (RMSE) are two-me. The mean
absolute error (MAE) and the root mean square

Volume 10 Issue 2 July - December 2025




u RMUTL. Eng. J

Rajamangala University of Technology Lanna (RMUTL) Engineering Journal

error (RMSE) have two measurements. RMSE and
MAE performance indicators for every model in
2023 are shown in Table 4-5 and Figure 8-9. These
metrics have been computed for each of the
different time periods (First Quarter, Second
Quiarter, Third Quarter, Fourth Quarter, and Fourth
Quarter). There were several metrics that were
considered, and they are included in this table.

MAE Performance by Quarter

12

MAE Values
[}
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Figure 8 Time-series model performance (MAE).

Table 5 RMSE's performance metrics.

Q1L Q2 Q3 Q4
Model RMAE RMAE RMAE  RMAE
1. Best SARIMA 6.8 6.93 7.41 471
2. ARIMA 7.25 753 9.79 6.93
3. SARIMAX (Cloud 5.28 457 7.45 37
Cover)
4. SARIMAX 6.16 32 7.11 3.37
(Humidity)
5. SARIMAX (Rain) 6.53 6.22 7.23 3.55
6. SARIMAX 6.58 77 7.17 48
(Temperature)
7. SARIMAX (Wind 7.44 6.9 8.69 5.1

Speed)

RMSE's Performance Metrics by Quarter
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Figure 9 Time-series model performance (RMSE).

The mean absolute error (MAE) and the root
mean square error (RMSE) are two-me. According
to the information shown in Tables 4 and 5,
overall, the SARIMAX model, which uses
humidity as an exogenous variable, performs best;
in most quarters, it regularly achieves the smallest
MAE and RMSE values. Generally speaking, the
SARIMAX models perform better than the best

SARIMA models and the basic ARIMA models,
which suggests that the incorporation of
exogenous elements offers a significant
improvement in prediction accuracy. In a rather
interesting turn of events, the ARIMA model
displays the largest errors, notably in Q3. The third
quarter was a difficult time for all models, but the
fourth quarter was a much better time, especially
for the SARIMAX models which took into account
the rain and humidity. When every aspect was
taken into consideration, the SARIMAX
(humidity) model emerges as the most trustworthy
model for producing accurate predictions.

The ARIMA model was a key technique in
time series forecasting those accounts for temporal
correlations and variability throughout time. Its
inability to take seasonality into account,
particularly when forecasting PM2.5 levels that
exhibit clear seasonal variations, was a significant
disadvantage. Because ARIMA produced a mean
absolute error (MAE) of 7.34 and a root mean
squared error (RMSE) of 7.95, the model’s
performance at measuring clearly showed this
issue. Understanding the importance of seasonality
in accurately predicting PM2.5 levels, we created
the SARIMA model and included a seasonal
component to better represent the data's periodic
oscillations. This enhancement significantly
improved the accuracy of the model and led to a
notable drop in both MAE and RMSE, which
dropped by 17.6% (down to 6.55) and 21.5%
(down to 5.76), respectively.

In order to build the SARIMAX model, we
incorporated additional exogenous elements with
the SARIMA model. These exogenous factors
were temperature, relative humidity, cloud cover,
wind speed, and rainfall. The model alone was
able to account for variables that impacted PM2.5
variability beyond ARIMA and SARIMA by
including these external variables. One important
factor that greatly improved the model's predictive
power was relative humidity. By applying these
enhancements, the SARIMAX model dramatically
lowered error metrics: the RMSE declined by 34%
to 5.25, and the MAE decreased from the original
ARIMA model by 40.6% to 4.36. These findings
highlight how crucial it is to take seasonality and
other exogenous variables into account when
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predicting time series, especially for complex
environmental data like PM2.5 levels where
variations are driven by a number of interrelated
causes.

5. Conclusion

Following the examination of PMZ2.5 data
from Chiang Mai Province, the researchers used
three models in order to assess the accuracy of the
forecasting process. These models were ARIMA,
SARIMA, and SARIMAX. We compared the
MAE and RMSE values of each model and found
that the SARIMAX model demonstrated the
highest level of accuracy. We determined that
SARIMAX, using humidity as the external
variable, had the lowest MAE and RMSE values.
The SARIMAX model, which used cloud cover as
an external variable, demonstrated decreased
MAE values in both the first quarter and the fourth
quarter, as seen by a comparison of similar
findings from quarter to quarter. SARIMAX was
the most successful model overall because it used
humidity as an external variable.

The shift from the ARIMA model to the
SARIMA and SARIMAX models reveals a
considerable increase in the ability to anticipate the
level of PM2.5. Because it took into consideration
external factors, and was able to accurately capture
the complex external influences on PM2.5 levels,
the SARIMAX model offers the greatest degree of
projected accuracy. This research emphasizes how
crucial it was to have complete models that take
into account both external factors and seasonal
components in order to attain high predictive
accuracy in air quality forecasting.

The results of this study will be used in air
quality forecasting systems, enabling the public
and government agencies to prepare for PM2.5
pollution events effectively. For example, there
will be notifications through mobile applications
or systems for planning outdoor activities in high-
risk areas. Additionally, public health authorities
will be able to use the forecast data to plan the
management of medical resources during PM2.5
pollution crises.
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