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Abstract  

The purpose of this study is to use a variety of models to create prediction models for Chiang Mai's PM2.5 

levels. To improve the accuracy of our predictions, we take into account outside variables that might 

influence PM2.5 levels. Among the variables that we include in the data are PM2.5 concentrations, 

temperature, wind speed, precipitation, cloud cover, relative humidity, and other external factors. Before 

using the model, the researcher used basic statistical analysis, seasonal analysis, and stationary analysis to 

assess the data. The team of researchers carried out both data transformation and data cleansing. We tested 

the ARIMA, SARIMA, and SARIMAX forecasting models. First, we use ARIMA to forecast and assess 

results. The SARIMA model more accurately captured the seasonal connection in the data when we 

included a seasonal component. The model was able to forecast PM2.5 levels more precisely at times when 

seasonal patterns recurred thanks to this improvement. As the last step, we used the SARIMAX model to 

improve performance by adding exogenous variables. In the end, we assessed the accuracy and performance 

of each forecast using the MAE and RMSE numbers. The ARIMA model yielded MAE values of 7.34 and 

RMSE 7.95. The SARIMA model MAE values of 5.76 and RMSE 6.54. The SARIMAX model, when 

incorporating humidity, had the lowest MAE values of 4.36 and RMSE 5.25, representing improvements 

MAE of 40.6% and RMSE 34% compared to ARIMA. 
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1. Introduction

Dust, a common environmental issue, has 

detrimental effects on both human health and the 

ecosystem. Dust is a term that refers to the minute 

particles that are floating in the atmosphere. These 

particles may vary greatly in size and composition, 

with some even being tiny enough to enter an 

individual's respiratory system. There are a 

number of major health hazards associated with 

small particles, including cardiovascular and 

pulmonary issues. We often divide small particles 

into categories of PM10 and PM2.5 categories. 

Due to its interactions with environmental 

systems, dust not only impacts health, but also 

influences climate change; especially when it 

contains harmful greenhouse gases. Finding 

solutions that improve the environment and human 

health requires an understanding of the sources, 

effects, and necessary mitigation techniques of 

dust pollution. PM2.5 may originate from a 

number of sources, such as vehicle emissions, 

wildfires, and industrial operations. By reducing 

air quality, PM2.5 worsens environmental 

problems, including poor sight and climate 

change, in addition to its negative health impacts. 

Knowledge of PM2.5 sources, effects, and 

mitigation strategies is essential for improving 

human health and protecting the environment. The 

forecast of PM2.5 levels is essential for 

maintaining air quality and safeguarding human 

health. Serious health risks may arise from 

particulate matter with a diameter of 2.5 

micrometers or smaller, or PM2.5, which can enter 

the bloodstream and penetrate deeply into the 

lungs. Accurate PM2.5 level estimates may help 

individuals and communities prevent exposure, 

take effective action, and anticipate and solve air 

quality issues. 

doi:10.14456/rmutlengj.2025.11
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In today's world of rapid change, data mining 

has grown in importance due to the exponential 

growth in data collecting. Data mining uses 

sophisticated techniques rather than just extracting 

data to find valuable information hidden in 

massive datasets. In order to develop sophisticated 

artificial intelligence models, find patterns, and 

facilitate informed decision-making, it involves 

using deep technologies and complex algorithms. 

Businesses, academic institutions, and other 

organizations of various kinds may utilize this 

ability to identify important trends across a range 

of industries. Many different areas, including 

forecasting commercial trade, targeted marketing 

plan development, and medical research, employ 

data mining.  

The use of data mining techniques has made it 

possible to develop new methods for displaying 

and analyzing data. Regression analysis 

accomplishes the separation of dependent factors 

and independent variables [1], classification 

models make educated guesses about the 

categories that individuals belong to, anomaly 

detection [2] pinpoints problems, association rule 

mining [3] illustrates the connectivity of data, and 

text mining [4] extracts meaning from text data. 

Time series analysis (ARIMA) [5] examines and 

forecasts data gathered over time. Hierarchical 

structures are used by decision trees [6] to assist 

individuals in making decisions. Ensemble 

approaches use multiple models to make 

predictions more accurate. And neural networks 

[7] try to work like the brain. The optimal data 

mining technique depends on the specific goals 

and types of data.  

This project aims to develop prediction models 

for PM2.5 levels in the Thai region of Chiang Mai, 

which has annual PM2.5 dust pollution. We have 

evaluated the forecast model using three models: 

SARIMA, ARIMA, and SARIMAX. ARIMA is 

used for modeling time-dependent data that exhibit 

trends and autocorrelation. SARIMA is built upon 

ARIMA by including seasonal components, which 

are essential for capturing the yearly patterns often 

observed in environmental data such as PM2.5. 

Forecasting is further enhanced by SARIMAX 

through the incorporation of external variables, 

such as weather conditions, which are known to 

influence PM2.5 levels. These models are widely 

applied to support early warning systems and 

inform environmental policies aimed at reducing 

public health risks. 

In the test, the test component used data from 

January 2023 to December 2023 for 12 months, 

while a 60-month data from January 2018 to 

December 2022 was used to predict the PM2.5 

levels for the whole year of 2023. The structure of 

this work describes the setup as follows: Section 2 

provides a review of various earlier studies directly 

related to this subject, while Section 3 discusses 

the technique. Section 5 concludes this article with 

a presentation and discussion of the results from 

Section 4. 

2. Literature review

According to research, PM2.5 and PM10 are 

two different kinds of dust, each having its own 

origins and chemical makeup [8]. The particles 

that make up particle pollution are separated into 

two categories, according to Chen et al [9], PM10 

contains particles as tiny as 10 microns, whereas 

PM2.5 contains particles as small as 2.5 microns. 

PM2.5 contains carbonaceous material and metal 

compounds that may be harmful to both people 

and the environment The atmosphere disperses 

these particles in different ways, according to 

Singh et al [10], and PM10 often reflects coarse-

mode PM, such as dust carried by the wind. The 

study used the Nested Regional Climate and 

Chemistry Model (NRCM-Chem) to predict 

PM2.5 concentrations over the northern peninsula 

of Southeast Asia during 2020–2029 under the 

RCP8.5 scenario. The model showed good 

agreement with observed data, with an Index of 

Agreement (IOA) between 0.63 and 0.80, although 

it slightly underestimated temperature and 

precipitation and overestimated PM2.5 levels [11]. 

The intersection of big data, machine learning, 

and data mining is a fast-growing subject with 

enormous potential for a broad variety of possible 

applications at every stage of its development. 

Singh highlights how machine learning may be 

able to help with the difficulties that come with 

large data analytics [12]. Yang C, Huang Q, and et 

al [13] both stress the value of data mining as a 
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technique for drawing insightful conclusions from 

large and intricate data sets. Furthermore, they 

look at the different kinds of big data and the 

difficulties that come with them. Wang S and Cao 

J’s [14] article delves deeper into the use of data 

mining methods and the applications of big data 

processing. The research looks more closely at 

various applications and focuses on the diverse 

nature of huge data. 

ARIMA has been the subject of several 

research studies in the fields of data mining and 

projected outcomes. Díaz-Robles LA, Ortega JC 

and et al [15] used an upgraded ARIMA model for 

air quality prediction and achieved better results by 

using a sliding window technique and forecasted 

data. The integration of the data made this 

possible. Lee, Dongwon, and et al [16] achieved a 

low average error rate, while Khashei M and Bijari 

M [17] likewise discovered that ARIMA was 

effective in predicting time series data. Shivhare 

N, Rahul AK, and et al [18] has developed tools 

for daily weather forecasting and proposed an 

ARIMA method for weather data mining that is 

based on Hadoop. These research findings 

illustrate the utility of ARIMA in data mining and 

prediction activities. Other research results 

demonstrate the usefulness of ARIMA in other 

fields. The results of this research illustrate the 

adaptability and use of ARIMA in the field of data 

mining. 

According to earlier research, there were a 

number of obstacles in PM2.5 forecasting, such as 

significant environmental variability, difficulties 

in capturing abrupt pollution spikes, and 

limitations in data completeness and resolution. To 

address these challenges, models were required 

that could manage missing or inconsistent data, 

incorporate external factors, and handle 

seasonality. The combination of many forecasting 

models, such as ARIMA, SARIMA, and 

SARIMAX, plus the addition of other exogenous 

factors to increase predicted accuracy set this study 

apart from earlier investigations. This study 

examined the relative effectiveness of several 

models and showed how external meteorological 

elements might greatly improve forecasting 

accuracy, while previous studies often relied on a 

single model or just looked at past PM2.5 data. 

3. Methodology

A structured time series forecasting flowchart 

was the primary program of the proposed 

algorithm, as shown in Figure 1. Data entry comes 

first, followed by analysis and cleaning. Before 

establishing the ARIMA, SARIMA, and 

SARIMAX models, we made changes to the 

cleaned data. With this model, we made 

predictions and we corrected for poor model 

performance. The technique produced excellent 

analysis and outcomes. This method generated 

accurate forecasts by fine-tuning the model in 

response to performance assessments. 

Figure 1 the primary program of the suggested 

approach. 

3.1 Dataset 

The comprehensive data from several 

sources was included in the dataset used to study 

PM2.5 levels, which improved the analysis's 

resilience. The PM2.5 information came from 

Berkeley Earth (https://berkeleyearth.org), 

which provided detailed records of particulate 

matter concentrations [19]. Visual Crossing 

(https://www.visualcrossing.com) provided 

essential meteorological context by retrieving 

external data; including temperature, cloud 

cover, relative humidity, and wind speed. An 

additional source of environmental information 

was rainfall data from the Hydrological 

Information Institute (https://www.hii.or.th) 

[20]. By combining these datasets, the research 

was able to more accurately identify the factors 

influencing PM2.5 levels more accurately, 

yielding more useful conclusions and 

recommendations for managing air quality and 

understanding environmental impacts. 
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3.2 Data preprocessing 

We formatted the obtained data in this stage 

so that it cloud be used for other forecast. Data 

preparation is an essential step in the data analysis 

pipeline that ensured the data was accurate, 

consistent, and ready for analysis. We converted 

raw data into a format suitable for analysis, 

cleaning, and transformation to achieve for         

more accurate and insightful results. To identify 

s t a t i ona ry ,  s easona l i t y ,  and  seasonal  

decomposition data, we examined the processes 

involved in the data analysis procedure. After that, 

the data transformation procedure included 

converting daily data into monthly data, removing 

anomalies, and using averages to fill in the missing 

days. 

.

Figure 2 Chiang Mai, Thailand's basic information 

on PM2.5 levels. 

The 2218-day collection of PM2.5 data for 

Thailand’s Chiang Mai province provided crucial 

information on the air quality in that area. Data 

transformation involved several steps. Outliers 

were removed, and missing values were filled 

using the average of the available data. The daily 

data were then aggregated and converted into 

monthly data. For model evaluation, the dataset 

was divided into two parts. The training set 

consisted of 60 months of monthly data, from 

January 2018 to December 2022. The testing set 

included 12 months of data, from January 2023 to 

December 2023, and was used to forecast the 

PM2.5 values for the entire year of 2023. The 

average PM2.5 level was 27.24 µg/m³, which was 

considered moderate pollution by the Air Quality 

Index (AQI). Air quality fluctuated significantly, 

as seen by the standard deviation of 19.41 µg/m³, 

which demonstrated substantial variability in daily 

pollution levels. The variability was further shown 

by the data, which displayed a broad range of 

PM2.5 values, from a low of 3.67 µg/m³ to a 

maximum of 126.44 µg/m³. According to the 

distribution analysis, the 25th percentile (Q1) was 

12.51 µg/m³, meaning that the air was 

comparatively clean for 25% of the days. PM2.5 

levels were at or below this threshold on half of 

those days, as shown by the median (Q2) of 20.84 

µg/m³. The 75th percentile (Q3), which indicated 

that 25% of those days had greater pollution levels, 

was 37.24 µg/m³. Even though Chiang Mai 

occasionally experiences low pollution levels, the 

city frequently experiences moderate to high 

PM2.5 levels, with notable daily fluctuations. 

Figure 2 illustrates how important this data is for 

planning public health initiatives, and for those 

who are sensitive to changes in air quality. 

A time series analysis’s ability to determine 

whether the data is stationary or if its statistical 

properties remain constant across time was 

essential for its success. There were a number of 

ways to do this. For visual assessment, we plotted 

the data to see whether the mean and variation 

were seasonal and stable. It was possible to 

determine the unit root using statistical methods 

like the Augmented Dickey-Fuller (ADF) test. 

Without it, the data remains stagnant. When the 

autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) were analyzed, it 

was possible to determine whether or not the 

relationships in the data had deteriorate with time. 

Time series analysis requires determining 

whether the data was stable and if its statistical 

features stayed constant. To find a unit root, one 

can either display the data and determine whether 

the mean and variance remain constant, or they can 

use statistical tests such as the Augmented Dickey-

Fuller (ADF) test, as outlined in Eq. (1). Both null 

hypotheses assume unsteady data. This test should 

have a p-value of 0.05 or less to reject the null 

hypothesis. 
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∆y
t
=α+βt+γy

t-1
+ ∑ δ1∆y

t-i
+ϵt

p

i=1 (1) 

where ∆𝑦𝑡 the time series' initial difference,

𝑦𝑡, γyt−1 the time series' delayed level,

α is an optional constant term,  

βt is an optional trend term,  

ϵt is the error term,  

p is the model's number of lag differences, 

∑ δ1∆y
t-i

+ϵt
p

i=1  is the Sum of time series

lagged differences to adjust for higher-order 

autocorrelation. 

The following were the ADF test results: 

There were 60 observations, the p-value was 

0.766, and we employed 11 lags. These findings 

implied that we were unable to rule out the ADF 

test's null hypothesis, which showed that the 

time series was not stationary. The results of 

the ADF test suggest that we could validate the 

unit root or non-stationary nature of this data 

with a p-value of 0.05. 

After that, time series analysis used 

the autocorrelation (ACF) and partial 

autocorrelation (PACF) functions to understand 

the correlations between the data [21]. The ACF 

method evaluated the connection between the 

present data value and the future data value (lag) 

without taking into consideration any additional 

factors in the data. Through the consideration of 

intermediate lag correlations, PACF was able to 

discover independent links between the values 

of the present data and those of the distant data. 

The Autocorrelation Function (ACF) for a 

time series {Xt} at lag k is defined as seen by Eq. 

(2). 

ρ
k
=

Yk

Yo
 (2)

where Yk is Cov(Xt,Xt-k) for any i.

Cov(Xt,Xt-k) is the covariance between Xt

to Xt-k. 

Yo is the variance of the stochastic process. 

Figure 3 The autocorrelation (ACF).

From Figure 3. The ACF graph shows the 

relationship between current and lag values. Its 

periodic decline reveals seasonality. The ACF 

graph's cyclical rise and fall validates data 

seasonality by showing a recurrent and consistent 

correlation across periods. 

The Partial Autocorrelation Function (PACF) 

is a statistical tool that quantifies the degree of 

correlation between a time series and its delayed 

values. This function took into consideration the 

influence of intermediate delays. In the PACF at 

lag k, the direct link between 𝑋𝑡  and 𝑋𝑡−𝑘 . was

calculated after the contributions of intermediate 

delays had taken into consideration. In the next 

regression model, Eq. (3) shows how to estimate 

the PACF at lag k, which is shown by ∅kk as the 

coefficient of 𝑋𝑡−𝑘.

Xt= ∅1kXt-1+∅2kXt-2+…+∅(k-1)Xt-(k-1)+ϵt  (3) 

where 𝑋𝑡 is the partial autocorrelation coefficient

at lag k, 

𝜖𝑡 denotes the residual.

For an autoregressive (AR) process, PACF 

may be computed using recursive connections 

derived from the Yule-Walker equations. To 

calculate the PACF at lag 𝑘, use Eq. (4). 

∅kk= Corr(Xt, Xt-k | Xt-1,…, Xt-(k-1)) (4)

The PACF (Partial Autocorrelation Function) 

graph that is shown in Figure 4 indicates a direct 

link that exists between the current values and the 

lagged values. This graph takes into consideration 

the effect of other lagged data as well. The 

existence of substantial spots in the PACF graph at 

lags that correspond to seasonal periods, i.e. 

around 12 months, is additional evidence that the 

data exhibited seasonality. This was evidenced by 

the fact that the PACF graph contains significant 

spots. The evidence of seasonal patterns was 

enhanced by these notable spikes, which 

demonstrate that there was a clear association 

between the data and values from previous 

seasonal periods. This gives credence to the notion 

that seasonal patterns existed. 



RMUTL. Eng. J    
Rajamangala University of Technology Lanna (RMUTL) Engineering Journal 

27 Volume 10 Issue 2 July  – December 2025

Figure 4 The partial autocorrelation (PACF). 

In the last step of data analysis, seasonal 

decomposition breaks down the data to better 

understand its patterns and properties. Separating 

the trend, seasonal, and residual data. This was a 

typical seasonal breakdown. The trend component 

showed a long-term data evolution to identify 

long-term growth or reduction. Seasonality 

captures trends that occur monthly, quarterly, or 

annually to indicate short-term changes that follow 

a cycle. Once we eliminated trends and seasonal 

effects, the residual component reveals random 

data fluctuations or deviations that neither a trend 

nor seasonal factors can explain. Breaking the data 

into various components helped us understand and 

analyze the time series. 

Figure 5 illustrates the seasonality and non-

stationarity of Chiang Mai’s PM2.5 data from 

2018 to 2023. The ADF test and seasonal 

decomposition analysis p-values over 0.05 

indicated data instability. The breakdown graph 

shows trends and seasonality components in the 

data. The monthly PM2.5 data for Chiang Mai 

shows distinct seasonal patterns and trends. 

Figure 5 2018–2023 Chiang Mai PM2.5 seasonal 

component decomposition. 

3.3 Model prediction 

To assess the study's prediction effectiveness 

based on the examination of PM 2.5 data in Chiang 

Mai Province, the researchers used three models: 

ARIMA, SARIMA, and SARIMAX [22].  

A technique known as ARIMA, which is an 

acronym that stands for autoregressive integrated 

moving average, was used by us for the aim of 

assessing and predicting time series data that 

displays seasonality, patterns, or instability. 

ARIMA is comprised of three components: MA, I, 

and AR. We made use of differencing in order to 

decrease trends and stabilize the data; MA makes 

use of moving averages of prediction mistakes in 

order to boost accuracy; and AR makes use of past 

values in order to anticipate future values. All of 

these techniques were used in parallel.  ARIMA is 

able to manage time-series data that is both 

unstable and intricate when both components are 

mixed inside the model. 

It was possible to represent the ARIMA model 

equation in terms of its constituent parts. Eq. (5) 

displays the generic form of the ARIMA (p, d, q) 

model for a time series 𝑌𝑡.

y
t
=c+∅1y

t-1
+…+∅py

t-p
-θ1ϵ1-1-…-θqϵt-q+ϵt  (5)  

where y
t
 is the actual value at time t,

c is a constant term,  

∅i are coefficients for autoregressive terms, 

θi are the coefficients for moving average 

terms, 

ϵt is the time-t error term. 

When d>0, replace 𝑌𝑡  with its Δ𝑑  differences

Δ𝑑𝑌𝑡 for stationarity, as described in Eq. (6)-(7).

ARIMA successfully models and forecasts time 

series data using AR, differencing, and MA terms. 

∆Yt= Yt- Yt-1  (6) 

ΔdYt= ∆(Δd-1Yt)   (7) 

SARIMA adds seasonal components to the 

ARIMA model. The SARIMA model is defined as 

SARIMA (p, d, q) × (P, D, Q)s, Eq. (8) represents 

the SARIMA model.  
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y
t
=c+∅1y

t-1
+…+∅py

t-p
-θ1ϵ1-1-…-θqϵt-q+Φ1y

t-s
+…+ΦPy

t-Ps
-

Θ1ϵ1-s-…-ΘQϵt-Qs+ϵt  (8) 

where L is the lag operator, 

∅𝑖  and 𝛷𝑖  are Coefficients of the non-

seasonal AR terms, 

𝜃𝑖  and 𝛩𝑖  are Coefficients of the non-

seasonal MA terms, 

𝜖𝑡 is the white noise,

s is the seasonal period. 

SARIMAX adds exogenous regressors to the 

SARIMA model. SARIMAX incorporates wind 

speed, rainfall, relative humidity, temperature, and 

cloud cover. We added one external variable to 

each test. The SARIMAX model is defined as (p, 

d, q) × (P, D, Q)s with exogenous variables Xit. 

Eq. (9) represents the SARIMAX model.  

y
t
=c+∅1y

t-1
+…+∅py

t-p
-θ1ϵ1-1-…-

θqϵt-q+Φ1y
t-s

+…+ΦPy
t-Ps

-Θ1ϵ1-s-…-

ΘQϵt-Qs+β
1
X

1,t
+…+β

k
X

k,t
+ϵt (9) 

where L is the operator of lag, 

∅i and 𝛷𝑖  are the parameters of AR, 𝜃𝑖 ,

Θi are the parameters of MA, 

β
k

are coefficients of the exogenous

variables. 

ϵt is the forecast error, 

Xit are the exogenous variables. 

3.4 Model performance evaluation 

For the purpose of the test, the data was 

collected over a period of twelve months, 

commencing in January 2023 and finishing in 

December 2023. On the other hand, the data for the 

train component was collected over a period of 

sixty months, beginning in January 2018 and 

ending in December 2022. A total of three models, 

namely ARIA, SARIMA, and SARIMAX, was 

used by us in order to carry out the procedure. 

Through the use of two distinct optimization 

methodologies, we were able to enhance the 

correctness of the product. First, the SARIMA 

model's parameters were adjusted using grid 

search. Grid Search lets you change the model's 

parameters by giving each parameter a range, and 

carefully examining every possible combination. 

This process finds the set of parameters that yields 

the highest accuracy. Grid search systematically 

looks at every potential combination of parameters 

to improve prediction accuracy and optimize 

model performance. 

In an effort to achieve more precision, we 

included external components into the SARIMAX 

model. We made observations on the amount of 

precipitation, relative humidity, temperature, 

cloud cover, and wind speed. The model 

incorporates these variables to increase forecast 

accuracy by adding crucial components that may 

affect time series data. We used MAE and RMSE 

to test the SARIMAX model with these external 

regressors. These metrics, which compute the 

average magnitude of errors and the square root of 

the average of squared errors, demonstrate the 

accuracy of the model. Our prediction model 

accuracy statistic is Mean Absolute Error (MAE). 

Mean absolute error (MAE) shows prediction 

errors' average magnitude regardless of direction. 

Since it provides the precise difference between 

predicted and actual values, this statistic helps 

evaluate a model. The formula calculates the 

average absolute discrepancies between the 

predicted and actual values. The MAE formula is 

in Eq. (10). 

MAE=
1

n
∑  | Yi-Ŷi |

n
i=1  (10) 

RMSE=√
1

n
∑  ( Yi-Ŷi )

2n
i=1  (11) 

where n is the quantity of occurrences., 

Yi is the actual value at occurrences 𝑖,
Ŷi is the predicted value at occurrences 𝑖

| Yi-Ŷi | reflects each occurrence’s absolute 

error. 

The Root Mean Squared Error (RMSE) 

statistic is often used by predictive models in order 

to carry out an evaluation with a degree of 

accuracy that they possess. We were able to 

calculate the difference between the numbers that 

were predicted and those that were actually 

observed by using the square root of the average of 

the squared deviations. This allows us to determine 

the difference between the two sets of numbers. 

RMSE is one of the measures that was used to 

evaluate how well the predictions made by the 

model fit the actual data. Due to the fact that this 



RMUTL. Eng. J    
Rajamangala University of Technology Lanna (RMUTL) Engineering Journal 

29 Volume 10 Issue 2 July  – December 2025

measure squares differences, it provides more weight 

to larger errors that are the result of the squared 

differences approach. As a consequence of this, 

major deviations and outliers have the ability to have 

a large impact on the root mean square error 

(RMSE). Because it presents a degree of mistakes in 

the same units as the data that was initially gathered, 

Eq. (11) was a useful indicator for assessing the 

overall performance of a model. This was because it 

displays the errors in the same units. 

4. Result and discussion

The dataset gathers PM2.5 data for the Thai 

province of Chiang Mai over a period of 2,218 days, 

spanning 60 months, from January 2018 to December 

2022. The test data was obtained between January 

2023 and December 2023. In addition to exterior 

factors like temperature, cloud cover, relative 

humidity, wind speed, and rainfall, it includes 52,584 

records with PM2.5 values. This large dataset made it 

easier to accurately measure and predict PM2.5 levels 

while taking a variety of meteorological factors into 

consideration. 

Table 1 2023 monthly actual data vs. numerous 

predicting systems. 

Year 

2023 
Actual ARIMA 

Best 

SARIM

A 

SARIM

AX 

(temp) 
January 43.446 33.618 36.128 36.562 

February 36.796 31.159 28.069 28.186 

March 34.467 29.069 31.440 31.596 

April 37.329 28.022 26.984 25.839 

May 24.240 26.419 18.962 17.965 

June 17.774 26.636 20.838 20.311 

July 17.697 27.769 28.543 28.317 

August 20.482 28.506 18.045 17.806 

September 17.800 28.844 24.221 23.661 

October 20.949 28.918 27.487 27.339 

November 29.446 28.579 24.572 24.244 

December 37.117 28.187 36.822 35.973 

Table 2 2023 monthly actual data vs. numerous 

predicting systems (con.). 

Year 

2023 

SARIMA

X(Humid

ity) 

SARIM

AX 

(Cloud 

Cover) 

SARIM

AX 

(Wind 

Speed) 

SARIM

AX(Rai

nfall) 

January 36.040 37.094 35.842 35.995 

February 29.131 30.272 27.094 28.516 

March 33.864 33.683 30.662 32.459 

April 33.207 30.380 27.190 27.465 

May 21.957 21.737 19.795 20.996 

June 20.701 20.622 22.288 20.620 

July 28.667 28.642 30.571 28.790 

August 18.818 18.182 17.942 20.428 

September 23.140 24.241 25.184 23.613 

October 24.270 25.824 28.374 25.515 

November 24.876 25.296 24.706 25.331 

December 35.649 36.808 36.538 36.938 

On the other hand, the PM2.5 levels for each 

month of 2023 are shown in Tables 1 and 2, and 

the forecasts for each model reveal the PM2.5 

values in Chiang Mai Province. Please refer to 

both tables displayed down below. Examples of 

models that are provided in this package include 

ARIMA, the best SARIMA, and a number of other 

SARIMAX models. These models consider a 

variety of parameters, including temperature, 

humidity, cloud cover, wind speed, and rainfall. 

One example of a forecast with an actual value of 

43.446, was recorded for the month of January, as 

shown by the data in Table 1. It is worth noting that 

the year 2023 saw the highest rating for PM2.5. 

The ARIMA model anticipated 33.618, whereas 

the best SARIMA model projected 36.128. 

Additionally, for this month, a number of models 

generated forecasts that were different from one 

another. The SARIMAX models, while factoring 

in a wide range of meteorological factors, 

generated the following predictions: 36.562 for 

temperature, 36.040 for humidity, 37.094 for cloud 

cover, 35.842 for wind speed, and 35.995 for 

rainfall. 

Figure 6 Many predicting methods compared to 

2023 monthly data. 

The graph in Figure 6 presents a comparison 

between the actual levels of PM2.5 in Chiang Mai 

for the year 2023 and the predictions generated by 

a number of models. These models include 
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ARIMA, SARIMA, and numerous SARIMAX 

models, all of which consider a variety of 

meteorological factors, such as temperature, 

humidity, cloud cover, wind speed, and rainfall. 

During the month of January, the actual PM2.5 

value reached its maximum point, which was far 

greater than any model's projection. The 

SARIMAX model, which took into consideration 

cloud cover, produced the most accurate estimate 

of the data. These models have a tendency to 

reflect the trend of the actual values during the 

course of the year; nevertheless, they typically 

overestimate or underestimate the highs and lows 

that occur throughout the year. The existence of 

this gap draws attention to the challenges 

associated with accurately calculating PM2.5 

levels and the influence that a wide range of 

environmental factors has on air quality. Table 3 

and Figure 7 both show a comparison of the 

prediction error to the MAE and RMSE values. We 

can use metrics such as the RMSE and MAE to 

compare the forecast error. These metrics provide 

a numerical depiction of the prediction accuracy. 

Table 3 Compare predicted error to MAE and 

RMSE. 

Model MAE RMSE 

1. ARIMA 7.34 7.95 

2. Best SARIMA 5.76 6.54 

3. SARIMAX (Cloud Cover) 4.58 5.43 

4. SARIMAX (Humidity) 4.36 5.25 

5. SARIMAX (Rain) 4.96 6.05 

6. SARIMAX (Temperature) 5.85 6.60 

7. SARIMAX (Wind Speed) 6.31 7.15 

Figure 7 RMSE and MAE should be compared to 

prediction error. 

The mean absolute error (MAE) and the root 

mean square error (RMSE) are two measurements 

that may be used in order to assess the prediction 

mistakes that are associated with the different 

models. The ARIMA model has a more significant 

degree of prediction error, as seen by its 7.95 

RMSE and 7.34 MAE values. An RMSE of 6.54 

and an MAE of 5.75 were the results of the best 

SARIMA model, which performed better. The 

SARIMAX models, which took into account a 

wide variety of climate-related parameters, 

provided a variety of results. The humidity 

SARIMAX model performed better than the 

temperature model, which has an RMSE of 6.60 

and an MAE of 5.85. The humidity model has an 

RMSE of 5.25 and an MAE of 4.36 with a mean 

absolute error of 4.36. The SARIMAX cloud cover 

model, which has an RMSE of 5.43 and an MAE 

of 4.58, is shown to have better accuracy (see 

Figure 6), which displays the enhanced accuracy. 

The SARIMAX (wind speed) model, on the other 

hand, results in a greater number of mistakes, with 

an RMSE of 7.15 and an MAE of 6.31. The 

SARIMAX rainfall model is in the middle of the 

pack as it has a root mean square error of 6.05, and 

a mean absolute error of 4.96. When it comes to 

reliably estimating PM2.5 levels, the SARIMAX 

models which took into consideration cloud cover 

and humidity performed the best overall. This 

highlights the significance of these meteorological 

elements. We can direct future improvements in 

prediction accuracy by comparing these error 

measurements to acquire a better understanding of 

the relative advantages and downsides of each 

model. This has allowed us to guide future 

forecasting improvements. 

Table 4 MAE's performance metrics. 

Model 
Q1 Q2 Q3 Q4 

MAE MAE MAE MAE 

1. Best SARIMA 6.36 6.23 6.57 3.9 
2. ARIMA 6.95 6.78 9.71 5.92 
3. SARIMAX

(Cloud Cover)
4.55 4.1 6.56 3.11 

4. SARIMAX

(Humidity) 
5.22 3.11 5.99 3.12 

5. SARIMAX

(Rain)
5.91 5.32 5.65 2.95 

6. SARIMAX

(Temperature)
6.12 6.77 6.39 4.25 

7. SARIMAX

(Wind Speed)
7.03 6.37 7.6 4.24 

The mean absolute error (MAE) and the root 

mean square error (RMSE) are two-me. The mean 

absolute error (MAE) and the root mean square 
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error (RMSE) have two measurements. RMSE and 

MAE performance indicators for every model in 

2023 are shown in Table 4-5 and Figure 8-9. These 

metrics have been computed for each of the 

different time periods (First Quarter, Second 

Quarter, Third Quarter, Fourth Quarter, and Fourth 

Quarter). There were several metrics that were 

considered, and they are included in this table. 

Figure 8 Time-series model performance (MAE). 

Table 5 RMSE's performance metrics. 

Model 
Q1 Q2 Q3 Q4 

RMAE RMAE RMAE RMAE 

1. Best SARIMA 6.8 6.93 7.41 4.71 

2. ARIMA 7.25 7.53 9.79 6.93 

3. SARIMAX (Cloud 

Cover) 

5.28 4.57 7.45 3.7 

4. SARIMAX 

(Humidity) 

6.16 3.2 7.11 3.37 

5. SARIMAX (Rain) 6.53 6.22 7.23 3.55 

6. SARIMAX 

(Temperature) 

6.58 7.7 7.17 4.8 

7. SARIMAX (Wind 

Speed) 

7.44 6.9 8.69 5.1 

Figure 9 Time-series model performance (RMSE). 

The mean absolute error (MAE) and the root 

mean square error (RMSE) are two-me. According 

to the information shown in Tables 4 and 5, 

overall, the SARIMAX model, which uses 

humidity as an exogenous variable, performs best; 

in most quarters, it regularly achieves the smallest 

MAE and RMSE values. Generally speaking, the 

SARIMAX models perform better than the best 

SARIMA models and the basic ARIMA models, 

which suggests that the incorporation of 

exogenous elements offers a significant 

improvement in prediction accuracy. In a rather 

interesting turn of events, the ARIMA model 

displays the largest errors, notably in Q3. The third 

quarter was a difficult time for all models, but the 

fourth quarter was a much better time, especially 

for the SARIMAX models which took into account 

the rain and humidity. When every aspect was 

taken into consideration, the SARIMAX 

(humidity) model emerges as the most trustworthy 

model for producing accurate predictions. 

The ARIMA model was a key technique in 

time series forecasting those accounts for temporal 

correlations and variability throughout time. Its 

inability to take seasonality into account, 

particularly when forecasting PM2.5 levels that 

exhibit clear seasonal variations, was a significant 

disadvantage. Because ARIMA produced a mean 

absolute error (MAE) of 7.34 and a root mean 

squared error (RMSE) of 7.95, the model’s 

performance at measuring clearly showed this 

issue. Understanding the importance of seasonality 

in accurately predicting PM2.5 levels, we created 

the SARIMA model and included a seasonal 

component to better represent the data's periodic 

oscillations. This enhancement significantly 

improved the accuracy of the model and led to a 

notable drop in both MAE and RMSE, which 

dropped by 17.6% (down to 6.55) and 21.5% 

(down to 5.76), respectively. 

In order to build the SARIMAX model, we 

incorporated additional exogenous elements with 

the SARIMA model. These exogenous factors 

were temperature, relative humidity, cloud cover, 

wind speed, and rainfall. The model alone was 

able to account for variables that impacted PM2.5 

variability beyond ARIMA and SARIMA by 

including these external variables. One important 

factor that greatly improved the model's predictive 

power was relative humidity. By applying these 

enhancements, the SARIMAX model dramatically 

lowered error metrics: the RMSE declined by 34% 

to 5.25, and the MAE decreased from the original 

ARIMA model by 40.6% to 4.36. These findings 

highlight how crucial it is to take seasonality and 

other exogenous variables into account when 
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predicting time series, especially for complex 

environmental data like PM2.5 levels where 

variations are driven by a number of interrelated 

causes. 

5. Conclusion

Following the examination of PM2.5 data 

from Chiang Mai Province, the researchers used 

three models in order to assess the accuracy of the 

forecasting process. These models were ARIMA, 

SARIMA, and SARIMAX. We compared the 

MAE and RMSE values of each model and found 

that the SARIMAX model demonstrated the 

highest level of accuracy. We determined that 

SARIMAX, using humidity as the external 

variable, had the lowest MAE and RMSE values. 

The SARIMAX model, which used cloud cover as 

an external variable, demonstrated decreased 

MAE values in both the first quarter and the fourth 

quarter, as seen by a comparison of similar 

findings from quarter to quarter.  SARIMAX was 

the most successful model overall because it used 

humidity as an external variable. 

The shift from the ARIMA model to the 

SARIMA and SARIMAX models reveals a 

considerable increase in the ability to anticipate the 

level of PM2.5. Because it took into consideration 

external factors, and was able to accurately capture 

the complex external influences on PM2.5 levels, 

the SARIMAX model offers the greatest degree of 

projected accuracy. This research emphasizes how 

crucial it was to have complete models that take 

into account both external factors and seasonal 

components in order to attain high predictive 

accuracy in air quality forecasting. 

The results of this study will be used in air 

quality forecasting systems, enabling the public 

and government agencies to prepare for PM2.5 

pollution events effectively. For example, there 

will be notifications through mobile applications 

or systems for planning outdoor activities in high-

risk areas. Additionally, public health authorities 

will be able to use the forecast data to plan the 

management of medical resources during PM2.5 

pollution crises. 
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