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ABSTRACT

The rapid growth of global electricity demand and the widespread adoption of non-linear loads have
intensified power quality (PQ) concerns, revealing critical limitations of existing energy metering
solutions. These systems lack real-time monitoring, data granularity, and analytical capabilities
necessary for advanced energy and power quality management. This paper presents the design,
development, and validation of the Data-Driven Energy Monitoring System (DDEMS), an loT-based
platform integrating smart metering, edge computing, and hybrid analytics for real-time PQ
assessment and energy management. The system combines low-cost sensors such as PZEM-004T,
ZMPT101B and SCT-013, incorporated with an ESP32 microcontroller to measure key electrical
parameters, and classify PQ events using a cloud-based rule-based engine which compliance with IEEE
1159 and IEC 61000-4-30 for power quality standards. Experimental validation was conducted on
DDEMS against the calibrated Lovato DMG800 power multimeter and Fluke 437-1l demonstrated its
accuracy with overall system measurement errors at 1.24% of mean absolute percentage error
(MAPE). Furthermore, the system successfully identified and categorized PQ disturbances into four
severity levels, enabling timely mitigation the issues such as supply voltage fluctuations, harmonic
distortions, and poor power factors. A subsequent 90-day field deployment in residential settings
confirmed the system's reliability, and a web-based dashboard facilitating energy optimization with
power quality monitoring. DDEMS addresses key limitations of existing solutions by offering a cost-
effective, scalable alternative to expensive PQ analyzers while maintaining high accuracy and real-
time capabilities. The system's modular architecture and successful real-world implementation

highlight its potential for widespread adoption in smart energy management applications.

1. Introduction

1.1 Background and motivation

The global energy sector is in the midst of significant
transformation driven by escalating electricity demand, the integration
of distributed renewable resources, and the widespread adoption of
non-linear loads (NLLs). Despite the growth in renewables, fossil fuels
remained the dominant sources, amounting to 62% of global
electricity generation in 2022 [1]. The extensive reliance on non-
renewable energy resources not only accelerates their depletion but
also contributes significantly to environmental degradation and
climate change. These pressing concerns have intensified the need
for intelligent, data-driven energy management solutions that can
optimize consumption, reduce waste, and seamlessly integrate
renewable sources in smart grids [2].

In 2024, worldwide electricity consumption reached an
estimated 30,856 TWh while residential and commercial sectors
collectively responsible for 42% of this total demand [3]. This surge
is compounded by ubiquitous and widespread adoption of the non-
linear loads such as variable speed drive (VSD), switched-mode
power supply (SMPS) in computers and Internet of Things (loT)
devices, LED lighting and electric vehicle (EV) chargers. These
devices draw current in short, non-sinusoidal pulses, and injecting

harmonic currents back into the power grid. The proliferation of
NLLs has led to more frequent power quality (PQ) issues, including
voltage fluctuations, voltage and current harmonic distortion,
voltage sags and swells, and phase imbalances [4]. The economic
impact of poor PQ issues is severe, estimated to cause annual
losses in the billions of US dollars for industries worldwide due to
equipment malfunctions, premature failure, reduced operational
efficiency, production downtime, and increased energy costs [5].

loT paradigm, characterized by the integration of low-cost
sensors, edge computing, and cloud-based analytics, has proven to
be a transformative force across numerous domains beyond
energy systems. For instance, in precision agriculture, loT-assisted
context-aware systems have demonstrated remarkable efficacy.
These systems leverage sensor networks to monitor soil conditions
and microclimates, enabling data-driven recommendations for
fertilizer application [6], reclaiming saline soils through context-
aware evapotranspiration monitoring [7], and optimizing water
usage via intelligent models for reference evapotranspiration [8].
The success of these systems in providing robust and real-time
decision support using an architecture comprising sensing, edge
processing, and cloud analytics underscores the viability and
scalability of the loT framework for solving complex, data-intensive
problems. This reinforces the potential of applying a similarly
structured, data-driven approach to the challenges of energy
monitoring and power quality management.
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1.2 Limitations of existing solutions

Conventional electromechanical energy meters and smart
meters are fundamentally inadequate for addressing the
challenges in advanced energy and power quality management.
Their primary limitations include:

(a) Lackofreal-time PQ monitoring: They are designed primarily
for billing purposes based on kWh accumulation. They lack
capability to monitor, record, or alert PQ disturbances in
real-time [6]

(b) Insufficient data granularity: They typically provide data
at intervals of 15 minutes or longer, which is too coarse
to capture transient PQ events like sags or swells that can
occur and resolve within milliseconds or cycles [7]
Absence of advanced analytics: They lack computational
capability such as harmonic analysis, waveform capture,
or event classification, which are essential for diagnostic

and detection purposes [8]

While specialized, high-fidelity power quality analyzers are
available to fill this gap, their high costs (typically exceeding $5,000
per unit) and frequently proprietary architectures render them
impractical for widespread and scalable deployment, particularly
in residential and small-to-medium commercial settings [9]. Prior
research into loT-based energy monitoring systems has made
considerable progress. Numerous prototypes leveraging platforms
such as Arduino, Raspberry Pi and ARM-based computation have
been proposed. However, these often suffer from critical
shortcomings:

(a) High cost or complexity: Many systems integrate expensive,
high-precision measurement chipsets or require complex
sensor arrays without cost-competitiveness and ease of
deployment. [10], [11]

Limited parameter set: Many prototypes focus on
fundamental parameters (V, I, P) but omit critical PQ
indices such as Total Harmonic Distortion factor (THD)
and individual harmonic components [12].
Laboratory-bound validation: Proposed mechanisms or
models for fault detection or load disaggregation often
demonstrate high accuracy in controlled lab environments
but fail to generalize reliably under the noisy, variable
conditions of real-world deployments [13], [14].

(c)

Furthermore, the evolution towards data-driven systems
introduces two critical, often overlooked challenges: data
complexity and data privacy. The acquisition of high-frequency
waveform data for harmonic analysis, as performed in this study,
generates complex, high-dimensional datasets. Managing this
complexity requires robust computational frameworks to ensure
efficient processing and model reliability, a challenge echoed in
other fields dealing with intricate data, such as the evaluation of
model dependence for classifying complex medical images [15].
Simultaneously, the continuous collection of fine-grained energy
consumption data presents a significant privacy risk, as it can
reveal detailed patterns of occupant behavior. While existing
energy monitoring systems frequently overlook this, the broader
loT domain has seen a push towards privacy-preserving and
decentralized architectures to mitigate such risks [16]. An ideal
system must therefore address not only measurement accuracy

but also the computational demands of complex data and the
imperative of protecting user privacy.
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1.3 Proposed solution and contributions

To overcome these challenges, this paper introduces the Data-
Driven Energy Monitoring System (DDEMS), a holistic, affordable and
robust loT-based solution that integrates multi-sensor data acquisition,
edge computing, cloud data storage and analytics, and a rule-based
power quality analytics engine for comprehensive power consumption
and PQ monitoring.

The system utilizes a selected suite of low-cost sensors
including the PZEM-004T for high-accuracy measurement of
fundamental electrical parameters (V, |, P, Q, PF etc.), a SCT-013 non-
invasive current transformer for capturing current waveforms in
harmonic analysis, and a ZMPT101B voltage sensor for detailed
voltage waveform analysis. An ESP32 microcontroller serves as the
central processing unit (CPU) which performs initial data processing
and real-time Fast Fourier Transform (FFT) computations at the edge
to enable rapid detection of power quality issues. The processed data
is transmitted to a cloud platform, where a rule-based PQ Advisor is
deployed to evaluate PQ measurement against IEEE 1159 and IEC
61000-4-30 thresholds for both immediate detection power quality
events and provide mitigations to remedy issue [17], [18]. The PQ
Advisor provides not only detection but also actionable insights and
mitigation recommendations

This research makes several key contributions. First, it
presents a cost-effective hardware design that integrates multiple
sensors for comprehensive power data analytics and power quality
monitoring. Second, it introduces optimized rule-based algorithms
that significantly simplified the detection and classification of
power quality issues and severity as compared to existing
solutions. Finally, the system has been rigorously validated in real-
world environments, demonstrating high accuracy in detecting
electrical disturbances while reducing energy costs. The remainder
of this paper is structured as follows: Section 2 details the system
architecture and methodology. Section 3 presents experimental
results and discussion. Finally, Section 4 concludes the paper and
suggests future work.

2. Materials and Methodology

2.1 System architecture overview

The Data-Driven Energy Monitoring System (DDEMS) is
architected on a multi-layer fog-cloud loT framework, as illustrated
in Fig. 1. The hierarchical design optimizes data flow,
computational efficiency, and scalability by distributing tasks
across five distinct layers, namely the Physical Layer, the Fog
Computing Layer, the Network Layer, the Cloud Computing layer,
and the Application Layer. The multi-layer approach enables real-
time monitoring of both power consumption and power quality
while maintaining scalability for large-scale deployments. The
conceptual design and physical implementation diagram of DDEMS
are depicted in Fig. 1 (a) and (b), respectively [19].

The physical layer is the foundation of the DDEMS system
which comprises several physical sensors responsible for acquiring
raw analog data from the electrical system. The key sensors in this
layer include a PZEM-004T Power Module to measure fundamental
parameters (Vims, Irms, P, Q, PF and Frequency), a ZMPT101B
Voltage Sensor to acquire high-fidelity analog output proportional
to the AC voltage waveform for detailed analysis, and a SCT-013
non-invasive current transformer used to acquire AC current
waveform for current harmonic analysis.
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Fig. 1 The design of the DDEMS system, (a) conceptual layered architecture, (b) implementation diagram.

The fog computing layer is positioned at the edge of the
network with an intelligent data acquisition (i-DAQ) unit to handle
lightweight data storage and computation of the power data
collected by the physical layer [20]. It is built around an ESP32
microcontroller. Its critical functions include Data Acquisition, Signal
Processing and Data Preprocessing. This layer reads analog signals
from sensors via ESP32’s Analog-to-Digital Converter (ADC). Signal
Processing aims to perform real-time computations including RMS
conversion, power calculation and a windowed Fast Fourier
Transform (FFT) on the current waveforms to compute harmonic
components and total harmonic distortion factor (THD). With Data
Preprocessing function, this layer encapsulates the processed data
into a structured format for efficient transmission, and minimizing
bandwidth usage and latency for critical alert by reducing the raw
data volume sent to the cloud.

The cloud computing layer offers extensive data storage and
advanced computing capabilities required for long-term analytics. It
is hosted on a virtual private server (VPS) running Ubuntu Server
20.04 LTS. This layer hosts several integrated services:

e AWeb Serverrunning Apache with PHP 8.1 to handle
incoming HTTP requests from the i-DAQ units.

e A MySQL Database Server (version 8.0) for structured storage
of all historical time-series data and event logs. The database
is configured with daily automated backups to a secure, off-
site location.

® A Rule-based Engine for the PQ Advisor, implemented as a set
of PHP scripts, which continuously evaluates incoming data
packets against predefined rules based on IEEE/IEC standards.

e  RESTful Application Programming Interfaces (APIs)to
facilitate structured communication between the database,
the web front-end, and potential third-party services.

The network layer serves as the communication bridge
between fog and cloud computing layers. The primary protocol
used is Wi-Fi (IEEE 802.11) for its ubiquity and high data rate in
indoor environments. The ESP32's integrated Wi-Fi shield handles
the connection. Data is transmitted to the cloud server using
Hypertext Transfer Protocol (HTTP) POST requests with
encapsulated JSON payloads, ensuring reliable and standardized
data exchange [21].

The final layer is the application layer, which manages all
application processes using the information from the cloud
computing layer. This layer consists of a responsive, web-based
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portal accessible via any modern web browser on desktops,
tablets, or smartphones. Its functions include:

(a) Real-time data visualization: Displaying live values of all
parameters through gauges, charts, and graphs.
Historical data analysis: Providing tools for viewing
trends over custom time periods (hours, days, weeks).
PQ Advisor: Presenting rule-based PQ monitoring for all
detected PQ events with their severity level and sending
SMS alerts for critical events.

Benchmarking and reporting: Allowing users to compare
current consumption against previous periods to identify

savings and generate reports.

(b)

(c)

(d)

This multi-layer approach effectively distributes the
workload. Time-sensitive processing is handled at the edge (fog
computing layer), while resource-intensive storage and complex
analytics are managed in the cloud, creating a scalable, efficient,
and responsive system suitable for large-scale deployments. The
fog-cloud architecture of DDEMS is fundamentally designed for
scalability and robustness. Scalability is achieved through
distributed edge processing, where each i-DAQ unit operates
autonomously, preventing a linear increase in cloud computational
load with additional units. The cloud layer's web and database
servers can be scaled horizontally to manage increased data influx.
To ensure stability during network outages, the ESP32
microcontroller implements a local data buffering system on its
internal flash storage. Processed data packets are stored locally if
the cloud is unreachable and are transmitted once connectivity is
restored, preserving data integrity.

2.2 Acquisition of power parameters

The intelligent Data Acquisition (i-DAQ) unit is the main
hardware of DDEMS. Fig. 2 illustrates the simplified block diagram
of the i-DAQ unit which consists of power sensors (SCT-013 and
ZMPT101B), signal conditioning circuit, an ESP32 microcontroller
with built-in Wi-Fi shield, and PZEM-004T power module to acquire
and streamline electrical data for uploading to the cloud platform
for data storage, monitoring, and computation. The acquired data
includes Voltage (V), Current (A), Real Power (W), Reactive Power
(Q), Energy (kwh), Power Factor (%), Frequency (Hz), current
harmonics, and Total Harmonic Distortion factor (THD).
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Fig. 2 Simplified block diagram of i-DAQ unit of the DDEMS.

For the acquisition of power parameters from the local grid,
the system utilizes the PZEM-004T power module, which provides
+0.5% accuracy for voltage (80-260V range), current (0-100A), and
power measurements (0-23kW) [22]. It has built-in RS485 with
Modbus communication protocol to communicate with external
devices for data exchange purposes. To provide an interface
between the PZEM-004T (RS485) and the ESP32, an RS485-to-TTL
converter module is essential. This module is based on a MAX485
chip to translate the electrical signaling standards. The connection
diagram of the interfacing module is shown in Fig. 3 [23].
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w———  Physical connection
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Master device
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Fig. 3 Interfacing module for Modbus RS485 Communication
Protocol.

2.3 Acquisition of current harmonics

The widespread use of non-linear loads (NLLs) such as
switched-mode power supplies (SMPS), power converters and
inverters, induction ovens and battery chargers, has degraded the
power quality of low voltage (LV) distribution grid networks. These
NLLs generate harmonics that distort the sinusoidal waveforms of
supply voltage and current [24], [25], while these harmonics can be
analyzed by using Fourier Series (FS) and its Fast Fourier Transform
(FFT) algorithm. Any periodic signal function f(t) can be
represented as a sum of a DC term, along with the amplitudes and
frequencies of its sinusoidal components (harmonics), as shown in
Equation (1):

Z a,cos nwyt + by,sin nwgyt

n=1

a,
0+

f)= > (1)

where:

e  f(t) is the instantaneous value of the periodic signal at
time t

e qa,/2 is the average value or the DC component of the

signal,

n is the harmonic order (a positive integer: 1, 2, 3,...)
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e a, and b, are the Fourier coefficients representing the
amplitudes of the cosine and sine components of the n-
th harmonic, respectively,

e Wy is the fundamental angular frequency, defined as
wo = 2nf, , f, is the fundamental power system
frequency [26].

Due to the half-wave symmetrical nature of sinusoidal
wave distortion around the average center line of the waveform,
odd harmonics (3™, 5th, 7th, etc.) tend to be dominant in the
distortion waveform, while even harmonics are typically minimal
[27]. In many scenarios, higher-order harmonics are indeed smaller
in magnitude and can be considered negligible compared to lower-
order harmonics [28]. This is particularly true when dealing with
systems involving non-linear loads like power electronics whereby
as the harmonic order increases (i.e., the frequency increases), the
amplitude of the harmonic components generally decreases [28].

The total harmonic distortion factor (THD) is a key metric
quantifying the distortion present in the signal. It is defined as the ratio
of the root-sun-square of all harmonic components to the
fundamental frequency component [29], as expressed in Equation (2).

V2h=2Un)?
I

1

THD = x 100% (2)

where:

e  THD is the Total Harmonic Distortion factor (expressed
as a percentage),

e [, is the RMS value of the fundamental frequency
component (e.g., 50 Hz current),

e [, isthe RMS value of the h-th harmonic component,

e  his the harmonic order (an integer starting from 2 for
the 2nd harmonic),

e n is the highest harmonic order considered in the
calculation.

Current harmonics refer to distortions in the current
electrical waveform caused by non-linear loads, which can affect
the performance of electrical systems [30]. Current harmonic
acquisition is performed using the SCT-013 non-invasive current
sensor coupled with a custom signal conditioning circuit that
includes a 22Q burden resistor and analog-to-digital converter to
measure current harmonics of the power quality. Fig. 4 illustrates
acquisition circuit of current signal for harmonics from SCT-013
current sensor. The sensor's output is a small current proportional
to the measured current, which is then converted into a voltage
using a burden resistor. The embedded firmware in ESP32 MCU
implements a real-time processing pipeline featuring separate
tasks for data acquisition, FFT computation, and communication.
The harmonic analysis algorithm employs a windowed FFT with a
sampling rate of 2.0kHz, optimized to minimize memory usage
while capturing harmonics up to the 13th order and its THD.

To +3.3V

SCT-013CT

{il

To ESP32 Analog Input

To GND

Fig. 4 Signal conditioning circuit for current harmonic acquisition
from SCT-013 non-invasive current sensor.
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Through the application of the Fourier Series and its FFT
algorithm, time-domain signals such as cosine waves, square waves,
and triangle waves can be effectively represented in the frequency
domain for harmonics acquisition [31]. The FS coefficients obtained
from the Fourier analysis provide insights into the amplitudes of
frequency components including fundamental frequency and
harmonics, which can be visually depicted in Fig. 5.

Among three signal waveforms, the cosine wave is a
simple waveform comprising a single sinusoid frequency, i.e.,
fundamental frequency f [32]. Conversely, the square and
triangle waves are classified as complex waveforms, consisting
of multiple sinusoids that include the fundamental frequency
and its odd harmonics. Both square and triangle waves exhibit
positive and negative cycles, displaying half-wave symmetry
with respect to the zero axis. Consequently, these waveforms
exclusively possess odd harmonics according to Fourier
theorems, while the magnitudes of even harmonics are
minimal and can be neglected [32].

As per the Fourier theorems, the square wave exhibits
harmonic magnitudes expressed as a percentage relative to
the fundamental frequency and follows the order of 1/n,
where n represents the harmonic order. This results in
harmonics magnitudes (in %) for 1%t, 3rd and 5% orders are
100%, 33.3%, and 20.0%, respectively. In contrast, the
magnitudes of harmonics in the triangle wave are
characterized by an order of 1/n”2, leading to percentages of
100%, 11.1%, and 4.0% for the first three orders of odd
harmonics [33].

2.4 Web-based DDEMS Portal

Data analytics and Power Quality Monitoring of DDEMS are
implemented by using a web-based DDEMS Portal for various
functions such as data storage, information retrieval, remote
monitoring of power parameters, data trending and visualization.
The front-end portal is developed using HTML, CSS, JavaScript
(with Chart.js for graphing), and PHP. It provides a dynamic and
user-friendly interface for visualizing the data stored in the MySQL
database server. Key features include:

(a) Real-Time Gauges: Displaying live electrical values of V, I,
P, Q, F, PF, THD and harmonics.

Time-Series Charts: Interactive graphs allow users to
zoom and pan through historical data for any electrical
parameter.

Data Analytics: Dashboards for daily, weekly, and
monthly energy consumption, including benchmarking

tools to compare against previous periods.

(b)
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Fig. 6 The Web-based DDEMS Portal showing real-time monitoring
dashboard.

(d) PQ Advisor Dashboard: A dedicated panel providing an
at-a-glance view of the current status of each key PQ
parameter, color-coded by severity level (e.g., Green for
Level O, Yellow for Level 1, Orange for Level 2, Red for

Level 3).

The portal integrates APIs that facilitates communication
between DDEMS i-DAQ unit, backend servers, and third-party
cloud servers. The web-based DDEMS Portal provides graphical
user interface (GUI) which can be accessed via uniform resource
locator (URL) address using a web browser or mobile handphone.
The snapshot of GUI of the Web-based DDEMS Portal is depicted
in Fig. 6.

2.5 Rule-based PQ Advisor

On the other hand, the Power Quality (PQ) Advisor is a
classification system that involves identifying and categorizing
disturbances in electrical signals that can affect the performance
and safety of power supply systems. Table 1 shows the general PQ
severity levels and its impact. The PQ Advisor adopts a rule-based
engine that evaluates measurements against IEEE 1159 and IEC
61000-4-30 thresholds for both immediate detection power
quality events and providing mitigations to remedy issues.

This approach was selected for its computational
efficiency, transparency, and direct alignment with regulatory
frameworks. The rule sets are pre-programmed in PHP scripts
residing on the cloud server and are executed on every data packet
received from the i-DAQ unit. The system evaluates four critical
power quality parameters: supply voltage, system frequency, total
harmonic distortion for current (THDi) [34], and power factor (PF).
For each parameter, measurements are categorized into one of
four severity levels (Level O to Level 3), which describe the
operational condition and potential impact on the electrical
system, as outlined in Table 1.

Table 1 PQ Severity Levels and its Impacts.

Level Severity Impact
Level O No disturbance Nominal / optimum operation; no
mitigation required

Level 1 Minor In monitoring stage. May affect
disturbance sensitive equipment

Level 2 Moderate Require corrective action(s). Likely to
disturbance trip or damage devices

Level 3 Major Need to take action immediately. Trip

disturbance or damage devices
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Table 2 The proposed rule-based PQ classification with its severity level, parameter ranges, technical description and impacts.

Parapn?eter Class/Label Clasig\llc;tlon Typical Range Description Impact
Supply Normal Supply Level O: 207 -253V Continuous Overall, in perfect condition.
Voltage Normal (within £10%) No action required
(35] Undervoltage / Level 1: 195-206 V or Sustained (>1 min) May affect sensitive
Overvoltage Minor Deviation 254 -264V electronics, slight efficiency loss
Transient Events Level 2: 70-194V (sag) or 10 ms—1 min Flickering, device malfunction,
Voltage 265 —300 V (swell) Sag (Dip) (10-90% of nominal) tripping risks
Sag/Swells Swell (>110% of nominal)
Deep Sag / Surge / Level 3: <70Vor>300V Instantaneous to several Equipment damage, system
Interruption Severe Deviation seconds shutdown, safety concerns
Voltage drops to < 10% of
nominal
System Normal Frequency Level O: 49.5-50.5 Hz Within acceptable variation Overall, in perfect condition.
Frequency Nominal 50Hz Normal (within £0.5 Hz) No action required
(in Malaysia)
Level 1: 49.0-49.49 Hz or 50.51  Slight imbalance, possibly Monitor; sensitive devices may
Minor Deviation -51.0Hz transient) trip
(i.e., 0.5 —-%1.0 Hz)
Level 2: 48.0-48.99 Hz or 51.01  Potential frequency stability Appliance malfunction,
Significant -52.0Hz concern protection activation
Deviation (i.e., 1.0 —+2.0 Hz)
Level 3: <48.0Hz or >52.0 Hz Grid instability or fault Serious equipment damage risk
Severe Deviation (>+2.0 Hz) condition
Harmonics Low Harmonics Level O: THDi < 5% THD < 5% (IEEE Std 519 limit) Overall, in perfect condition.
(THDi) Acceptable No action required
[27] Moderate Level 1: 5% < THDi < 8% Waveform close to pure sine Monitor; may cause minor
Harmonics Moderate wave heating effects
distortion
High Harmonics Level 2: 8% < THDi < 15% Acceptable distortion for Affects efficiency, higher loss
Poor distortion residential settings
Severe Harmonics Level3: THDi = 15% High distortion from multiple Overheating, malfunction,
Severe non-linear loads tripping risks
distortion
Power Good PF Level 0 PF 295% Efficient power usage, Resistive ~ Overall, in perfect condition.
Factor PE >0.95 or well-compensated loads No action required
(PF) [34] Moderate PF Level 1: PF in 85%—95% Acceptable but slightly Monitor periodically
PF in 0.85-0.95 inefficient, Mild inductive loads
Poor PF Level 2: 70% < PF < 84% Significant reactive power, Energy waste and billing

Very Poor PF

PFin0.70-0.84

Level 3: <070

PF <70%

uncompensated inductive
loads, CFLs, AC compressors

Highly inefficient, mostly
reactive or non-linear
Heavy inductive/capacitive
loads

penalty possible, increased line
losses, voltage drops,
transformer stress

Severe losses; correction
required

Increased line losses, voltage
drops, transformer stress

It is important to acknowledge the inherent limitations of
a rule-based system. Its performance is fundamentally constrained
by the completeness and precision of the pre-defined rules. While
highly effective for classifying well-defined, standard-based
disturbances, it may exhibit rigidity when confronted with novel,
complex, or overlapping PQ events that are not explicitly captured
in the rule matrix. Furthermore, unlike adaptive machine learning
models, it lacks the ability to learn from new data or identify subtle,
complex patterns in the signal that may precede a fault or indicate
a non-standard type of distortion. Table 2 shows the proposed
rule-based PQ classification with its severity level, parameter
ranges, technical description and impacts.
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2.6 Cybersecurity Considerations

The IoT architecture of DDEMS, which transmits sensitive
energy consumption and power quality data from the edge to the
cloud, necessitates a robust cybersecurity framework to protect
against unauthorized access, data breaches, and manipulation.
This subsection outlines the potential vulnerabilities and the
specific security mechanisms implemented to mitigate them.

A primary point of vulnerability identified in the system is
the Network Layer, where data is transmitted from the ESP32-based
i-DAQ unit to the cloud server using HTTP with JSON payloads. While
HTTP is simple and widely supported, it is inherently unsecured,
making communication susceptible to eavesdropping and data
tampering if left unprotected. An attacker on the same local network
could potentially intercept data packets to infer user behavior or
inject malicious data to disrupt monitoring and analytics.
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Frequency-domain

To address these vulnerabilities, the following security
measures have been implemented:

(a) Data-in-Transit Encryption: All HTTP communication between
the i-DAQ unit and the cloud server is secured using Transport
Layer Security (TLS) 1.2 protocol. The ESP32 firmware is
configured to establish a secure HTTPS connection, ensuring
that all JSON payloads containing electrical measurements are
encrypted end-to-end. This prevents eavesdropping and
guarantees data integrity during transmission.

Authentication and Access Control: To prevent unauthorized
devices from posting data to the cloud server, a token-based
authentication mechanism is employed. Each i-DAQ unit is pre-
provisioned with a unique access token (a long, random string).
This token must be included in the header of every HTTP POST
request. The cloud server's PHP API validates this token before
accepting any data for processing and storage. This effectively
protects against spoofing and unauthorized data injection.

(b)

3. Results and Discussion

The performance and validity of the DDEMS were assessed
through a rigorous three-stage evaluation strategy. The validation
of FFT algorithm is conducted to verify its accuracy of harmonic
acquisition against theoretical data derived from Fourier
theorems. Experimental laboratory testing used DDEMS i-DAQ unit
to conduct cross measurements verification of electrical data
against calibrated Lovato DMG800 power multimeter and Fluke
437-11 as reference [36]. Field evaluation involved 90-days of
continuous operation across the selected residential buildings with
diverse load profiles. It confirms the system's reliability, with real-
time alerts and a web-based dashboard facilitating energy
optimization and power quality monitoring.

3.1 Validation of FFT algorithm

To validate the accuracy of harmonics acquisition using
the FFT algorithm, the computed harmonics readings (i.e., the
order of harmonics and magnitudes) are compared against
theoretical data derived from Fourier theorems. An experimental
setup is configured, comprising a laboratory-based signal generator, a
monitoring PC, and DDEMS'’s i-DAQ unit which incorporates a built-in
fog computing device (i.e., ESP32 microcontroller). The FFT algorithm
computation is then executed with the experiment set up to
compute the harmonic contents of the test signal generated by the
signal generator, as illustrated in Fig. 7.

This comparative analysis serves to assess the accuracy and
reliability of the acquired harmonic data from FFT algorithm
computation against theoretical expectations. Three test signals
are used in this experiment, namely cosine wave, square wave and
triangle. The amplitudes of theoretical (from Fourier Series) are
tabulated and compared to the computed ones for different
harmonics, in Table 3. It is for the purpose of accuracy validation of
harmonics acquisition by the DDEMS system.

Table 3 Validation result of harmonics acquisition by DDEMS'’s i-DAQ unit.

2, July-December 2025

harmonics

Fig. 7 Experiment set up to verify the accuracy of harmonics
acquisition based on FFT computation.

The table presents the theoretical and practical harmonic
values for sine, square, and triangle waves, along with the
respective errors. For the sine wave, the fundamental harmonic (f;)
theoretically has 100% amplitude, while all higher-order harmonics
(f5, fs, f7, o) are expected to be 0%. However, practical results show
minor deviations at higher harmonics, with small percentages such
as 0.69% for f3 and 0.45% for fs. These slight discrepancies could be
attributed to noise or imperfections in the signal acquisition
process, resulting in negligible errors.

For the square wave, the theoretical values show the
presence of odd harmonics (f, fs, f7, f5) with specific percentages
(e.g., 33.33% for f3 and 20.00% for fs). The practical results closely
match the theoretical values with minimal errors, such as 0.17% for
f3 and 0.18% for fs, indicating accurate harmonic acquisition.
Similarly for the triangle wave, the theoretical harmonic
amplitudes decrease significantly for higher-order odd harmonics,
such as 11.11% for f3 and 4.00% for fs. Practical results align well
with theoretical values but exhibit slight errors, such as 0.39% at f3
and 0.18% at fs, which may be due to system limitations or minor
inaccuracies during signal processing.

Overall, the results demonstrate that the harmonic
acquisition process is highly reliable, with errors remaining minimal
across all waveforms. Minor deviations observed in practical
results could be attributed to hardware imperfections, or signal
processing limitations.

3.2 Cross-Verification of Acquired Electrical Data with Multiple
Reference Instruments

To thoroughly validate the measurement accuracy of the
DDEMS i-DAQ unit and address the need for cross-verification, we
conducted a comparative analysis against two calibrated reference
instruments: the Lovato DMG800 power multimeter and a Fluke
437-1l Power Quality and Energy Analyzer. Lovato DMG800 power
multimeter is a high-precision instrument widely recognized in
industry, which is highly comparable in measurement accuracy to
the Fluke 437-1I for advanced power quality analysis. Fig. 8 illustrates
the measurement setup of Lovato DMG800 power multimeter.

Harmonics cosine wave Square wave Triangle wave
Theory Practical Error Theory Practical Error Theory Practical Error
(in %) (in %) (in %) (in %) (in %) (in %) (in %) (in %) (in %)
fi 100.0 100.00 0 100.00 100.00 0 100.00 100.00 0
fz 0.0 0.69 0.69 33.33 33.16 0.17 11.11 11.50 0.39
fs 0.0 0.45 0.45 20.00 19.82 0.18 4.00 4.18 0.18
f7 0.0 0.40 0.40 14.28 14.07 0.21 2.04 1.86 0.18
fo 0.0 0.16 0.16 11.11 10.99 0.12 1.23 1.11 0.12
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Table 4 Measurement results of selected electrical appliances with DMG800 and DDEMS.

Resistive Load Inductive Load
LED Light Bulb 70W Fluorescent Light 45W Compact Fluorescent Light (CFL) 24W
Feature DMG800 / DMGS00 / DMGS00 /
Fluke 437-I1 DDEMS Error (%) Fluke 437-I1 DDEMS Error (%) Fluke 437-I1 DDEMS Error (%)
(Avg.) (Avg.) (Avg.)
Vrms (V) 245.55 244.7 -0.35 245.22 245.1 -0.05 245.75 245.3 -0.18
Irms (A) 0.283 0.28 -1.06 0.311 0.32 2.89 0.17 0.18 5.88
P (W) 68.45 68.8 0.51 44.5 44.4 -0.22 26.95 25.2 -6.49
PF (%) 98.8 99 0.20 60.2 60 -0.33 62.6 62 -0.96
F (Hz) 50 49.9 -0.20 50.03 50 -0.06 50.02 50 -0.04
THD (%) 3.81 3.87 1.57 10.46 10.4 -0.57 80.9 81.5 0.74

Fig. 8 Measurement setup showing DDEMS validation against
Lovato DMGS800 power multimeter.

The metric used for the evaluation is the Mean Absolute
Percentage Error (MAPE), calculated as per Equation (3).

1OV - Y
MAPE = —27 X 100% (3)
N Yref

where

e Nisthe total number of observations or data points,

e Y isthe value measured by the DDEMS system,

e Y, is the reference value measured by the calibrated
Lovato DMG800 and Fluke 437-I1.

MAPE is a simple metric and dimensionless index in which a
lower MAPE indicates better performance of measurement. A MAPE
of 10% means that the average deviation between the predicted
value and the actual values was 10%, regardless of whether the
deviation was positive or negative. However, it is suggested that the
performance is acceptable if MAPE is between 10-20% [37].

Three electrical appliances with different load characteristics,
i.e., an LED light (70W, largely resistive), a Fluorescent Light (45W,
inductive with ballast), and a Compact Fluorescent Light (CFL, 24W,
non-linear), were selected for this test. The results, comparing DDEMS
measurements to both reference devices, are presented in Table 4. For
this validation, N=10 samples were collected for each parameter under
steady-state conditions to ensure a statistically significant comparison.
The overall system MAPE of 1.24% represents the average of the
individual MAPE values calculated for voltage, current, power, and
power factor across all three test appliances.
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Table 5. Analysis of whole-house energy consumption (kWh).

Day Utility Meter DDEMS Absolute Relative
Reading (kWh) Reading Error Error (%)
(kWh) (kWh)
1 1250.5 1251.2 0.7 0.06
7 1388.7 1389.9 1.2 0.09
14 1520.1 1521.8 1.7 0.11
21 1655.3 1657.1 1.8 0.11
30 1790.6 1792.5 1.9 0.11

The results demonstrate a strong correlation between the
DDEMS and both reference instruments. The measurements for
voltage, power, power factor, frequency, and THDi show minimal
deviations. High errors were observed for the low-power CFL load
in current measurement (+5.88%) and active power (P)
measurement (-6.49%), which can be attributed to the highly
distorted current waveform and the resolution limit of the PZEM-
004T module when measuring very low power levels. The overall
MAPE for the three appliances was 0.65%, 0.69% and 2.38%,
respectively, resulting in a grand mean MAPE of 1.24%. This cross-
verification confirms that the DDEMS provides highly accurate and
reliable measurements comparable to established, high-cost
industry instruments.

To validate the system's performance in its primary
application of whole-house monitoring, a separate comparative
analysis was conducted during the field deployment. The cumulative
active energy (kWh) recorded by the DDEMS system was compared
against the readings from the terraced house's utility-grade energy
meter. The comparison was performed over 30 consecutive days,
with readings taken from both meters at the same time each day.
The results of this analysis are presented in Table 5.

As shown in Table 5, the DDEMS system demonstrated
excellent agreement with the utility meter over the one-month
period. The relative error in cumulative energy consumption
remained consistently around 0.1%, which is well within an
acceptable range for energy monitoring applications and confirms
the high accuracy of the PZEM-004T module at typical household
load levels. This real-world validation confirms that while the
DDEMS may have reduced precision for very low-power, individual
appliances, it performs with high accuracy for its intended purpose
of monitoring aggregate household energy consumption.

Table 6 provides a comparative analysis of the proposed
DDEMS against established commercial power quality analyzers
and recent academic cloud-based prototypes across six key
metrics. The primary differentiator for DDEMS is its exceptional
cost-effectiveness, with a unit cost of approximately $120 that is
much lower than commercial alternatives. This is achieved while
maintaining highly competitive performance, evidenced by an
accuracy (MAPE) of 1.24%, which is close to the industry standard.
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Table 6 Comparison of DDEMS to Commercial Power Quality Analyzers and recent academic prototypes.

Feature / Metric Proposed DDEMS

Commercial PQ Analyzers
(Fluke 437-I1, Hioki PW3390)

Recent Academic Prototypes
(Cloud-based)

1. Cost per Unit ~$120

2. Deployment Model Distributed, Scalable Networks

$5,000 — $10,000

Standalone, Single-point

Varies, but typically low (component
cost)
Often centralized or cloud-dependent

measurement

3. Accuracy (MAPE)

4. Key Architectural Advantage

5. Real-Time Processing
Latency

6. PQ Event Detection Latency

1.24% (Highly Comparable)
Fog-Layer (Edge) Processing
<100 ms (Edge-based FFT)

~95% reduction vs. cloud-only

< 1.0% (Industry Standard)
On-device processing
<100 ms (On-device)

Minimal (On-device)

Varies; often comparable to DDEMS
Cloud-based processing

> 2 seconds (Due to cloud
communication latency)

High (Baseline for comparison)

Architecturally, DDEMS employs a distributed and scalable
network model, contrasting with the standalone, single-point
deployment of commercial meters and the centralized nature of
many academic prototypes. Its key innovation lies in its Fog-Layer
(Edge) processing, which enables significant performance
advantages. This edge-based architecture facilitates real-time
processing latencies of under 100ms and vastly outperforms the
counterparts. Consequently, DDEMS achieves a dramatic ~95%
reduction in PQ event detection latency compared to cloud-only
systems. In summary, the table positions the DDEMS as a unique
solution that combines the low cost of academic prototypes with
the high performance of commercial systems, enabled by its
strategic use of edge computing.

3.3 Field evaluation of DDEMS

The practical deployment and long-term reliability of the
DDEMS system were evaluated through a 90-day field trial in the
selected residential buildings with diverse load profiles. One of the
selected sites was a 2-storey terraced house with 2,000 square feet
area located in Sibu town of Sarawak, Malaysia. The DDEMS i-DAQ
unit is connected to a SCT-013 non-invasive current sensor
clamped around the live conductor of the incoming mains of power
supply. This placement enables DDEMS to capture and monitor the
electrical power parameters of the terraced house. The unit was
powered independently and connected to the home’s Wi-Fi
network. Fig. 9 shows (a) the deployment of the DDEMS and (b) the
prototype of DDEMS i-DAQ unit with CT sensors.

Data Analytics with Benchmarking function is a core
component of the DDEMS Portal. It provides real-time insights into
critical electrical parameters and overall energy consumption within
a user-friendly and visually intuitive interface. It also assesses the
long-term reliability and stability of the system outside a controlled
laboratory environment.

(b)

Fig. 9 Field deployment of DDEMS: (a) snapshot of installation at
the residential mains, (b) prototype of DDEMS i-DAQ unit with
current transformer sensor
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Fig. 10 depicts the DDEMS portal which features several
key navigation tabs, including (a) Time-series Charts for visualizing
energy usage trends and identifying anomalies, (b) daily
consumption trend in kW unit, which is averaged from previous
week data, and (c) benchmarking of daily consumption (versus
previous week data) for comparing current performance with
historical data. These tools collectively enable users to perform
effective energy analysis, track efficiency, and support decision-
making for energy optimization and fault detection.

Over the 90-day period, the system demonstrated remarkable
robustness:

(a) Uptime: The i-DAQ unit maintained a consistent Wi-Fi
connection, successfully transmitting data packets at
the configured interval (every 15 seconds) with a
measured uptime of 99.4%.

Data Integrity: The cloud database successfully
received and stored over 1.5 million individual data
points without corruption. The structured JSON
payload and HTTP POST protocol proved to be a
reliable method for continuous data transmission.
Throughout the 90-day deployment, no security
incidents or unauthorized access attempts were
detected, validating the effectiveness of the
implemented cybersecurity measures.

Hardware Stability: No hardware failures occurred.
The ESP32 microcontroller and all sensors operated
within expected temperature ranges and showed no
signs of performance degradation, validating the
design choices for component selection and power
supply regulation.

(b)

(c)

This proven reliability is a critical factor for user trust and
adoption, demonstrating that the DDEMS is not merely a prototype
but a viable product for sustained operation.

On the other hand, the field deployment also acquired a
rich dataset of real-world power quality. The power quality (PQ)
Advisor engine is used to process this continuous stream of data,
and its dashboard provides a real-time evaluation of power quality
conditions including supply voltage, power factor, system
frequency and total harmonic distortion factor (THD), as depicted in
Fig. 11 (a)-(d). The results have identified Level 0 (Normal) or good
conditions for supply voltage, power factor and system frequency.
However, it has identified Level 3: Severe Harmonics, indicating
significant distortion that can lead to equipment overheating,
malfunction, or tripping, as depicted in Fig. 9 (d). The PQ levels
range from Level 0 (Good) to Level 3 (Critical), with higher levels
indicating more severe harmonic distortion. Visual indicators and
alert icons help users quickly assess system health and take
appropriate action to maintain power quality and reliability.
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Data Analytics and Benchmarking - Time-series Charts
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Fig. 10 Data Analytics and Benchmarking of DDEMS Portal (a) Real-time time-series charts, (b) Daily consumption in kW (averaged from
previous week data) and Consumption Pattern, (c) Benchmarking of daily consumption (versus previous week data).
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(d)

Fig. 11 Snapshots of Power Quality (PQ) Advisor for (a) supply voltage, (b) power factor, (c) frequency, and (d) total harmonic distortion factor (THD).
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The results over the monitoring period were revealing:

(a) Supply Voltage (Fig. 9(a)): The supply voltage was
exceptionally stable, consistently measured between 238V
and 245V, well within the Level 0 (Normal) range defined by
the standard (207V - 253V for a 230V system). No voltage
sags, swells, or interruptions were detected, indicating a
robust local grid infrastructure at the site location.

(b) Power Factor (Fig. 9(b)): The overall household power
factor typically varied between 0.85 and 0.98, often
residing in Level O (Good) or Level 1 (Moderate). The dips
into the moderate range were correlated with the
operation of inductive loads like refrigerator and air
conditioner compressors without power factor correction.
This suggests a potential opportunity for economic savings
through targeted power factor correction, which could
reduce reactive power charges if levied by the utility.

(c) System Frequency (Fig.9(c)): The grid frequency was
remarkably stable, fluctuating between 49.95 Hz and
50.05 Hz, consistently classified as Level 0 (Normal). This is
a testament to the excellent regulation by the regional
grid operator.

(d) Total Harmonic Distortion factor for current (THDi) (Fig. 9(d)):
This was the most significant finding. The THDi was
consistently measured above 15%, often reaching 20-25%,
triggering a persistent Level 3: Severe Distortion alert. This
high level of distortion is indicative of a high penetration of
non-linear loads within the household. Modern electronics
like LED TVs, computer power supplies, smartphone chargers,
and the CFLs and LED lights themselves are the primary
culprits.

4. Conclusion

The complete design, development and validation of the
Data-Driven Energy Monitoring System (DDEMS) presented in this
study to address critical challenges in power consumption
monitoring and power quality (PQ) assessment. By integrating low-
cost sensors, ESP32 microcontroller for edge computing, and a rule-
based engine of PQ Advisor, DDEMS offers a cost-effective, scalable,
and accurate solution for real-time energy management and PQ
detection. Key achievements of this work include:

(@) High accuracy and reliability: Experimental validation of
DDEMS against the calibrated Lovato DMG800 power
multimeter demonstrated exceptional measurement
accuracy, with a Mean Absolute Percentage Error (MAPE) of
1.24% for key electrical parameters such as voltage, current,
power, power factor and harmonic distortion. This confirms
the system's capability to perform comparably with high-
cost specialized industry-standard instruments.

(b) Comprehensive PQ monitoring: DDEMS successfully
classified PQ disturbances into severity levels (Level O to
Level 3) based on industrial IEEE 1159 and IEC 61000-4-30
standards, enabling timely detection of issues such as
voltage fluctuations, harmonic distortions, and poor power
factors. The rule-based PQ Advisor provided actionable
insights, enhancing system reliability and safety.

(c) Real-world deployment: The system was rigorously
tested in residential settings over 90 days, proving its
robustness in diverse load conditions. The web-based
portal facilitated real-time data visualization, anomaly

detection, and benchmarking, empowering users to
optimize energy usage and reduce costs.

(d) Future potential: The modular architecture of DDEMS
allows for further enhancements, such as integrating
machine learning for predictive analytics or expanding its
application to industrial and commercial environments.

In conclusion, DDEMS represents a significant advancement
in smart energy monitoring, combining affordability, accuracy, and
real-time analytics to address global energy challenges. Its
successful deployment underscores its potential to contribute to
sustainable energy management and improved power quality in
modern electrical systems.

4.1 Limitations and Future Work

While the 90-day residential deployment validated the
DDEMS's core accuracy and reliability, this study has limitations that
outline a clear path for future work. A primary constraint is the
single-site evaluation in a stable grid environment, which does not
represent the diverse power quality (PQ) issues found in industrial
settings, weak rural grids, or networks with high renewable
penetration. Furthermore, the system’s current design for single-
phase systems limits its application in three-phase commercial and
industrial settings.

A key limitation is the lack of impact quantification. While
the system identified issues like high harmonic distortion, it did not
quantify the resulting energy losses or the environmental footprint
of the hardware itself. Finally, interoperability with broader building
and grid management systems remains an open challenge. To
address these limitations, a structured future roadmap is proposed:

1. System Expansion: The hardware and software will be
extended to support three-phase measurements and
critical metrics like phase imbalance.

2. Broader Validation: A multi-phase deployment plan
includes geographical expansion into industrial, urban,
and weak grid areas, alongside collaborations with utilities
to monitor feeders with high solar PV penetration.

3. Value and Impact Quantification: An integrated Energy
Saving Quantification (ESQ) module will be developed to
calculate avoidable losses from PQ issues, providing users
with direct savings estimates. A comprehensive Life Cycle
Assessment (LCA) will also be conducted to evaluate the
system's environmental footprint.

4. Enhanced Interoperability and Intelligence: Future
versions will integrate standardized communication
protocols such as Modbus and BACnet for seamless data
exchange. Machine learning for predictive maintenance
and load forecasting remains a key long-term goal to
evolve the DDEMS into a universally robust and value-
driven energy management solution.

5. Accelerated Life Testing for Drift Characterization: A key
future study will involve subjecting multiple DDEMS units
to accelerated life testing. This will allow us to empirically
model long-term measurement drift and identify the
dominant aging mechanisms of critical components, such
as the current transformer core and voltage sensor.

This structured approach to broader validation demonstrates
our commitment to evolving the DDEMS from a proven prototype
into a universally robust and adaptable solution for smart energy
management across the diverse landscape of global electrical grids.
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