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ABSTRACT 
 

The rapid growth of global electricity demand and the widespread adoption of non-linear loads have 
intensified power quality (PQ) concerns, revealing critical limitations of existing energy metering 
solutions. These systems lack real-time monitoring, data granularity, and analytical capabilities 
necessary for advanced energy and power quality management. This paper presents the design, 
development, and validation of the Data-Driven Energy Monitoring System (DDEMS), an IoT-based 
platform integrating smart metering, edge computing, and hybrid analytics for real-time PQ 
assessment and energy management. The system combines low-cost sensors such as PZEM-004T, 
ZMPT101B and SCT-013, incorporated with an ESP32 microcontroller to measure key electrical 
parameters, and classify PQ events using a cloud-based rule-based engine which compliance with IEEE 
1159 and IEC 61000-4-30 for power quality standards. Experimental validation was conducted on 
DDEMS against the calibrated Lovato DMG800 power multimeter and Fluke 437-II demonstrated its 
accuracy with overall system measurement errors at 1.24% of mean absolute percentage error 
(MAPE). Furthermore, the system successfully identified and categorized PQ disturbances into four 
severity levels, enabling timely mitigation the issues such as supply voltage fluctuations, harmonic 
distortions, and poor power factors. A subsequent 90-day field deployment in residential settings 
confirmed the system's reliability, and a web-based dashboard facilitating energy optimization with 
power quality monitoring. DDEMS addresses key limitations of existing solutions by offering a cost-
effective, scalable alternative to expensive PQ analyzers while maintaining high accuracy and real-
time capabilities. The system's modular architecture and successful real-world implementation 
highlight its potential for widespread adoption in smart energy management applications. 

 
 

1. Introduction  

1.1 Background and motivation 

The global energy sector is in the midst of significant 
transformation driven by escalating electricity demand, the integration 
of distributed renewable resources, and the widespread adoption of 
non-linear loads (NLLs). Despite the growth in renewables, fossil fuels 
remained the dominant sources, amounting to 62% of global 
electricity generation in 2022 [1]. The extensive reliance on non-
renewable energy resources not only accelerates their depletion but 
also contributes significantly to environmental degradation and 
climate change. These pressing concerns have intensified the need 
for intelligent, data-driven energy management solutions that can 
optimize consumption, reduce waste, and seamlessly integrate 
renewable sources in smart grids [2]. 

In 2024, worldwide electricity consumption reached an 
estimated 30,856 TWh while residential and commercial sectors 
collectively responsible for 42% of this total demand [3]. This surge 
is compounded by ubiquitous and widespread adoption of the non-
linear loads such as variable speed drive (VSD), switched-mode 
power supply (SMPS) in computers and Internet of Things (IoT) 
devices, LED lighting and electric vehicle (EV) chargers. These 
devices draw current in short, non-sinusoidal pulses, and injecting  

harmonic currents back into the power grid. The proliferation of 
NLLs has led to more frequent power quality (PQ) issues, including 
voltage fluctuations, voltage and current harmonic distortion, 
voltage sags and swells, and phase imbalances [4]. The economic 
impact of poor PQ issues is severe, estimated to cause annual 
losses in the billions of US dollars for industries worldwide due to 
equipment malfunctions, premature failure, reduced operational 
efficiency, production downtime, and increased energy costs [5]. 

IoT paradigm, characterized by the integration of low-cost 
sensors, edge computing, and cloud-based analytics, has proven to 
be a transformative force across numerous domains beyond 
energy systems. For instance, in precision agriculture, IoT-assisted 
context-aware systems have demonstrated remarkable efficacy. 
These systems leverage sensor networks to monitor soil conditions 
and microclimates, enabling data-driven recommendations for 
fertilizer application [6], reclaiming saline soils through context-
aware evapotranspiration monitoring [7], and optimizing water 
usage via intelligent models for reference evapotranspiration [8]. 
The success of these systems in providing robust and real-time 
decision support using an architecture comprising sensing, edge 
processing, and cloud analytics underscores the viability and 
scalability of the IoT framework for solving complex, data-intensive 
problems. This reinforces the potential of applying a similarly 
structured, data-driven approach to the challenges of energy 
monitoring and power quality management.  
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1.2 Limitations of existing solutions 

Conventional electromechanical energy meters and smart 

meters are fundamentally inadequate for addressing the 

challenges in advanced energy and power quality management. 

Their primary limitations include: 

(a) Lack of real-time PQ monitoring: They are designed primarily 

for billing purposes based on kWh accumulation. They lack 

capability to monitor, record, or alert PQ disturbances in 

real-time [6] 

(b) Insufficient data granularity: They typically provide data 

at intervals of 15 minutes or longer, which is too coarse 

to capture transient PQ events like sags or swells that can 

occur and resolve within milliseconds or cycles [7] 

(c) Absence of advanced analytics: They lack computational 

capability such as harmonic analysis, waveform capture, 

or event classification, which are essential for diagnostic 

and detection purposes [8] 

While specialized, high-fidelity power quality analyzers are 

available to fill this gap, their high costs (typically exceeding $5,000 

per unit) and frequently proprietary architectures render them 

impractical for widespread and scalable deployment, particularly 

in residential and small-to-medium commercial settings [9].  Prior 

research into IoT-based energy monitoring systems has made 

considerable progress. Numerous prototypes leveraging platforms 

such as Arduino, Raspberry Pi and ARM-based computation have 

been proposed. However, these often suffer from critical 

shortcomings: 

(a) High cost or complexity: Many systems integrate expensive, 

high-precision measurement chipsets or require complex 

sensor arrays without cost-competitiveness and ease of 

deployment. [10], [11]  

(b) Limited parameter set: Many prototypes focus on 

fundamental parameters (V, I, P) but omit critical PQ 

indices such as Total Harmonic Distortion factor (THD) 

and individual harmonic components [12]. 

(c) Laboratory-bound validation: Proposed mechanisms or 

models for fault detection or load disaggregation often 

demonstrate high accuracy in controlled lab environments 

but fail to generalize reliably under the noisy, variable 

conditions of real-world deployments [13], [14]. 

 Furthermore, the evolution towards data-driven systems 

introduces two critical, often overlooked challenges: data 

complexity and data privacy. The acquisition of high-frequency 

waveform data for harmonic analysis, as performed in this study, 

generates complex, high-dimensional datasets. Managing this 

complexity requires robust computational frameworks to ensure 

efficient processing and model reliability, a challenge echoed in 

other fields dealing with intricate data, such as the evaluation of 

model dependence for classifying complex medical images [15]. 

Simultaneously, the continuous collection of fine-grained energy 

consumption data presents a significant privacy risk, as it can 

reveal detailed patterns of occupant behavior. While existing 

energy monitoring systems frequently overlook this, the broader 

IoT domain has seen a push towards privacy-preserving and 

decentralized architectures to mitigate such risks [16]. An ideal 

system must therefore address not only measurement accuracy 

but also the computational demands of complex data and the 

imperative of protecting user privacy. 

 

1.3 Proposed solution and contributions 

To overcome these challenges, this paper introduces the Data-

Driven Energy Monitoring System (DDEMS), a holistic, affordable and 

robust IoT-based solution that integrates multi-sensor data acquisition, 

edge computing, cloud data storage and analytics, and a rule-based 

power quality analytics engine for comprehensive power consumption 

and PQ monitoring.  

The system utilizes a selected suite of low-cost sensors 

including the PZEM-004T for high-accuracy measurement of 

fundamental electrical parameters (V, I, P, Q, PF etc.), a SCT-013 non-

invasive current transformer for capturing current waveforms in 

harmonic analysis, and a ZMPT101B voltage sensor for detailed 

voltage waveform analysis. An ESP32 microcontroller serves as the 

central processing unit (CPU) which performs initial data processing 

and real-time Fast Fourier Transform (FFT) computations at the edge 

to enable rapid detection of power quality issues. The processed data 

is transmitted to a cloud platform, where a rule-based PQ Advisor is 

deployed to evaluate PQ measurement against IEEE 1159 and IEC 

61000-4-30 thresholds for both immediate detection power quality 

events and provide mitigations to remedy issue [17], [18]. The PQ 

Advisor provides not only detection but also actionable insights and 

mitigation recommendations 

This research makes several key contributions. First, it 

presents a cost-effective hardware design that integrates multiple 

sensors for comprehensive power data analytics and power quality 

monitoring. Second, it introduces optimized rule-based algorithms 

that significantly simplified the detection and classification of 

power quality issues and severity as compared to existing 

solutions. Finally, the system has been rigorously validated in real-

world environments, demonstrating high accuracy in detecting 

electrical disturbances while reducing energy costs. The remainder 

of this paper is structured as follows: Section 2 details the system 

architecture and methodology. Section 3 presents experimental 

results and discussion. Finally, Section 4 concludes the paper and 

suggests future work. 

2. Materials and Methodology 

2.1 System architecture overview 

The Data-Driven Energy Monitoring System (DDEMS) is 

architected on a multi-layer fog-cloud IoT framework, as illustrated 

in Fig. 1. The hierarchical design optimizes data flow, 

computational efficiency, and scalability by distributing tasks 

across five distinct layers, namely the Physical Layer, the Fog 

Computing Layer, the Network Layer, the Cloud Computing layer, 

and the Application Layer. The multi-layer approach enables real-

time monitoring of both power consumption and power quality 

while maintaining scalability for large-scale deployments. The 

conceptual design and physical implementation diagram of DDEMS 

are depicted in Fig. 1 (a) and (b), respectively [19]. 

The physical layer is the foundation of the DDEMS system 

which comprises several physical sensors responsible for acquiring 

raw analog data from the electrical system. The key sensors in this 

layer include a PZEM-004T Power Module to measure fundamental 

parameters (Vrms, Irms, P, Q, PF and Frequency), a ZMPT101B 

Voltage Sensor to acquire high-fidelity analog output proportional 

to the AC voltage waveform for detailed analysis, and a SCT-013 

non-invasive current transformer used to acquire AC current 

waveform for current harmonic analysis. 
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(a)        (b) 

Fig. 1 The design of the DDEMS system, (a) conceptual layered architecture, (b) implementation diagram.

The fog computing layer is positioned at the edge of the 
network with an intelligent data acquisition (i-DAQ) unit to handle 
lightweight data storage and computation of the power data 
collected by the physical layer [20]. It is built around an ESP32 
microcontroller. Its critical functions include Data Acquisition, Signal 
Processing and Data Preprocessing. This layer reads analog signals 
from sensors via ESP32’s Analog-to-Digital Converter (ADC). Signal 
Processing aims to perform real-time computations including RMS 
conversion, power calculation and a windowed Fast Fourier 
Transform (FFT) on the current waveforms to compute harmonic 
components and total harmonic distortion factor (THD). With Data 
Preprocessing function, this layer encapsulates the processed data 
into a structured format for efficient transmission, and minimizing 
bandwidth usage and latency for critical alert by reducing the raw 
data volume sent to the cloud.  

 The cloud computing layer offers extensive data storage and 
advanced computing capabilities required for long-term analytics. It 
is hosted on a virtual private server (VPS) running Ubuntu Server 
20.04 LTS. This layer hosts several integrated services: 

• A Web Server running Apache with PHP 8.1 to handle 
incoming HTTP requests from the i-DAQ units. 

• A MySQL Database Server (version 8.0) for structured storage 
of all historical time-series data and event logs. The database 
is configured with daily automated backups to a secure, off-
site location. 

• A Rule-based Engine for the PQ Advisor, implemented as a set 
of PHP scripts, which continuously evaluates incoming data 
packets against predefined rules based on IEEE/IEC standards. 

• RESTful Application Programming Interfaces (APIs) to 
facilitate structured communication between the database, 
the web front-end, and potential third-party services. 

The network layer serves as the communication bridge 
between fog and cloud computing layers. The primary protocol 
used is Wi-Fi (IEEE 802.11) for its ubiquity and high data rate in 
indoor environments. The ESP32's integrated Wi-Fi shield handles 
the connection. Data is transmitted to the cloud server using 
Hypertext Transfer Protocol (HTTP) POST requests with 
encapsulated JSON payloads, ensuring reliable and standardized 
data exchange [21].  

The final layer is the application layer, which manages all 
application processes using the information from the cloud 
computing layer. This layer consists of a responsive, web-based 

portal accessible via any modern web browser on desktops, 
tablets, or smartphones. Its functions include: 

(a) Real-time data visualization: Displaying live values of all 

parameters through gauges, charts, and graphs. 

(b) Historical data analysis: Providing tools for viewing 

trends over custom time periods (hours, days, weeks). 

(c) PQ Advisor: Presenting rule-based PQ monitoring for all 

detected PQ events with their severity level and sending 

SMS alerts for critical events. 

(d) Benchmarking and reporting: Allowing users to compare 

current consumption against previous periods to identify 

savings and generate reports. 

This multi-layer approach effectively distributes the 

workload. Time-sensitive processing is handled at the edge (fog 

computing layer), while resource-intensive storage and complex 

analytics are managed in the cloud, creating a scalable, efficient, 

and responsive system suitable for large-scale deployments. The 

fog-cloud architecture of DDEMS is fundamentally designed for 

scalability and robustness. Scalability is achieved through 

distributed edge processing, where each i-DAQ unit operates 

autonomously, preventing a linear increase in cloud computational 

load with additional units. The cloud layer's web and database 

servers can be scaled horizontally to manage increased data influx. 

To ensure stability during network outages, the ESP32 

microcontroller implements a local data buffering system on its 

internal flash storage. Processed data packets are stored locally if 

the cloud is unreachable and are transmitted once connectivity is 

restored, preserving data integrity.  

2.2 Acquisition of power parameters 

The intelligent Data Acquisition (i-DAQ) unit is the main 
hardware of DDEMS. Fig. 2 illustrates the simplified block diagram 
of the i-DAQ unit which consists of power sensors (SCT-013 and 
ZMPT101B), signal conditioning circuit, an ESP32 microcontroller 
with built-in Wi-Fi shield, and PZEM-004T power module to acquire 
and streamline electrical data for uploading to the cloud platform 
for data storage, monitoring, and computation. The acquired data 
includes Voltage (V), Current (A), Real Power (W), Reactive Power 
(Q), Energy (kWh), Power Factor (%), Frequency (Hz), current 
harmonics, and Total Harmonic Distortion factor (THD).  
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Fig. 2 Simplified block diagram of i-DAQ unit of the DDEMS. 

For the acquisition of power parameters from the local grid, 
the system utilizes the PZEM-004T power module, which provides 
±0.5% accuracy for voltage (80-260V range), current (0-100A), and 
power measurements (0-23kW) [22]. It has built-in RS485 with 
Modbus communication protocol to communicate with external 
devices for data exchange purposes. To provide an interface 
between the PZEM-004T (RS485) and the ESP32, an RS485-to-TTL 
converter module is essential. This module is based on a MAX485 
chip to translate the electrical signaling standards. The connection 
diagram of the interfacing module is shown in Fig. 3 [23]. 

 

Fig. 3 Interfacing module for Modbus RS485 Communication 
Protocol. 

2.3 Acquisition of current harmonics 

The widespread use of non-linear loads (NLLs) such as 
switched-mode power supplies (SMPS), power converters and 
inverters, induction ovens and battery chargers, has degraded the 
power quality of low voltage (LV) distribution grid networks. These 
NLLs generate harmonics that distort the sinusoidal waveforms of 
supply voltage and current [24], [25], while these harmonics can be 
analyzed by using Fourier Series (FS) and its Fast Fourier Transform 
(FFT) algorithm. Any periodic signal function f(t) can be 
represented as a sum of a DC term, along with the amplitudes and 
frequencies of its sinusoidal components (harmonics), as shown in 
Equation (1): 

𝑓(𝑡) =  
𝑎0

2
+ ∑ 𝑎𝑛𝑐𝑜𝑠 𝑛𝜔0𝑡 + 𝑏𝑛𝑠𝑖𝑛 𝑛𝜔0𝑡

∞

𝑛=1

 (1) 

where: 

• f(t) is the instantaneous value of the periodic signal at 
time t 

• 𝑎0/2  is the average value or the DC component of the 
signal, 

•  n is the harmonic order (a positive integer: 1, 2, 3,…) 

• 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 are the Fourier coefficients representing the 
amplitudes of the cosine and sine components of the n-
th harmonic, respectively, 

• 𝜔0  is the fundamental angular frequency, defined as 
𝜔0 = 2𝜋𝑓𝑜 , 𝑓𝑜 is the fundamental power system 
frequency [26]. 

Due to the half-wave symmetrical nature of sinusoidal 
wave distortion around the average center line of the waveform, 
odd harmonics (3rd, 5th, 7th, etc.) tend to be dominant in the 
distortion waveform, while even harmonics are typically minimal  
[27]. In many scenarios, higher-order harmonics are indeed smaller 
in magnitude and can be considered negligible compared to lower-
order harmonics [28]. This is particularly true when dealing with 
systems involving non-linear loads like power electronics whereby 
as the harmonic order increases (i.e., the frequency increases), the 
amplitude of the harmonic components generally decreases [28].  

The total harmonic distortion factor (THD) is a key metric 
quantifying the distortion present in the signal. It is defined as the ratio 
of the root-sun-square of all harmonic components to the 
fundamental frequency component [29], as expressed in Equation (2). 

𝑇𝐻𝐷 =  
√∑ (𝐼ℎ)2𝑛

ℎ=2

𝐼1
× 100% (2) 

where: 

• THD is the Total Harmonic Distortion factor (expressed 
as a percentage), 

• 𝐼1  is the RMS value of the fundamental frequency 
component (e.g., 50 Hz current), 

• 𝐼ℎ is the RMS value of the h-th harmonic component, 

• ℎ is the harmonic order (an integer starting from 2 for 
the 2nd harmonic), 

• 𝑛  is the highest harmonic order considered in the 
calculation. 

Current harmonics refer to distortions in the current 
electrical waveform caused by non-linear loads, which can affect 
the performance of electrical systems [30]. Current harmonic 
acquisition is performed using the SCT-013 non-invasive current 
sensor coupled with a custom signal conditioning circuit that 
includes a 22Ω burden resistor and analog-to-digital converter to 
measure current harmonics of the power quality. Fig. 4 illustrates 
acquisition circuit of current signal for harmonics from SCT-013 
current sensor. The sensor's output is a small current proportional 
to the measured current, which is then converted into a voltage 
using a burden resistor. The embedded firmware in ESP32 MCU 
implements a real-time processing pipeline featuring separate 
tasks for data acquisition, FFT computation, and communication. 
The harmonic analysis algorithm employs a windowed FFT with a 
sampling rate of 2.0kHz, optimized to minimize memory usage 
while capturing harmonics up to the 13th order and its THD. 

 

Fig. 4 Signal conditioning circuit for current harmonic acquisition 
from SCT-013 non-invasive current sensor. 
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Fig. 5 Fourier series of various types of signals in (a) time-domain, 
(b) frequency-domain, (c) FS coefficients. 

 Through the application of the Fourier Series and its FFT 
algorithm, time-domain signals such as cosine waves, square waves, 
and triangle waves can be effectively represented in the frequency 
domain for harmonics acquisition [31]. The FS coefficients obtained 
from the Fourier analysis provide insights into the amplitudes of 
frequency components including fundamental frequency and 
harmonics, which can be visually depicted in Fig. 5. 

 Among three signal waveforms, the cosine wave is a 
simple waveform comprising a single sinusoid frequency, i.e., 
fundamental frequency f [32] . Conversely, the square and 
triangle waves are classified as complex waveforms, consisting 
of multiple sinusoids that include the fundamental frequency 
and its odd harmonics. Both square and triangle waves exhibit 
positive and negative cycles, displaying half-wave symmetry 
with respect to the zero axis. Consequently, these waveforms 
exclusively possess odd harmonics according to Fourier 
theorems, while the magnitudes of even harmonics are 
minimal and can be neglected [32]. 

 As per the Fourier theorems, the square wave exhibits 
harmonic magnitudes expressed as a percentage relative to 
the fundamental frequency and follows the order of 1/n, 
where n represents the harmonic order. This results in 
harmonics magnitudes (in %) for 1st, 3rd and 5th orders are 
100%, 33.3%, and 20.0%, respectively. In contrast, the 
magnitudes of harmonics in the triangle wave are 
characterized by an order of 1/n^2, leading to percentages of 
100%, 11.1%, and 4.0% for the first three orders of odd 
harmonics [33]. 

2.4 Web-based DDEMS Portal  

Data analytics and Power Quality Monitoring of DDEMS are 
implemented by using a web-based DDEMS Portal for various 
functions such as data storage, information retrieval, remote 
monitoring of power parameters, data trending and visualization. 
The front-end portal is developed using HTML, CSS, JavaScript 
(with Chart.js for graphing), and PHP. It provides a dynamic and 
user-friendly interface for visualizing the data stored in the MySQL 
database server. Key features include: 

(a) Real-Time Gauges: Displaying live electrical values of V, I, 
P, Q, F, PF, THD and harmonics. 

(b) Time-Series Charts: Interactive graphs allow users to 
zoom and pan through historical data for any electrical 
parameter. 

(c) Data Analytics: Dashboards for daily, weekly, and 
monthly energy consumption, including benchmarking 
tools to compare against previous periods. 

 

Fig. 6 The Web-based DDEMS Portal showing real-time monitoring 
dashboard. 

(d) PQ Advisor Dashboard: A dedicated panel providing an 
at-a-glance view of the current status of each key PQ 
parameter, color-coded by severity level (e.g., Green for 
Level 0, Yellow for Level 1, Orange for Level 2, Red for 
Level 3). 

 The portal integrates APIs that facilitates communication 
between DDEMS i-DAQ unit, backend servers, and third-party 
cloud servers. The web-based DDEMS Portal provides graphical 
user interface (GUI) which can be accessed via uniform resource 
locator (URL) address using a web browser or mobile handphone.  
The snapshot of GUI of the Web-based DDEMS Portal is depicted 
in Fig. 6. 

2.5 Rule-based PQ Advisor 

On the other hand, the Power Quality (PQ) Advisor is a 
classification system that involves identifying and categorizing 
disturbances in electrical signals that can affect the performance 
and safety of power supply systems. Table 1 shows the general PQ 
severity levels and its impact. The PQ Advisor adopts a rule-based 
engine that evaluates measurements against IEEE 1159 and IEC 
61000-4-30 thresholds for both immediate detection power 
quality events and providing mitigations to remedy issues.  

This approach was selected for its computational 
efficiency, transparency, and direct alignment with regulatory 
frameworks. The rule sets are pre-programmed in PHP scripts 
residing on the cloud server and are executed on every data packet 
received from the i-DAQ unit. The system evaluates four critical 
power quality parameters: supply voltage, system frequency, total 
harmonic distortion for current (THDi) [34], and power factor (PF). 
For each parameter, measurements are categorized into one of 
four severity levels (Level 0 to Level 3), which describe the 
operational condition and potential impact on the electrical 
system, as outlined in Table 1. 

Table 1 PQ Severity Levels and its Impacts. 

Level Severity Impact 

Level 0 No disturbance Nominal / optimum operation; no 
mitigation required 

Level 1 Minor 
disturbance 

In monitoring stage. May affect 
sensitive equipment 

Level 2 Moderate 
disturbance 

Require corrective action(s). Likely to 
trip or damage devices 

Level 3 Major 
disturbance 

Need to take action immediately. Trip 
or damage devices 
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Table 2 The proposed rule-based PQ classification with its severity level, parameter ranges, technical description and impacts. 

PQ 
Parameter 

Class/Label 
Classification 

Level 
Typical Range Description Impact 

Supply 
Voltage 

[35] 

Normal Supply Level 0:  
Normal  

207 – 253 V  
(within ±10%) 

Continuous  Overall, in perfect condition. 

No action required 

Undervoltage / 
Overvoltage 

Level 1:  
Minor Deviation  

195 – 206 V or  
254 – 264 V 

Sustained (>1 min) May affect sensitive 
electronics, slight efficiency loss 

Transient Events Level 2:  
Voltage 

Sag/Swells  

70 – 194 V (sag) or  
265 – 300 V (swell) 

10 ms – 1 min 

Sag (Dip) (10–90% of nominal) 

Swell (>110% of nominal) 

Flickering, device malfunction, 
tripping risks 

Deep Sag / Surge / 
Interruption 

Level 3: 
Severe Deviation 

< 70 V or > 300 V Instantaneous to several 
seconds 

Voltage drops to < 10% of 
nominal 

 

Equipment damage, system 
shutdown, safety concerns 

System 
Frequency  

Normal Frequency 

Nominal 50Hz  

(in Malaysia) 

Level 0:  
Normal  

 

49.5 – 50.5 Hz 
(within ±0.5 Hz) 

Within acceptable variation  Overall, in perfect condition. 

No action required 

  Level 1:  
Minor Deviation 

49.0 – 49.49 Hz or 50.51 
– 51.0 Hz 

(i.e., ±0.5 – ±1.0 Hz) 

Slight imbalance, possibly 
transient) 

Monitor; sensitive devices may 
trip 

  Level 2:  
Significant 
Deviation 

 

48.0 – 48.99 Hz or 51.01 
– 52.0 Hz 

(i.e., ±1.0 – ±2.0 Hz) 

Potential frequency stability 
concern 

Appliance malfunction, 
protection activation 

  Level 3: 
Severe Deviation 

< 48.0 Hz or > 52.0 Hz 

(> ±2.0 Hz) 

Grid instability or fault 
condition 

 

Serious equipment damage risk 

Harmonics 
(THDi) 

[27] 

Low Harmonics Level 0:  
Acceptable 

THDi < 5% THD < 5% (IEEE Std 519 limit) Overall, in perfect condition. 

No action required 

Moderate 
Harmonics 

Level 1:  
Moderate 
distortion 

5% ≤ THDi < 8% Waveform close to pure sine 
wave 

Monitor; may cause minor 
heating effects 

High Harmonics Level 2:  
Poor distortion 

8% ≤ THDi < 15% Acceptable distortion for 
residential settings 

Affects efficiency, higher loss 

Severe Harmonics Level3:  
Severe 

distortion 

THDi ≥ 15% High distortion from multiple 
non-linear loads 

Overheating, malfunction, 
tripping risks 

Power 
Factor 

(PF) [34] 

Good PF Level 0 

PF >0.95 

PF ≥ 95% Efficient power usage, Resistive 
or well-compensated loads 

Overall, in perfect condition. 

No action required 

Moderate PF Level 1:  
PF in 0.85–0.95 

PF in 85%–95% Acceptable but slightly 
inefficient, Mild inductive loads 

Monitor periodically 

 

Poor PF Level 2:  
PF in 0.70 – 0.84 

70% ≤  PF < 84% Significant reactive power, 
uncompensated inductive 
loads, CFLs, AC compressors 

Energy waste and billing 
penalty possible, increased line 
losses, voltage drops, 
transformer stress 

Very Poor PF Level 3: < 070 

 

PF  < 70% Highly inefficient, mostly 
reactive or non-linear 
Heavy inductive/capacitive 
loads 

Severe losses; correction 
required 

Increased line losses, voltage 
drops, transformer stress 

It is important to acknowledge the inherent limitations of 

a rule-based system. Its performance is fundamentally constrained 

by the completeness and precision of the pre-defined rules. While 

highly effective for classifying well-defined, standard-based 

disturbances, it may exhibit rigidity when confronted with novel, 

complex, or overlapping PQ events that are not explicitly captured 

in the rule matrix. Furthermore, unlike adaptive machine learning 

models, it lacks the ability to learn from new data or identify subtle, 

complex patterns in the signal that may precede a fault or indicate 

a non-standard type of distortion. Table 2 shows the proposed 

rule-based PQ classification with its severity level, parameter 

ranges, technical description and impacts. 

2.6 Cybersecurity Considerations 

 The IoT architecture of DDEMS, which transmits sensitive 
energy consumption and power quality data from the edge to the 
cloud, necessitates a robust cybersecurity framework to protect 
against unauthorized access, data breaches, and manipulation. 
This subsection outlines the potential vulnerabilities and the 
specific security mechanisms implemented to mitigate them. 

 A primary point of vulnerability identified in the system is  
the Network Layer, where data is transmitted from the ESP32-based 
i-DAQ unit to the cloud server using HTTP with JSON payloads. While 
HTTP is simple and widely supported, it is inherently unsecured, 
making communication susceptible to eavesdropping and data 
tampering if left unprotected. An attacker on the same local network 
could potentially intercept data packets to infer user behavior or 
inject malicious data to disrupt monitoring and analytics. 



Journal of Renewable Energy and Smart Grid Technology, Vol. 20, No. 2, July-December 2025 
  

 

169 

 To address these vulnerabilities, the following security 
measures have been implemented: 

(a) Data-in-Transit Encryption: All HTTP communication between 
the i-DAQ unit and the cloud server is secured using Transport 
Layer Security (TLS) 1.2 protocol. The ESP32 firmware is 
configured to establish a secure HTTPS connection, ensuring 
that all JSON payloads containing electrical measurements are 
encrypted end-to-end. This prevents eavesdropping and 
guarantees data integrity during transmission. 

(b) Authentication and Access Control: To prevent unauthorized 
devices from posting data to the cloud server, a token-based 
authentication mechanism is employed. Each i-DAQ unit is pre-
provisioned with a unique access token (a long, random string). 
This token must be included in the header of every HTTP POST 
request. The cloud server's PHP API validates this token before 
accepting any data for processing and storage. This effectively 
protects against spoofing and unauthorized data injection. 

3. Results and Discussion 

The performance and validity of the DDEMS were assessed 
through a rigorous three-stage evaluation strategy. The validation 
of FFT algorithm is conducted to verify its accuracy of harmonic 
acquisition against theoretical data derived from Fourier 
theorems. Experimental laboratory testing used DDEMS i-DAQ unit 
to conduct cross measurements verification of electrical data 
against calibrated Lovato DMG800 power multimeter and Fluke 
437-II as reference [36]. Field evaluation involved 90-days of 
continuous operation across the selected residential buildings with 
diverse load profiles. It confirms the system's reliability, with real-
time alerts and a web-based dashboard facilitating energy 
optimization and power quality monitoring. 

3.1 Validation of FFT algorithm 

 To validate the accuracy of harmonics acquisition using 
the FFT algorithm, the computed harmonics readings (i.e., the 
order of harmonics and magnitudes) are compared against 
theoretical data derived from Fourier theorems. An experimental 
setup is configured, comprising a laboratory-based signal generator, a 
monitoring PC, and DDEMS’s i-DAQ unit which incorporates a built-in 
fog computing device (i.e., ESP32 microcontroller). The FFT algorithm 
computation is then executed with the experiment set up to 
compute the harmonic contents of the test signal generated by the 
signal generator, as illustrated in Fig. 7. 

This comparative analysis serves to assess the accuracy and 
reliability of the acquired harmonic data from FFT algorithm 
computation against theoretical expectations. Three test signals 
are used in this experiment, namely cosine wave, square wave and 
triangle. The amplitudes of theoretical (from Fourier Series) are 
tabulated and compared to the computed ones for different 
harmonics, in Table 3. It is for the purpose of accuracy validation of 
harmonics acquisition by the DDEMS system. 

 

Fig. 7 Experiment set up to verify the accuracy of harmonics 
acquisition based on FFT computation. 

The table presents the theoretical and practical harmonic 
values for sine, square, and triangle waves, along with the 
respective errors. For the sine wave, the fundamental harmonic (f1) 
theoretically has 100% amplitude, while all higher-order harmonics 
(f3, f5, f7, f9) are expected to be 0%. However, practical results show 
minor deviations at higher harmonics, with small percentages such 
as 0.69% for f3 and 0.45% for f5. These slight discrepancies could be 
attributed to noise or imperfections in the signal acquisition 
process, resulting in negligible errors.  

For the square wave, the theoretical values show the 
presence of odd harmonics (f3, f5, f7, f9) with specific percentages 
(e.g., 33.33% for f3 and 20.00% for f5). The practical results closely 
match the theoretical values with minimal errors, such as 0.17% for 
f3 and 0.18% for f5, indicating accurate harmonic acquisition. 
Similarly for the triangle wave, the theoretical harmonic 
amplitudes decrease significantly for higher-order odd harmonics, 
such as 11.11% for f3 and 4.00% for f5. Practical results align well 
with theoretical values but exhibit slight errors, such as 0.39% at f3 
and 0.18% at f5, which may be due to system limitations or minor 
inaccuracies during signal processing.  

Overall, the results demonstrate that the harmonic 
acquisition process is highly reliable, with errors remaining minimal 
across all waveforms. Minor deviations observed in practical 
results could be attributed to hardware imperfections, or signal 
processing limitations. 

3.2 Cross-Verification of Acquired Electrical Data with Multiple 
Reference Instruments 

 To thoroughly validate the measurement accuracy of the 
DDEMS i-DAQ unit and address the need for cross-verification, we 
conducted a comparative analysis against two calibrated reference 
instruments: the Lovato DMG800 power multimeter and a Fluke 
437-II Power Quality and Energy Analyzer. Lovato DMG800 power 
multimeter is a high-precision instrument widely recognized in 
industry, which is highly comparable in measurement accuracy to 
the Fluke 437-II for advanced power quality analysis. Fig. 8 illustrates 
the measurement setup of Lovato DMG800 power multimeter.  

Table 3 Validation result of harmonics acquisition by DDEMS’s i-DAQ unit. 

Harmonics cosine wave Square wave Triangle wave 

Theory 

(in %) 

Practical  

(in %) 

Error  

(in %) 

Theory 

(in %) 

Practical  

(in %) 

Error  

(in %) 

Theory 

(in %) 

Practical 

(in %) 

Error  

(in %) 

𝑓1 100.0 100.00 0 100.00 100.00 0 100.00 100.00 0 

𝑓3 0.0 0.69 0.69 33.33 33.16 0.17 11.11 11.50 0.39 

𝑓5 0.0 0.45 0.45 20.00 19.82 0.18 4.00 4.18 0.18 

𝑓7 0.0 0.40 0.40 14.28 14.07 0.21 2.04 1.86 0.18 

𝑓9 0.0 0.16 0.16 11.11 10.99 0.12 1.23 1.11 0.12 
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Table 4 Measurement results of selected electrical appliances with DMG800 and DDEMS. 

 

 

Fig. 8 Measurement setup showing DDEMS validation against 
Lovato DMG800 power multimeter. 

 The metric used for the evaluation is the Mean Absolute 
Percentage Error (MAPE), calculated as per Equation (3). 

𝑀𝐴𝑃𝐸 = (
1

𝑁
∑

𝑌̅ − 𝑌𝑟𝑒𝑓

𝑌𝑟𝑒𝑓
) × 100% (3) 

where  

• N is the total number of observations or data points, 

• 𝒀̅ is the value measured by the DDEMS system, 

• 𝒀𝒓𝒆𝒇 is the reference value measured by the calibrated 

Lovato DMG800 and Fluke 437-II.  

MAPE is a simple metric and dimensionless index in which a 
lower MAPE indicates better performance of measurement. A MAPE 
of 10% means that the average deviation between the predicted 
value and the actual values was 10%, regardless of whether the 
deviation was positive or negative. However, it is suggested that the 
performance is acceptable if MAPE is between 10-20% [37].  

 Three electrical appliances with different load characteristics, 
i.e., an LED light (70W, largely resistive), a Fluorescent Light (45W, 
inductive with ballast), and a Compact Fluorescent Light (CFL, 24W, 
non-linear), were selected for this test. The results, comparing DDEMS 
measurements to both reference devices, are presented in Table 4. For 
this validation, N=10 samples were collected for each parameter under 
steady-state conditions to ensure a statistically significant comparison. 
The overall system MAPE of 1.24% represents the average of the 
individual MAPE values calculated for voltage, current, power, and 
power factor across all three test appliances. 

Table 5. Analysis of whole-house energy consumption (kWh). 

Day Utility Meter 
Reading (kWh) 

DDEMS 
Reading 
(kWh) 

Absolute 
Error 
(kWh) 

Relative 
Error (%) 

1 1250.5 1251.2 0.7 0.06 

7 1388.7 1389.9 1.2 0.09 

14 1520.1 1521.8 1.7 0.11 

21 1655.3 1657.1 1.8 0.11 

30 1790.6 1792.5 1.9 0.11 

The results demonstrate a strong correlation between the 

DDEMS and both reference instruments. The measurements for 

voltage, power, power factor, frequency, and THDi show minimal 

deviations. High errors were observed for the low-power CFL load 

in current measurement (+5.88%) and active power (P) 

measurement (-6.49%), which can be attributed to the highly 

distorted current waveform and the resolution limit of the PZEM-

004T module when measuring very low power levels. The overall 

MAPE for the three appliances was 0.65%, 0.69% and 2.38%, 

respectively, resulting in a grand mean MAPE of 1.24%. This cross-

verification confirms that the DDEMS provides highly accurate and 

reliable measurements comparable to established, high-cost 

industry instruments. 

To validate the system's performance in its primary 
application of whole-house monitoring, a separate comparative 
analysis was conducted during the field deployment. The cumulative 
active energy (kWh) recorded by the DDEMS system was compared 
against the readings from the terraced house's utility-grade energy 
meter. The comparison was performed over 30 consecutive days, 
with readings taken from both meters at the same time each day. 
The results of this analysis are presented in Table 5. 

As shown in Table 5, the DDEMS system demonstrated 
excellent agreement with the utility meter over the one-month 
period. The relative error in cumulative energy consumption 
remained consistently around 0.1%, which is well within an 
acceptable range for energy monitoring applications and confirms 
the high accuracy of the PZEM-004T module at typical household 
load levels. This real-world validation confirms that while the 
DDEMS may have reduced precision for very low-power, individual 
appliances, it performs with high accuracy for its intended purpose 
of monitoring aggregate household energy consumption. 

Table 6 provides a comparative analysis of the proposed 
DDEMS against established commercial power quality analyzers 
and recent academic cloud-based prototypes across six key 
metrics. The primary differentiator for DDEMS is its exceptional 
cost-effectiveness, with a unit cost of approximately $120 that is 
much lower than commercial alternatives. This is achieved while 
maintaining highly competitive performance, evidenced by an 
accuracy (MAPE) of 1.24%, which is close to the industry standard.

Feature 

Resistive Load Inductive Load 

LED Light Bulb 70W Fluorescent Light 45W Compact Fluorescent Light (CFL) 24W 

DMG800 / 
Fluke 437-II 

(Avg.) 
DDEMS Error (%) 

DMG800 / 
Fluke 437-II 

(Avg.) 
DDEMS Error (%) 

DMG800 / 
Fluke 437-II 

(Avg.) 
DDEMS Error (%) 

Vrms (V) 245.55 244.7 -0.35 245.22 245.1 -0.05 245.75 245.3 -0.18 

Irms (A) 0.283 0.28 -1.06 0.311 0.32 2.89 0.17 0.18 5.88 

P (W) 68.45 68.8 0.51 44.5 44.4 -0.22 26.95 25.2 -6.49 

PF (%) 98.8 99 0.20 60.2 60 -0.33 62.6 62 -0.96 

F (Hz) 50 49.9 -0.20 50.03 50 -0.06 50.02 50 -0.04 

THD (%) 3.81 3.87 1.57 10.46 10.4 -0.57 80.9 81.5 0.74 
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Table 6 Comparison of DDEMS to Commercial Power Quality Analyzers and recent academic prototypes. 

Feature / Metric Proposed DDEMS Commercial PQ Analyzers  

(Fluke 437-II, Hioki PW3390) 

Recent Academic Prototypes  

(Cloud-based) 

1. Cost per Unit ~$120 $5,000 – $10,000 Varies, but typically low (component 

cost) 

2. Deployment Model Distributed, Scalable Networks Standalone, Single-point 

measurement 

Often centralized or cloud-dependent 

3. Accuracy (MAPE) 1.24% (Highly Comparable) < 1.0% (Industry Standard) Varies; often comparable to DDEMS 

4. Key Architectural Advantage Fog-Layer (Edge) Processing On-device processing Cloud-based processing 

5. Real-Time Processing 

Latency 

< 100 ms (Edge-based FFT) < 100 ms (On-device) > 2 seconds (Due to cloud 

communication latency) 

6. PQ Event Detection Latency ~95% reduction vs. cloud-only Minimal (On-device) High (Baseline for comparison) 

 
Architecturally, DDEMS employs a distributed and scalable 
network model, contrasting with the standalone, single-point 
deployment of commercial meters and the centralized nature of 
many academic prototypes. Its key innovation lies in its Fog-Layer 
(Edge) processing, which enables significant performance 
advantages. This edge-based architecture facilitates real-time 
processing latencies of under 100ms and vastly outperforms the 
counterparts. Consequently, DDEMS achieves a dramatic ~95% 
reduction in PQ event detection latency compared to cloud-only 
systems. In summary, the table positions the DDEMS as a unique 
solution that combines the low cost of academic prototypes with 
the high performance of commercial systems, enabled by its 
strategic use of edge computing. 

3.3 Field evaluation of DDEMS 

The practical deployment and long-term reliability of the 
DDEMS system were evaluated through a 90-day field trial in the 
selected residential buildings with diverse load profiles. One of the 
selected sites was a 2-storey terraced house with 2,000 square feet 
area located in Sibu town of Sarawak, Malaysia. The DDEMS i-DAQ 
unit is connected to a SCT-013 non-invasive current sensor 
clamped around the live conductor of the incoming mains of power 
supply. This placement enables DDEMS to capture and monitor the 
electrical power parameters of the terraced house. The unit was 
powered independently and connected to the home’s Wi-Fi 
network. Fig. 9 shows (a) the deployment of the DDEMS and (b) the 
prototype of DDEMS i-DAQ unit with CT sensors. 

Data Analytics with Benchmarking function is a core 
component of the DDEMS Portal. It provides real-time insights into 
critical electrical parameters and overall energy consumption within 
a user-friendly and visually intuitive interface. It also assesses the 
long-term reliability and stability of the system outside a controlled 
laboratory environment. 

 
(a) (b) 

Fig. 9 Field deployment of DDEMS: (a) snapshot of installation at 
the residential mains, (b) prototype of DDEMS i-DAQ unit with 
current transformer sensor 

 Fig. 10 depicts the DDEMS portal which features several 
key navigation tabs, including (a) Time-series Charts for visualizing 
energy usage trends and identifying anomalies, (b) daily 
consumption trend in kW unit, which is averaged from previous 
week data, and (c) benchmarking of daily consumption (versus 
previous week data) for comparing current performance with 
historical data. These tools collectively enable users to perform 
effective energy analysis, track efficiency, and support decision-
making for energy optimization and fault detection. 

Over the 90-day period, the system demonstrated remarkable 
robustness: 

(a) Uptime: The i-DAQ unit maintained a consistent Wi-Fi 
connection, successfully transmitting data packets at 
the configured interval (every 15 seconds) with a 
measured uptime of 99.4%.  

(b) Data Integrity: The cloud database successfully 
received and stored over 1.5 million individual data 
points without corruption. The structured JSON 
payload and HTTP POST protocol proved to be a 
reliable method for continuous data transmission. 
Throughout the 90-day deployment, no security 
incidents or unauthorized access attempts were 
detected, validating the effectiveness of the 
implemented cybersecurity measures. 

(c) Hardware Stability: No hardware failures occurred. 
The ESP32 microcontroller and all sensors operated 
within expected temperature ranges and showed no 
signs of performance degradation, validating the 
design choices for component selection and power 
supply regulation. 

This proven reliability is a critical factor for user trust and 
adoption, demonstrating that the DDEMS is not merely a prototype 
but a viable product for sustained operation. 

On the other hand, the field deployment also acquired a 
rich dataset of real-world power quality. The power quality (PQ) 
Advisor engine is used to process this continuous stream of data, 
and its dashboard provides a real-time evaluation of power quality 
conditions including supply voltage, power factor, system 
frequency and total harmonic distortion factor (THD), as depicted in 
Fig. 11 (a)-(d). The results have identified Level 0 (Normal) or good 
conditions for supply voltage, power factor and system frequency. 
However, it has identified Level 3: Severe Harmonics, indicating 
significant distortion that can lead to equipment overheating, 
malfunction, or tripping, as depicted in Fig. 9 (d). The PQ levels 
range from Level 0 (Good) to Level 3 (Critical), with higher levels 
indicating more severe harmonic distortion. Visual indicators and 
alert icons help users quickly assess system health and take 
appropriate action to maintain power quality and reliability. 
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(a) 

 
(b) 

 
(c) 

Fig. 10 Data Analytics and Benchmarking of DDEMS Portal (a) Real-time time-series charts, (b) Daily consumption in kW (averaged from 

previous week data) and Consumption Pattern, (c) Benchmarking of daily consumption (versus previous week data). 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

Fig. 11 Snapshots of Power Quality (PQ) Advisor for (a) supply voltage, (b) power factor, (c) frequency, and (d) total harmonic distortion factor (THD). 
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The results over the monitoring period were revealing: 

(a) Supply Voltage (Fig. 9(a)): The supply voltage was 

exceptionally stable, consistently measured between 238V 

and 245V, well within the Level 0 (Normal) range defined by 

the standard (207V - 253V for a 230V system). No voltage 

sags, swells, or interruptions were detected, indicating a 

robust local grid infrastructure at the site location. 

(b) Power Factor (Fig. 9(b)): The overall household power 

factor typically varied between 0.85 and 0.98, often 

residing in Level 0 (Good) or Level 1 (Moderate). The dips 

into the moderate range were correlated with the 

operation of inductive loads like refrigerator and air 

conditioner compressors without power factor correction. 

This suggests a potential opportunity for economic savings 

through targeted power factor correction, which could 

reduce reactive power charges if levied by the utility. 

(c) System Frequency (Fig.9(c)): The grid frequency was 

remarkably stable, fluctuating between 49.95 Hz and 

50.05 Hz, consistently classified as Level 0 (Normal). This is 

a testament to the excellent regulation by the regional 

grid operator. 

(d) Total Harmonic Distortion factor for current (THDi) (Fig. 9(d)): 

This was the most significant finding. The THDi was 

consistently measured above 15%, often reaching 20-25%, 

triggering a persistent Level 3: Severe Distortion alert. This 

high level of distortion is indicative of a high penetration of 

non-linear loads within the household. Modern electronics 

like LED TVs, computer power supplies, smartphone chargers, 

and the CFLs and LED lights themselves are the primary 

culprits.  

4. Conclusion 

The complete design, development and validation of the 

Data-Driven Energy Monitoring System (DDEMS) presented in this 

study to address critical challenges in power consumption 

monitoring and power quality (PQ) assessment. By integrating low-

cost sensors, ESP32 microcontroller for edge computing, and a rule-

based engine of PQ Advisor, DDEMS offers a cost-effective, scalable, 

and accurate solution for real-time energy management and PQ 

detection. Key achievements of this work include: 

(a) High accuracy and reliability: Experimental validation of 

DDEMS against the calibrated Lovato DMG800 power 

multimeter demonstrated exceptional measurement 

accuracy, with a Mean Absolute Percentage Error (MAPE) of 

1.24% for key electrical parameters such as voltage, current, 

power, power factor and harmonic distortion. This confirms 

the system's capability to perform comparably with high-

cost specialized industry-standard instruments. 

(b) Comprehensive PQ monitoring: DDEMS successfully 

classified PQ disturbances into severity levels (Level 0 to 

Level 3) based on industrial IEEE 1159 and IEC 61000-4-30 

standards, enabling timely detection of issues such as 

voltage fluctuations, harmonic distortions, and poor power 

factors. The rule-based PQ Advisor provided actionable 

insights, enhancing system reliability and safety. 

(c) Real-world deployment: The system was rigorously 

tested in residential settings over 90 days, proving its 

robustness in diverse load conditions. The web-based 

portal facilitated real-time data visualization, anomaly 

detection, and benchmarking, empowering users to 

optimize energy usage and reduce costs. 

(d) Future potential: The modular architecture of DDEMS 

allows for further enhancements, such as integrating 

machine learning for predictive analytics or expanding its 

application to industrial and commercial environments. 

In conclusion, DDEMS represents a significant advancement 

in smart energy monitoring, combining affordability, accuracy, and 

real-time analytics to address global energy challenges. Its 

successful deployment underscores its potential to contribute to 

sustainable energy management and improved power quality in 

modern electrical systems. 

4.1 Limitations and Future Work 

While the 90-day residential deployment validated the 

DDEMS's core accuracy and reliability, this study has limitations that 

outline a clear path for future work. A primary constraint is the 

single-site evaluation in a stable grid environment, which does not 

represent the diverse power quality (PQ) issues found in industrial 

settings, weak rural grids, or networks with high renewable 

penetration. Furthermore, the system’s current design for single-

phase systems limits its application in three-phase commercial and 

industrial settings. 

A key limitation is the lack of impact quantification. While 

the system identified issues like high harmonic distortion, it did not 

quantify the resulting energy losses or the environmental footprint 

of the hardware itself. Finally, interoperability with broader building 

and grid management systems remains an open challenge. To 

address these limitations, a structured future roadmap is proposed: 

1. System Expansion: The hardware and software will be 

extended to support three-phase measurements and 

critical metrics like phase imbalance. 

2. Broader Validation: A multi-phase deployment plan 

includes geographical expansion into industrial, urban, 

and weak grid areas, alongside collaborations with utilities 

to monitor feeders with high solar PV penetration. 

3. Value and Impact Quantification: An integrated Energy 

Saving Quantification (ESQ) module will be developed to 

calculate avoidable losses from PQ issues, providing users 

with direct savings estimates. A comprehensive Life Cycle 

Assessment (LCA) will also be conducted to evaluate the 

system's environmental footprint. 

4. Enhanced Interoperability and Intelligence: Future 

versions will integrate standardized communication 

protocols such as Modbus and BACnet for seamless data 

exchange. Machine learning for predictive maintenance 

and load forecasting remains a key long-term goal to 

evolve the DDEMS into a universally robust and value-

driven energy management solution. 

5. Accelerated Life Testing for Drift Characterization: A key 

future study will involve subjecting multiple DDEMS units 

to accelerated life testing. This will allow us to empirically 

model long-term measurement drift and identify the 

dominant aging mechanisms of critical components, such 

as the current transformer core and voltage sensor. 

This structured approach to broader validation demonstrates 

our commitment to evolving the DDEMS from a proven prototype 

into a universally robust and adaptable solution for smart energy 
management across the diverse landscape of global electrical grids. 
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