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ABSTRACT 
 

Stand-Alone Photovoltaic (SAPV) systems play a vital role in providing clean and reliable electricity 
for remote and off-grid communities where grid expansion is economically or technically 
unfeasible. Their economic feasibility and technical reliability, however, depend strongly on 
accurate component sizing and system configuration, which require advanced optimization 
techniques. In this study, the Meerkat Optimization Algorithm (MOA) is applied to optimize two 
SAPV configurations. System 1 integrates a photovoltaic array, battery storage, and a hybrid 
inverter, while System 2 consists of a photovoltaic array, battery storage, a solar inverter, and a 
charge controller. The optimization focuses on minimizing Life Cycle Cost (LCC) and Levelized Cost 
of Energy (LCOE), which are widely recognized as reliable indicators of long-term cost-effectiveness 
and financial viability. To validate the performance of MOA, its results are benchmarked against 
three well-established metaheuristic algorithms: Particle Swarm Optimization (PSO), Firefly 
Algorithm (FA), and Slime Mould Algorithm (SMA). Simulation results show that System 1 
consistently achieves lower LCC and LCOE compared to System 2, primarily due to its reduced 
component count and simplified integration. Moreover, MOA demonstrates enhanced 
optimization performance by converging more rapidly and delivering more stable solutions across 
multiple independent runs. In contrast, PSO, FA, and SMA exhibit slower convergence and greater 
variability in outcomes. Importantly, the performance differences are statistically meaningful, as 
MOA achieved consistently lower mean values and smaller standard deviations. These findings 
highlight MOA as an effective and reliable optimization tool for SAPV systems and provide practical 
insights to support sustainable rural electrification planning. 

 
 

1. Introduction 

Access to reliable, affordable, and sustainable energy is widely 

recognized as a cornerstone of socio-economic development. Yet, 

according to the International Energy Agency (IEA), more than 675 

million people worldwide still lack electricity, with the majority 

concentrated in rural and remote regions of sub-Saharan Africa and 

South Asia [1]. These communities often face severe developmental 

constraints due to the absence of modern energy services, including 

limitations in healthcare, education, and small-scale industries. 

Extending centralized grid infrastructure to such areas has proven 

economically and technically challenging, owing to factors such as low 

population density, difficult terrain, and high capital investment 

requirements [2]. Consequently, decentralized renewable energy 

solutions have become essential alternatives for bridging the global 

energy access gap. 

Among renewable options, solar photovoltaic (PV) technology 

is particularly attractive because of its modular design, scalability,  

and rapidly declining costs. The International Renewable Energy 

Agency (IRENA) reported that the levelized cost of electricity (LCOE) 

for solar PV fell by over 80% between 2010 and 2020, making it one 

of the most cost-competitive energy sources globally [3]. Stand-

alone photovoltaic (SAPV) systems, in particular, provide a practical 

solution for rural electrification, enabling households, schools, clinics, 

and businesses to gain access to clean and reliable electricity [4]. 

SAPV systems have been increasingly adopted in applications 

ranging from rural household electrification to water pumping, 

telecommunication towers, and emergency power supply [5], [6].  

Their significance extends beyond energy provision: they contribute to 

environmental protection by reducing reliance on fossil fuels and 

mitigating greenhouse gas emissions. Replacing diesel generators with 

SAPV systems substantially reduces both operating costs and carbon 

dioxide emissions, directly supporting global commitments under the 

Paris Agreement and Sustainable Development Goals (SDGs), 

particularly SDG 7 (Affordable and Clean Energy) and SDG 13 [5], [7]. 

From an environmental perspective, several studies have 

quantified these benefits. A.Dolatabadi and B.Mohammadi-Ivatloo [6] 

applied a stochastic optimization model to a PV/diesel/storage hybrid 

system for maritime applications, showing significant fuel savings and 

emission reductions. Similarly, P.Z.Pedro and L.G.Juan [7] emphasized 

the importance of sensitivity analysis in PV/diesel/battery systems, 
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demonstrating how design variations strongly influence sustainability 

outcomes. At a broader scale, O.Krishan and S.Suhag [8] confirmed that 

SAPV systems provide not only cleaner energy but also long-term cost 

savings for rural communities when compared to diesel-based systems. 

The socio-economic impact of SAPV systems is equally 

important. By powering educational institutions, healthcare facilities, 

and small businesses, SAPV systems promote human development 

and economic growth in underserved regions [9]. Access to reliable 

electricity improves healthcare delivery, enables refrigeration for 

vaccines, supports lighting in schools and enhances communication 

infrastructure, directly contributing to improved quality of life [10]. 

Despite their advantages, SAPV systems face significant 

technical challenges in terms of sizing, performance, and reliability. 

Accurate component sizing is essential to balance cost-effectiveness 

with long-term operational sustainability. Undersized systems fail to 

meet energy demand reliably, while oversized systems impose 

unnecessary capital costs [11]. 

PV modules, the primary energy-generating components, are 

particularly sensitive to environmental conditions such as temperature, 

shading, and dust accumulation. High ambient temperatures reduce 

conversion efficiency through thermal losses, while partial shading 

and soiling can reduce output by as much as 30% [12]. Moreover, PV 

modules undergo gradual degradation of 0.5%–1% annually, reducing 

their energy yield and increasing replacement costs over time [13]. 

 Battery storage is another critical element of SAPV systems, 

ensuring energy supply during periods without sunlight. However, 

batteries are highly susceptible to degradation due to deep discharges, 

temperature extremes, and overcharging, resulting in shortened 

lifespans and higher replacement costs [8], [14]. Inverters, which 

convert DC power into AC electricity, typically operate for only 5–10 

years, substantially shorter than PV modules and batteries. Their 

performance also declines under partial load conditions, further 

reducing system efficiency [15]. Charge controllers, meanwhile, regulate 

power flows but are prone to mismatches when poorly sized, reducing 

reliability and contributing to component stress [16]. Hybrid inverters, 

while reducing component count by integrating multiple functions, 

often suffer from higher operational stress, leading to shorter lifespans 

and costly failures [17-18]. These component-related challenges 

underscore the importance of performance optimization methods that 

can ensure SAPV systems achieve both cost-effectiveness and reliability. 

Historically, deterministic sizing methods based on rules of 

thumb and empirical formulas were used in SAPV system design. 

While simple, these methods often ignored stochastic variations in 

solar irradiance and load demand, leading to suboptimal designs 

[11], [19]. Analytical methods, which rely on average daily energy 

balance equations, provide a more structured framework but still 

fail to capture hourly and seasonal variations in demand and 

resource availability [20-21]. 

Simulation tools such as HOMER Pro, TRNSYS, and PVsyst 

have since become widely used for SAPV system design [15], [22]. 

HOMER has been particularly effective in techno-economic 

optimization, TRNSYS in time-dependent simulations, and PVsyst in 

PV module performance analysis [23-24]. However, while useful, 

these tools rely heavily on predefined search spaces and require 

intensive computation, making them less suitable for identifying 

globally optimal solutions in large, complex design problems [15]. 

To overcome these limitations, metaheuristic algorithms have 

been widely adopted for renewable energy system optimization. 

These nature-inspired methods are well-suited to solving nonlinear, 

constrained, and multi-objective optimization problems. Early 

applications of metaheuristics in SAPV sizing employed Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO) and Firefly 

Algorithm (FA) [26-27]. More recent studies have introduced 

advanced bio-inspired techniques such as the Aquila Optimizer and 

Jellyfish Search Algorithm for renewable hybrid systems, achieving 

higher convergence stability and reduced computational cost, [28-30]. 

Hanta et al. [10] applied Cat Swarm Optimization (CSO) for 

SAPV sizing, demonstrating improved reliability and reduced Loss of 

Power Supply Probability (LPSP). M.Jamshidi and A.Askarzadeh [18] 

conducted a techno-economic feasibility study of off-grid PV/fuel 

cell/diesel systems, finding that hybrid metaheuristic frameworks 

outperform single-algorithm approaches in terms of cost and 

reliability. Similarly, A.Alsharif et al. [31] compared Cuckoo Search 

with other heuristics for PV–wind–battery optimization, reporting 

faster convergence and reduced costs. J.Zhao and Z.M.Gao [32] 

introduced a hybridized Harris Hawks Optimization and Slime Mould 

Algorithm (HHO-SMA) that achieved improved convergence 

stability. Building on this, Güven and Yörükeren [33] conducted a 

comparative study on hybrid GA–PSO for stand-alone hybrid energy 

systems and found that the hybrid algorithm provided better cost 

efficiency and system reliability compared to single-algorithm 

approaches. Xu et al. [34] proposed a hybrid Differential Evolution–

Particle Swarm Optimization (DE–PSO) with dynamic adaptive 

strategies, successfully preventing premature convergence and 

improving stability across benchmark optimization problems. 

Likewise, Fathi et al. [35] carried out a comparative analysis of 

Differential Evolution, PSO, Arithmetic Optimization Algorithm 

(AOA), and Henry Gas Solubility Optimization (HGSO) for 

photovoltaic parameter estimation, concluding that DE achieved the 

highest accuracy with the fastest convergence speed. These recent 

contributions reinforce the importance of benchmarking emerging 

algorithms such as MOA against both classical and modern 

metaheuristics to ensure robust and context-specific optimization 

outcomes in SAPV system design. 

Although PSO, FA, and SMA are widely used swarm 

algorithms, each suffers from inherent limitations. PSO relies heavily 

on velocity and position updates, which can cause premature 

convergence and stagnation in local optima [36-37].    FA uses 

attractiveness and light intensity to guide solutions, but diversity 

decreases as the population converges [38]. SMA employs 

oscillatory search patterns, which enhance exploration but still risk 

local entrapment in high-dimensional problems [39]. 

Nevertheless, PSO, FA, and SMA remain highly relevant 

benchmarks because they represent three generations of swarm-

based optimization: PSO as a classical algorithm with extensive 

applications in renewable energy, FA as an algorithm designed for 

multimodal optimization, and SMA as a recent bio-inspired algorithm 

that has demonstrated strong convergence stability. Their inclusion in 

comparative studies ensures that new algorithms such as MOA are 

evaluated against diverse and representative approaches. 

The Meerkat Optimization Algorithm (MOA), introduced by Al-

Mahdi et al. [40], presents a novel bio-inspired metaheuristic that 

incorporates unique mechanisms to address the limitations of classical 

swarm algorithms. The sentry strategy adaptively balances exploration 

and exploitation based on environmental vigilance, the emergency 

response mechanism enables the algorithm to escape local minima, and 

Levy flights provide long-range randomization for improved global 

search [40]. Recent applications of MOA have shown superior 



Journal of Renewable Energy and Smart Grid Technology, Vol. 21, No. 1, January-June 2026 
  

 

15 

performance in engineering design, scheduling, and energy optimization 

problems [41-42]. Moreover, 2024–2025 studies have demonstrated 

continued progress in swarm intelligence for renewable energy, 

including Enhanced Honey Badger and Hybrid Slime Mould–Harris 

Hawks algorithms, both yielding improved balance between exploration 

and exploitation [32,43-44]. 

Compared with PSO, FA, and SMA, MOA offers mechanisms 

that explicitly maintain population diversity and convergence 

stability, potentially reducing the risk of premature convergence. 

However, its performance in renewable energy optimization, and 

specifically in SAPV system sizing, remains underexplored. Despite 

growing interest in metaheuristics for renewable energy, few 

studies have directly benchmarked MOA against PSO, FA, and SMA 

in SAPV system optimization. Most MOA studies have been limited 

to general engineering applications or hybrid renewable systems, 

leaving a gap in stand-alone PV system research.  

This study addresses the gap by applying MOA to optimize 

two SAPV system configurations: one with a hybrid inverter and 

another with separate inverters and charge controllers. By 

benchmarking MOA against PSO, FA, and SMA, this study aims to 

evaluate whether MOA’s unique mechanisms translate into 

meaningful performance advantages. The contributions of this work 

are threefold. First, it provides one of the earliest comparative 

evaluations of MOA in SAPV design. Second, it analyzes the trade-

offs between hybrid and modular system architectures in terms of 

cost-effectiveness and reliability. Third, it advances methodological 

knowledge in renewable energy optimization by demonstrating how 

MOA achieves statistically meaningful improvements in 

convergence stability and cost optimization under real-world solar 

irradiance and load conditions. 

2. Methodology 

This study focuses on the optimal sizing of Stand-Alone 

Photovoltaic (SAPV) systems tailored for rural educational facilities, 

using a case study of a school located in Pos Musoh, Perak, Malaysia. 

Several researchers have investigated the design and optimization 

of SAPV systems in rural and off-grid settings. For example, A. 

Mahmud [45] analyzed the load characteristics of rural schools in 

Malaysia and proposed component sizing methods that reflect 

typical energy consumption patterns. Similarly, A. Alsharif et al. [31] 

emphasized the importance of tailoring SAPV configurations to 

match daily usage cycles, including educational facility loads and 

seasonal variations. The modeling of SAPV systems has been widely 

studied in the context of cost reduction and energy reliability. 

System configurations that integrate hybrid inverters have been 

found to reduce capital costs by minimizing the number of discrete 

components, as shown in studies focusing on inverter-controller 

integration [46-47].  

Component configuration plays a critical role in determining 

the efficiency, reliability, and cost-effectiveness of SAPV systems. A 

system that combines a PV array, battery, and hybrid inverter, which 

is referred to as System 1 in this study, is often preferred because it 

offers simplified wiring, shorter installation time and lower 

maintenance requirements [42]. In comparison, System 2 uses 

separate devices for the inverter and charge controller functions. 

This configuration may be more suitable for implementing site-

specific control strategies and for allowing phased expansions, 

although it typically involves a higher initial cost [48]. 

 

Numerous studies have confirmed the relevance of 

optimization algorithms and component modeling in achieving 

reliable and economical off-grid energy systems [8], [9]. These works 

underscore the importance of using accurate environmental data, 

practical component datasets, and cost-based objective functions 

(such as Life Cycle Cost (LCC) and Levelized Cost of Electricity (LCOE)) 

to inform the design of systems intended for remote deployment. 

The integration of simulation with optimization frameworks 

provides a structured approach to solving complex sizing problems 

in renewable energy applications. 

2.1 Site and system configuration 

This study focuses on a school located in the rural area of 

Pos Musoh, Perak, Malaysia. The load profile was directly obtained 

from on-site measurements of the school’s energy consumption, 

rather than from assumed or generic load models. The data reflect 

the actual energy requirements of six classrooms, five laboratories, 

a canteen, an administrative office, restrooms, and a prayer room 

(surau). As expected, the load demand exhibited significant variation 

between school days and public holidays. Hourly solar irradiation (in 

kWh/m2) data were collected for the same location at latitude 

4°15′55.2″N and longitude 101°24′12.1″E [42]. As shown in Fig. 1, 

the annual load profile represents the measured variation in energy 

demand throughout the year, while Fig. 2 illustrates the hourly solar 

irradiation data recorded over 8,760 hours.  

 

Fig. 1 Load profile during a year (8760 h). 

 

Fig. 2 Solar irradiation profile during a year (8760 h). 
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Table 1 Average daily solar irradiation for Pos Musoh, Perak [42]. 

Month Jan Feb Mac April May June July August Sept Oct Nov Dec 

Irradiation, 

G 

(kWh/m
2
) 

4.05 4.59 4.32 4.3 4.08 4.18 4.02 3.52 3.34 3.3 3.15 3.3 

According to Table 1, the monthly average daily peak sun hours 

(PSH) in Pos Musoh were calculated using historical data from January 

1984 to December 2013. These values are subsequently utilized in the 

system sizing process to ensure realistic solar resource estimation. 

Two configurations of Stand-Alone Photovoltaic (SAPV) 

systems were designed for comparison. The first configuration, 

referred to as System 1, consists of a photovoltaic (PV) array, battery 

storage, and a hybrid inverter. The second configuration, referred to 

as System 2, includes a PV array, battery storage, charge controller, 

and a solar inverter. Each component in the database was assigned 

an integer code according to its index position. 

Consequently, System 1 resulted in 10 × 10 × 10 = 1,000 

possible component combinations, while System 2 produced 10 × 10 

× 10 × 10 = 10,000 combinations. These models were selected from 

commercially available products to capture realistic variations in 

cost, efficiency and operational performance. The MOA was used to 

determine the optimal combination of components by evaluating 

their performance based on life cycle cost (LCC, unit: RM) and 

levelized cost of energy (LCOE, unit: RM/kWh). 

2.2 System Modelling 

In this study, the Stand-Alone Photovoltaic (SAPV) system is 

modeled using a components-based energy flow approach that 

accounts for hourly solar irradiance, load demand and system 

efficiency parameters. The energy output from photovoltaic (PV) array 

in the nth hour, EPV(n) is computed using [49] the following equation: 

𝐸𝑃𝑉(𝑛) = 𝑃𝑎𝑟𝑟𝑎𝑦_𝑠𝑡𝑐 × 𝑃𝑆𝐻(𝑛) × 𝑓𝑡𝑒𝑚𝑝(𝑛) × … 
(1) 

𝑓𝑚𝑚 × 𝑓𝑑𝑖𝑟𝑡 × η𝑐𝑎𝑏𝑙𝑒 × η𝑖𝑛𝑣 × η𝑐𝑐 × η𝑏𝑎𝑡𝑡  

where  Parray_stc is the rated power output of the PV array under 

Standard Test Conditions (STC) in watts, PSH(n) is the peak sun hour 

in hours, fmm is the reduction factor due to mismatch of power on 

PV modules, fdirt  represents the factor of dust and dirt accumulation 

on PV modules, ƞcable is the efficiency of cabling set as 95%, ƞcc is 

efficiency of charge controller, ƞbatt is the efficiency of battery and 

ftemp(n) is the derating factor. 

The operation of battery storage is determined by the energy 

generated by the PV system, EPV(n) and the AC demand from the load, 

Eload(n). When Eload(n) < EPV(n), the battery operates in charging mode 

and continues to charge until it reaches its maximum kWh capacity. 

Conversely, the battery operates in discharging mode when the 

energy generated by the PV system is insufficient to meet the load 

demand, EPV(n) > Eload(n). The battery storage capacity in kWh at the 

nth hour for both charging and discharging modes is formulated based 

on the system configuration illustrated in Fig. 1 and Fig. 2. The 

equations for battery capacity in these modes are as follows: 

Charging mode: 

𝐸𝑏𝑎𝑡𝑡𝑐ℎ𝑎𝑟𝑔𝑒(𝑛) = 𝐸𝑏𝑎𝑡𝑡(𝑛 − 1)(1 − σ)… 

(2) 
+(𝐸𝑃𝑉(𝑛) −

𝐸𝑙𝑜𝑎𝑑(𝑛)

𝜂𝑖𝑛𝑣
) 𝜂𝑏𝑎𝑡𝑡 

Where Ebatt(n-1) is the previous amount of the battery capacity in 

kWh, σ is the battery self-discharge rate. 

Discharging mode: 

𝐸battdischarge(𝑛) = 𝐸batt(𝑛 − 1)(1 − 𝜎). .. 

(3) 
−(

𝐸load(𝑛)

𝜂𝑖𝑛𝑣
− 𝐸𝑃𝑉(𝑛)) 𝜂𝑏𝑎𝑡𝑡 

The sizing process is based on the methodology outlined in [36], 

which integrates energy balance constraints and design rules for 

system components. These principles are applied within the objective 

function during the optimization. While specific equations are not 

presented in this paper, the method ensures that all components are 

compatible in terms of voltage, current, and power requirements. 

2.3 Performance Indicators 

In this study, two key performance indicators are adopted 

for the evaluation and optimization of stand-alone photovoltaic 

(SAPV) systems: the Life Cycle Cost (LCC), expressed in Malaysian 

Ringgit (RM) and the Levelized Cost of Electricity (LCOE), expressed 

in RM per kilowatt-hour (RM/kWh). These metrics are selected due 

to their ability to reflect both economic and technical aspects of 

system performance across the system’s lifetime. Each indicator is 

optimized independently to provide insights into trade-offs between 

cost-efficiency and long-term energy generation. 

The Life Cycle Cost (LCC) represents the total expenditure 

incurred by the system owner throughout the operational lifetime 

of the SAPV system. This user-focused approach accounts for all 

direct costs borne during system ownership and use, making it 

especially relevant in evaluating decentralized renewable energy 

applications [50-52]. The LCC includes three main cost components: 

the initial capital cost (Cini); the present value of the replacement 

cost (Crep) and the present value of the operation and maintenance 

cost (Co&m). It is expressed as [23,53-54], 

𝐿𝐶𝐶 = 𝐶𝑖𝑛𝑖 + 𝐶𝑟𝑒𝑝 + 𝐶𝑂&𝑀 (4) 

The initial capital cost, Cini comprises the total upfront investment 

required to procure and install all major system components. This 

includes photovoltaic modules, battery banks, inverters (whether hybrid 

or conventional), charge controllers, as well as installation labor and 

commissioning services [30]. Depending on the system configuration 

(e.g., System 1 using hybrid inverters or System 2 with modular inverters 

and controllers), this cost can vary significantly. The replacement cost 

Crep accounts for components with limited operational life spans that 

must be replaced periodically. For instance, battery banks typically 

require replacement every 5 to 10 years depending on usage depth and 

temperature exposure, while inverters often have a service life of 10–15 

years [44]. The present value of these future costs is computed using a 

discount rate, acknowledging the time value of money over a 25–30 

years project horizon. Operation and maintenance costs CO&M cover 

annual inspections, system performance monitoring, preventive 

maintenance, and potential corrective actions. These costs are often 

underestimated in design but can significantly affect long-term 

affordability, especially in remote or harsh environments where 

technician access and spare parts availability may be constrained 

[39,55-56]. Studies have shown that for small-scale PV systems, O&M 

costs can represent 1–2% of the initial capital expenditure annually [48].  

The second performance indicator is the Levelized Cost of 

Electricity (LCOE), which expresses the average cost per kilowatt-hour 

(kWh) of electricity generated over the system's operational lifetime. 

It integrates both economic and energy production data to evaluate 

long-term cost-effectiveness. The LCOE is calculated as [57-58] : 
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𝐿𝐶𝑂𝐸 =
𝐿𝐶𝐶

∑ (𝐸𝑃𝑉(1 − 𝑛)𝑡)𝑡
𝑛=1

 (5) 

where t is the project lifetime in year. 

LCOE is particularly useful for policymakers, energy 

planners, and system designers, as it standardizes costs across 

different energy technologies. For SAPV systems, it reflects not only 

investment efficiency but also the reliability and consistency of 

electricity production. Factors influencing LCOE include component 

efficiency, system sizing, geographical irradiance conditions, and 

system losses due to soiling, shading, or temperature [59-61]. An 

effective LCOE analysis also requires accurate estimation of energy 

yield. In this study, the PV energy output is computed hourly using 

site-specific irradiance and temperature data, factoring in thermal 

derating, module mismatch losses, inverter efficiency, cable losses, 

and battery round-trip efficiency. Moreover, the application of a 

degradation factor (typically 0.5–1% annually) simulates real-world 

PV performance over time [62]. 

Combining LCC and LCOE as dual performance indicators 

provides a balanced and comprehensive framework for assessing 

SAPV system viability. While LCC is more sensitive to financial 

parameters and replacement schedules, LCOE emphasizes energy 

generation sustainability and operational effectiveness. This dual 

approach enables decision-makers to identify configurations that 

not only minimize total ownership cost but also deliver cost-

effective electricity generation throughout the system lifespan. 

2.4 Meerkat Optimizer Algorithm (MOA) 

The Meerkat Optimization Algorithm (MOA) is inspired by 

the behavior of meerkats, small diurnal mammals that are found in 

desert environments. Their unique behavioral patterns, such as 

hunting in groups, standing guard as sentinels and responding to 

predators, have been modeled to create an optimization algorithm. 

The key behavioral strategies of meerkats, which mimic the search, 

vigilance and defensive behaviors, are utilized in the MOA to guide 

optimization processes [40]. The main components of the algorithm 

are outlined below. 

Step 1: Input Initialization 

Load the component specifications, including models of PV 

modules, batteries, hybrid inverter, inverters and charge controllers. 

Solar irradiance data and hourly load demand profiles are also 

imported as part of the simulation inputs. These datasets define the 

system’s operating environment and boundary constraints. The 

decision variables differ depending on the system configuration: 

1.  For System 1 (PV-battery-hybrid inverter): 

• 𝑥₁: PV model 

• 𝑥₂: Battery model 

• 𝑥₃: Hybrid inverter model 

2.  For System 2 (PV-battery-charge controller-solar inverter): 

• 𝑥₁: PV model 

• 𝑥₂: Battery model 

• 𝑥₃: Charge controller model 

• 𝑥₄: Solar inverter model 

Each candidate solution (meerkat agent) in the population 

encodes one unique combination of the above decision variables, 

depending on the system being optimized. Similar representations 

are common in other population-based metaheuristics, where each 

agent holds a distinct configuration for system-level evaluation [41].  

Step 2: Objective Function Formulation 
Case 1: Optimize LCC 
Case 2: Optimize LCOE 

Step 3: Population Initialization 
A population of meerkat agents is randomly initialized, 

where each agent represents a different combination of system 
components. Initialization parameters include the population size 
(𝑃), scaling factor (for movement adaptation), and the sentry 
probability (which controls behavioral switching between 
exploration and exploitation modes). 

Step 4: Fitness Function Evaluation 

Each meerkat agent is evaluated based on an objective 
function that quantifies system performance. In this study, two 
optimization cases are considered: (1) minimizing the Life Cycle Cost 
(LCC), and (2) minimizing the Levelized Cost of Electricity (LCOE). For 
the LCOE-based case, each agent's fitness corresponds directly to its 
computed LCOE value, which reflects the economic efficiency of the 
system over its lifetime. The agent with the lowest fitness score (i.e., 
the minimum LCOE or LCC, depending on the case) is recorded as 
the global best solution in that iteration. 

Step 5: Meerkat Movement and Exploration 

The core of MOA is executed [40]: 

• Group coordination is applied to direct agents toward 
superior solutions based on social learning and position 
updates. 

• Emergency response behavior is triggered to escape 
poor-performing areas when threats (e.g., infeasible or 
stagnant solutions) are detected. 

• Levy flight mechanism introduces randomness for 
escaping local optima and improving global search. 

Step 6: Boundary Control 

Each updated position is verified to ensure it lies within 
allowable bounds for each component. Boundary correction is 
applied to restore feasibility for out-of-bound solutions. 

Step 7: Convergence Criteria 

The algorithm checks whether convergence has been 
achieved by monitoring population diversity or reaching the 
maximum number of iterations. 

Step 8: Best Solution Extraction 

The solution with the best fitness value based on the 
optimize LCC/LCOE is stored as the final optimal configuration. 

2.5 Benchmark Algorithms for Comparison 

To assess the effectiveness of the Meerkat Optimization 

Algorithm (MOA), this study conducts a comparative analysis with 

three well-established metaheuristic algorithms: Particle Swarm 

Optimization (PSO), Firefly Algorithm (FA) and Slime Mould Algorithm 

(SMA). All four algorithms were applied to both System 1 and System 2 

configurations and the parameter settings for each are summarized in 

Table 2 [42]. For the MOA, the tuning involves three key parameters: 

the probability factor, P = 0.1, , the sentry value, sentry = 0.5 and the 

scale factor, scale = 0.3. The probability factor determines the chance 

of performing a local exploitation step, while the sentry value balances 

exploration by mimicking the behavior of sentry meerkats that scan 

for optimal zones. The scale parameter adjusts the step size during 

solution updates, controlling convergence speed. In the case of PSO, 

the acceleration coefficients, C1 = 0 and C2 = 2 were used, consistent 

with prior studies [40]. These parameters govern how much influence 

a particle’s personal best and the global best have on its velocity update.  
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Table 2 The parameter set of algorithms. 

Algorithms Parameters 

MOA 
PSO 
SMA 
FA 

P = 0.1, sentry = 0.5, scale = 0.3 
C1 = 0, C2 = 2[40] 

Z = 0.03 [44] 
α = 0.5, β = 1, γ = 1 [44] 

In this configuration, the algorithm emphasizes global exploration 

while suppressing local search. The SMA was configured with  

Z = 0.03, where Z is a dynamic weight parameter that simulates  

the oscillatory movement of slime mould toward food sources [44].  

This parameter controls the adaptive behaviour of the search agents, 

helping the algorithm switch between exploration and exploitation 

modes. Finally, the FA was tuned with three parameters: α = 0.5,  

β = 1 and γ = 1 [44]. Here, α (alpha) represents the strength of random 

movement, β (beta) governs the attractiveness between fireflies and 

γ (gamma) controls the rate at which attractiveness decreases with 

increasing distance. These parameters collectively guide fireflies toward 

brighter and more optimal regions in the solution space. By adopting 

these parameter settings, each algorithm was ensured to operate 

under standard and literature-supported configurations, allowing for 

a fair and rigorous performance comparison across the two system 

configurations. 

3. Result and discussion 

This section presents the optimization results for sizing the 

Stand-Alone Photovoltaic (SAPV) system using the Meerkat 

Optimization Algorithm (MOA) and compares its performance with 

three other metaheuristic algorithms: Particle Swarm Optimization 

(PSO), Firefly Algorithm (FA), and Slime Mould Algorithm (SMA). The 

evaluation focuses on two critical performance metrics, namely Life 

Cycle Cost (LCC) and Levelized Cost of Electricity (LCOE), to determine 

the overall cost-effectiveness and energy performance of two distinct 

SAPV system configurations, referred to as System 1 and System 2. 

3.1 Optimization Result Based on LCC 

Table 3 illustrates the optimization outcomes for both 

System 1 and System 2 when the objective is to minimize the Life 

Cycle Cost (LCC). These results were obtained using MOA under 

consistent simulation parameters. In both configurations, the 

optimal PV module (code 4) and battery (code 9) were identical, 

indicating a uniform preference for these components due to their 

balance of cost, efficiency, and durability. However, divergence 

occurred in inverter and control strategies. System 1 employed a 

hybrid inverter (code 1), integrating the functions of both an inverter 

and a charge controller, which simplifies system design and reduces 

the number of discrete components. On the other hand, System 2 

utilized a separate solar inverter (code 10) and charge controller 

(code 1), resulting in a more modular but complex architecture. In 

terms of PV module sizing, both systems maintained the same total 

number of PV modules (Ns_PV = 24), however, the total of PV 

modules per charge controller differed, with System 1 utilizing 8 

modules per charge controller compared to 5 for System 2. In terms 

of cost performance, System 1 achieved a significantly lower LCC of 

RM 262,550.25 compared to RM 278,086.57 for System 2, 

demonstrating its greater cost-effectiveness. This 5.6% cost reduction 

confirms the economic advantage of integrating functionalities through 

hybrid components. Furthermore, System 1 completed its 

optimization process slightly faster (2.7851 seconds) than System 2 

(2.8818 seconds), indicating computational benefits stemming from 

reduced complexity. Overall, System 1's design proved more cost-

efficient and computationally leaner. 

Table 3 MOA sizing result of SAPV system for System 1 and System 2 (LCC). 

Sizing results System 1 System 2 

Optimal PV module code 4 4 

Optimal battery code 9 9 

Optimal hybrid inverter code 1 - 

Optimal inverter code - 10 

Optimal charge controller code - 1 

Ns_PV in integer 10 2 

Nt_PV in integer 24 24 

Ntotal_PV per charge controller in integer 8 5 

Ns_batt in integer 4 4 

Np_batt in integer 63 63 

Nt_batt in integer 252 252 

Nt_hybrid_inv in integer 4 - 

Nt_hybrid_inv in integer - 5 

Nt_inv in integer - 7 

Optimal life cycle cost (LCC) in RM 262,550.25 278,086.57 

Overall computation time, in seconds 2.7851 2.8818 

3.2 Optimization Result Based on LCOE 

Table 4 summarizes the optimization results when the 

objective function was LCOE. Unlike the LCC case, both systems 

showed variation in selected PV modules. System 1 used PV module 

code 4, while System 2 used code 5, indicating a potential trade-off 

between module performance and energy yield. Although both 

systems again shared the same battery model (code 9), their 

inverter strategies differed: System 1 used a hybrid inverter (code 

3), while System 2 retained the modular solar inverter (code 10) and 

charge controller (code 1). These selections reflect the algorithms’ 

preference for compact integration in minimizing unit energy cost. 

In terms of configuration, System 1 used fewer PV modules in series 

(Ns_PV = 3) compared to System 2 (Ns_PV = 2), but both maintained 

nearly the same total PV count (24 vs. 25). This indicates that while 

total array capacity was similar, the internal arrangement differed 

to accommodate system-level efficiency goals. 

The calculated LCOE for System 1 was RM 1.0151/kWh, 

which is 9.2% lower than the RM 1.1183/kWh achieved by System 2. 

The relatively low LCOE suggests that System 1 not only requires lower 

capital investment but also delivers more cost-effective electricity 

over time. Moreover, the computational time for System 1 (3.6439 

seconds) was slightly less than that of System 2 (3.8115 seconds), 

reinforcing the operational simplicity of the hybrid design.  

Table 4 MOA sizing result of SAPV system for System 1 and System 2 (LCOE). 

Sizing results System 1 System 2 

Optimal PV module code 4 5 
Optimal battery code 9 9 
Optimal hybrid inverter code 3 - 
Optimal inverter code - 10 
Optimal charge controller code - 1 
Ns_PV in integer 3 2 
Nt_PV in integer 24 25 
Ntotal_PV per charge controller in integer 10 5 
Ns_batt in integer 4 4 
Np_batt in integer 62 62 
Nt_hybrid_inv in integer 248 248 
Nt_hybrid_inv in integer 5 - 
Nt_hybrid_inv in integer - 5 
Nt_inv in integer - 7 
Optimal Levelized Cost of Energy (LCOE), in 
(RM/kWh) 

1.0151 1.1183 

Overall computation time, in seconds 3.6439 3.8115 
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3.3 Convergence Analysis and MOA, PSO, FA and SMA 

Fig. 3(a) and Fig. 3(b) present the convergence characteristics 

of MOA, PSO, FA, and SMA in minimizing the Life Cycle Cost (LCC) for 

System 1 and System 2, respectively. For System 1, the MOA achieves 

the most rapid and stable convergence, reaching its optimal LCC 

value of approximately RM 262,550.25 at the second iteration and 

maintaining this best value throughout the remaining simulation 

period up to iteration 30. In contrast, the PSO and SMA attain near-

optimal performance after approximately five iterations, exhibiting 

transient fluctuations before stabilizing. The FA demonstrates the 

slowest convergence behaviour, stagnating at a higher cost level 

(around RM 264,500), indicating a weaker ability to escape local 

optima and limited exploitation capability.  

A similar trend is observed for System 2, where the MOA 

again achieves the lowest LCC (approximately RM 278,086.57) by 

iteration 4. The SMA converges faster than the PSO for this 

configuration and stabilizes by iteration 6, whereas the PSO reaches 

a plateau around iteration 13. The FA continues to exhibit the 

slowest response and converges at a noticeably higher cost value. 

Fig. 4(a) and Fig. 4(b) illustrate the convergence characteristics 

of MOA, PSO, FA, and SMA in minimizing the Levelized Cost of Electricity 

(LCOE) for System 1 and System 2, respectively. For System 1, the MOA 

again demonstrates the fastest and most stable convergence, reaching 

its optimal LCOE value of approximately 1.0151 RM/kWh at the second 

iteration and maintaining this optimum throughout the 30-iteration 

period. The PSO achieves its minimum LCOE at iteration 8, while the FA 

reaches its lowest value at iteration 10, both showing slower 

convergence compared to the MOA. In contrast, the SMA exhibits the 

slowest convergence, with a gradual decline in cost and final 

stabilization around iteration 12 at approximately 1.12 RM/kWh, 

indicating weaker exploitation ability and limited efficiency in 

minimizing the cost function compared with the other algorithms. 

For System 2, a similar pattern is observed. The MOA 

achieves the most rapid and consistent convergence, reaching its 

lowest LCOE value of approximately 1.1183 RM/kWh within the first 

five iterations and maintaining this best value until the end of the 

simulation. The SMA converges next, achieving its minimum cost 

around iteration 10, while the PSO reaches its lowest value near 

iteration 16. The FA, however, shows the slowest convergence 

behaviours, stabilizing at a noticeably higher LCOE (about 1.135 

RM/kWh), suggesting lower exploitation capability and a higher 

tendency to remain trapped in local optima. 

In conclusion, the convergence analyses presented in Fig. 3 

and 4 collectively demonstrate that the Meerkat Optimization 

Algorithm (MOA) consistently delivers outstanding performance in 

optimizing both Life Cycle Cost (LCC) and Levelized Cost of Energy 

(LCOE) for the two SAPV configurations. In both cases, MOA rapidly 

attains the optimal solution within the first few iterations and 

maintains stable convergence without oscillation, reflecting its 

effective balance between exploration and exploitation.   

In contrast, PSO and SMA show slower convergence with minor 

fluctuations before stabilizing, while FA exhibits the weakest search 

ability and remains trapped at higher cost levels.

 

(a) (b) 

Fig. 3 Convergence of MOA, PSO, FA, and SMA for Minimizing the Life Cycle Cost (LCC) for (a) System 1 and (b) System 2. 

 

(a) (b) 

Fig. 4 Convergence of MOA, PSO, FA, and SMA for Minimizing the Levelized Cost of Energy (LCOE) for (a) System 1 and (b) System 2. 
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4. Conclusion 

The comparative analysis presented in this study reveals that 

System 1, which integrates a photovoltaic (PV) array, battery storage, 

and a hybrid inverter, demonstrates greater efficiency and cost-

effectiveness compared to System 2, which utilizes separate inverter 

and charge controller components. Optimization results for both life 

cycle cost (LCC) and levelized cost of energy (LCOE) consistently favor 

System 1. This advantage is primarily attributed to its simpler 

configuration, reduced number of components, and easier integration 

process. The hybrid inverter, which consolidates multiple power 

conditioning functions into a single device, not only minimizes the 

overall system cost but also streamlines the control architecture, 

leading to faster convergence during the optimization process. 

Consequently, System 1 emerges as the most suitable configuration 

for stand-alone photovoltaic (SAPV) systems, especially in rural or off-

grid regions where cost-performance trade-offs are critical. 

Among the four metaheuristic algorithms evaluated 

Meerkat Optimization Algorithm (MOA), Particle Swarm 

Optimization (PSO), Firefly Algorithm (FA) and Slime Mould 

Algorithm (SMA), the MOA consistently produced the most 

favorable optimization results across both objective functions. The 

MOA demonstrated strong convergence behavior, often reaching 

near-optimal solutions in fewer than five iterations. This 

performance underscores the algorithm’s strength, computational 

efficiency, and capacity to deliver stable outcomes even under 

constrained processing resources or real-world conditions. Its 

search mechanism, inspired by cooperative animal behavior and 

supported by adaptive parameter control, allows it to maintain an 

effective balance between exploration and exploitation phases 

throughout the optimization process. 

Furthermore, the results affirm that the MOA is a reliable 

and effective tool for addressing multi-objective optimization 

problems in SAPV system design. By simultaneously considering 

both economic (LCC) and energy-based (LCOE) performance metrics, 

the MOA facilitates well-informed decision-making for engineers 

and system planners. Its ability to rapidly identify cost-optimal 

configurations makes it particularly suitable for applications 

involving real-world load profiles, variable irradiance data, and 

geographically diverse deployment scenarios. 

Overall, this study contributes a novel and practical 

framework for optimizing SAPV systems using a bio-inspired 

algorithm under dual-configuration analysis. The findings serve as a 

valuable reference for the design and implementation of standalone 

renewable energy systems, particularly in remote or resource-

constrained areas. Future work may extend this research by 

incorporating additional objectives such as system reliability, 

battery degradation modeling, and carbon footprint minimization, 

thereby enhancing the comprehensiveness of sustainability-focused 

optimization in off-grid energy planning. 
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