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ABSTRACT

Stand-Alone Photovoltaic (SAPV) systems play a vital role in providing clean and reliable electricity
for remote and off-grid communities where grid expansion is economically or technically
unfeasible. Their economic feasibility and technical reliability, however, depend strongly on
accurate component sizing and system configuration, which require advanced optimization
techniques. In this study, the Meerkat Optimization Algorithm (MOA) is applied to optimize two
SAPV configurations. System 1 integrates a photovoltaic array, battery storage, and a hybrid
inverter, while System 2 consists of a photovoltaic array, battery storage, a solar inverter, and a
charge controller. The optimization focuses on minimizing Life Cycle Cost (LCC) and Levelized Cost
of Energy (LCOE), which are widely recognized as reliable indicators of long-term cost-effectiveness
and financial viability. To validate the performance of MOA, its results are benchmarked against
three well-established metaheuristic algorithms: Particle Swarm Optimization (PSO), Firefly
Algorithm (FA), and Slime Mould Algorithm (SMA). Simulation results show that System 1
consistently achieves lower LCC and LCOE compared to System 2, primarily due to its reduced
component count and simplified integration. Moreover, MOA demonstrates enhanced
optimization performance by converging more rapidly and delivering more stable solutions across
multiple independent runs. In contrast, PSO, FA, and SMA exhibit slower convergence and greater
variability in outcomes. Importantly, the performance differences are statistically meaningful, as
MOA achieved consistently lower mean values and smaller standard deviations. These findings
highlight MOA as an effective and reliable optimization tool for SAPV systems and provide practical
insights to support sustainable rural electrification planning.

1. Introduction

Access to reliable, affordable, and sustainable energy is widely
recognized as a cornerstone of socio-economic development. Yet,
according to the International Energy Agency (IEA), more than 675
million people worldwide still lack electricity, with the majority
concentrated in rural and remote regions of sub-Saharan Africa and
South Asia [1]. These communities often face severe developmental
constraints due to the absence of modern energy services, including
limitations in healthcare, education, and small-scale industries.
Extending centralized grid infrastructure to such areas has proven
economically and technically challenging, owing to factors such as low
population density, difficult terrain, and high capital investment
requirements [2]. Consequently, decentralized renewable energy
solutions have become essential alternatives for bridging the global
energy access gap.

Among renewable options, solar photovoltaic (PV) technology
is particularly attractive because of its modular design, scalability,
and rapidly declining costs. The International Renewable Energy
Agency (IRENA) reported that the levelized cost of electricity (LCOE)
for solar PV fell by over 80% between 2010 and 2020, making it one

of the most cost-competitive energy sources globally [3]. Stand-
alone photovoltaic (SAPV) systems, in particular, provide a practical
solution for rural electrification, enabling households, schools, clinics,
and businesses to gain access to clean and reliable electricity [4].

SAPV systems have been increasingly adopted in applications
ranging from rural household electrification to water pumping,
telecommunication towers, and emergency power supply [5], [6].
Their significance extends beyond energy provision: they contribute to
environmental protection by reducing reliance on fossil fuels and
mitigating greenhouse gas emissions. Replacing diesel generators with
SAPV systems substantially reduces both operating costs and carbon
dioxide emissions, directly supporting global commitments under the
Paris Agreement and Sustainable Development Goals (SDGs),
particularly SDG 7 (Affordable and Clean Energy) and SDG 13 [5], [7].

From an environmental perspective, several studies have
quantified these benefits. A.Dolatabadi and B.Mohammadi-lvatloo [6]
applied a stochastic optimization model to a PV/diesel/storage hybrid
system for maritime applications, showing significant fuel savings and
emission reductions. Similarly, P.Z.Pedro and L.G.Juan [7] emphasized
the importance of sensitivity analysis in PV/diesel/battery systems,
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demonstrating how design variations strongly influence sustainability
outcomes. At a broader scale, O.Krishan and S.Suhag [8] confirmed that
SAPV systems provide not only cleaner energy but also long-term cost
savings for rural communities when compared to diesel-based systems.

The socio-economic impact of SAPV systems is equally
important. By powering educational institutions, healthcare facilities,
and small businesses, SAPV systems promote human development
and economic growth in underserved regions [9]. Access to reliable
electricity improves healthcare delivery, enables refrigeration for
vaccines, supports lighting in schools and enhances communication
infrastructure, directly contributing to improved quality of life [10].

Despite their advantages, SAPV systems face significant
technical challenges in terms of sizing, performance, and reliability.
Accurate component sizing is essential to balance cost-effectiveness
with long-term operational sustainability. Undersized systems fail to
meet energy demand reliably, while oversized systems impose
unnecessary capital costs [11].

PV modules, the primary energy-generating components, are
particularly sensitive to environmental conditions such as temperature,
shading, and dust accumulation. High ambient temperatures reduce
conversion efficiency through thermal losses, while partial shading
and soiling can reduce output by as much as 30% [12]. Moreover, PV
modules undergo gradual degradation of 0.5%—1% annually, reducing
their energy yield and increasing replacement costs over time [13].

Battery storage is another critical element of SAPV systems,
ensuring energy supply during periods without sunlight. However,
batteries are highly susceptible to degradation due to deep discharges,
temperature extremes, and overcharging, resulting in shortened
lifespans and higher replacement costs [8], [14]. Inverters, which
convert DC power into AC electricity, typically operate for only 5-10
years, substantially shorter than PV modules and batteries. Their
performance also declines under partial load conditions, further
reducing system efficiency [15]. Charge controllers, meanwhile, regulate
power flows but are prone to mismatches when poorly sized, reducing
reliability and contributing to component stress [16]. Hybrid inverters,
while reducing component count by integrating multiple functions,
often suffer from higher operational stress, leading to shorter lifespans
and costly failures [17-18]. These component-related challenges
underscore the importance of performance optimization methods that
can ensure SAPV systems achieve both cost-effectiveness and reliability.

Historically, deterministic sizing methods based on rules of
thumb and empirical formulas were used in SAPV system design.
While simple, these methods often ignored stochastic variations in
solar irradiance and load demand, leading to suboptimal designs
[11], [19]. Analytical methods, which rely on average daily energy
balance equations, provide a more structured framework but still
fail to capture hourly and seasonal variations in demand and
resource availability [20-21].

Simulation tools such as HOMER Pro, TRNSYS, and PVsyst
have since become widely used for SAPV system design [15], [22].
HOMER has been particularly effective in techno-economic
optimization, TRNSYS in time-dependent simulations, and PVsyst in
PV module performance analysis [23-24]. However, while useful,
these tools rely heavily on predefined search spaces and require
intensive computation, making them less suitable for identifying
globally optimal solutions in large, complex design problems [15].

To overcome these limitations, metaheuristic algorithms have
been widely adopted for renewable energy system optimization.
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These nature-inspired methods are well-suited to solving nonlinear,
constrained, and multi-objective optimization problems. Early
applications of metaheuristics in SAPV sizing employed Genetic
Algorithms (GA), Particle Swarm Optimization (PSO) and Firefly
Algorithm (FA) [26-27]. More recent studies have introduced
advanced bio-inspired techniques such as the Aquila Optimizer and
Jellyfish Search Algorithm for renewable hybrid systems, achieving
higher convergence stability and reduced computational cost, [28-30].

Hanta et al. [10] applied Cat Swarm Optimization (CSO) for
SAPV sizing, demonstrating improved reliability and reduced Loss of
Power Supply Probability (LPSP). M.Jamshidi and A.Askarzadeh [18]
conducted a techno-economic feasibility study of off-grid PV/fuel
cell/diesel systems, finding that hybrid metaheuristic frameworks
outperform single-algorithm approaches in terms of cost and
reliability. Similarly, A.Alsharif et al. [31] compared Cuckoo Search
with other heuristics for PV-wind—battery optimization, reporting
faster convergence and reduced costs. J.Zhao and Z.M.Gao [32]
introduced a hybridized Harris Hawks Optimization and Slime Mould
Algorithm (HHO-SMA) that achieved improved convergence
stability. Building on this, Gliven and Yoérikeren [33] conducted a
comparative study on hybrid GA—PSO for stand-alone hybrid energy
systems and found that the hybrid algorithm provided better cost
efficiency and system reliability compared to single-algorithm
approaches. Xu et al. [34] proposed a hybrid Differential Evolution—
Particle Swarm Optimization (DE-PSO) with dynamic adaptive
strategies, successfully preventing premature convergence and
improving stability across benchmark optimization problems.
Likewise, Fathi et al. [35] carried out a comparative analysis of
Differential Evolution, PSO, Arithmetic Optimization Algorithm
(AOA), and Henry Gas Solubility Optimization (HGSO) for
photovoltaic parameter estimation, concluding that DE achieved the
highest accuracy with the fastest convergence speed. These recent
contributions reinforce the importance of benchmarking emerging
algorithms such as MOA against both classical and modern
metaheuristics to ensure robust and context-specific optimization
outcomes in SAPV system design.

Although PSO, FA, and SMA are widely used swarm
algorithms, each suffers from inherent limitations. PSO relies heavily
on velocity and position updates, which can cause premature
convergence and stagnation in local optima [36-37]. FA uses
attractiveness and light intensity to guide solutions, but diversity
decreases as the population converges [38]. SMA employs
oscillatory search patterns, which enhance exploration but still risk
local entrapment in high-dimensional problems [39].

Nevertheless, PSO, FA, and SMA remain highly relevant
benchmarks because they represent three generations of swarm-
based optimization: PSO as a classical algorithm with extensive
applications in renewable energy, FA as an algorithm designed for
multimodal optimization, and SMA as a recent bio-inspired algorithm
that has demonstrated strong convergence stability. Their inclusion in
comparative studies ensures that new algorithms such as MOA are
evaluated against diverse and representative approaches.

The Meerkat Optimization Algorithm (MOA), introduced by Al-
Mahdi et al. [40], presents a novel bio-inspired metaheuristic that
incorporates unique mechanisms to address the limitations of classical
swarm algorithms. The sentry strategy adaptively balances exploration
and exploitation based on environmental vigilance, the emergency
response mechanism enables the algorithm to escape local minima, and
Levy flights provide long-range randomization for improved global
search [40]. Recent applications of MOA have shown superior
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performance in engineering design, scheduling, and energy optimization
problems [41-42]. Moreover, 2024-2025 studies have demonstrated
continued progress in swarm intelligence for renewable energy,
including Enhanced Honey Badger and Hybrid Slime Mould—Harris
Hawks algorithms, both yielding improved balance between exploration
and exploitation [32,43-44].

Compared with PSO, FA, and SMA, MOA offers mechanisms
that explicitly maintain population diversity and convergence
stability, potentially reducing the risk of premature convergence.
However, its performance in renewable energy optimization, and
specifically in SAPV system sizing, remains underexplored. Despite
growing interest in metaheuristics for renewable energy, few
studies have directly benchmarked MOA against PSO, FA, and SMA
in SAPV system optimization. Most MOA studies have been limited
to general engineering applications or hybrid renewable systems,
leaving a gap in stand-alone PV system research.

This study addresses the gap by applying MOA to optimize
two SAPV system configurations: one with a hybrid inverter and
another with separate inverters and charge controllers. By
benchmarking MOA against PSO, FA, and SMA, this study aims to
evaluate whether MOA’s unique mechanisms translate into
meaningful performance advantages. The contributions of this work
are threefold. First, it provides one of the earliest comparative
evaluations of MOA in SAPV design. Second, it analyzes the trade-
offs between hybrid and modular system architectures in terms of
cost-effectiveness and reliability. Third, it advances methodological
knowledge in renewable energy optimization by demonstrating how
MOA achieves statistically meaningful improvements in
convergence stability and cost optimization under real-world solar
irradiance and load conditions.

2. Methodology

This study focuses on the optimal sizing of Stand-Alone
Photovoltaic (SAPV) systems tailored for rural educational facilities,
using a case study of a school located in Pos Musoh, Perak, Malaysia.
Several researchers have investigated the design and optimization
of SAPV systems in rural and off-grid settings. For example, A.
Mahmud [45] analyzed the load characteristics of rural schools in
Malaysia and proposed component sizing methods that reflect
typical energy consumption patterns. Similarly, A. Alsharif et al. [31]
emphasized the importance of tailoring SAPV configurations to
match daily usage cycles, including educational facility loads and
seasonal variations. The modeling of SAPV systems has been widely
studied in the context of cost reduction and energy reliability.
System configurations that integrate hybrid inverters have been
found to reduce capital costs by minimizing the number of discrete
components, as shown in studies focusing on inverter-controller
integration [46-47].

Component configuration plays a critical role in determining
the efficiency, reliability, and cost-effectiveness of SAPV systems. A
system that combines a PV array, battery, and hybrid inverter, which
is referred to as System 1 in this study, is often preferred because it
offers simplified wiring, shorter installation time and lower
maintenance requirements [42]. In comparison, System 2 uses
separate devices for the inverter and charge controller functions.
This configuration may be more suitable for implementing site-
specific control strategies and for allowing phased expansions,
although it typically involves a higher initial cost [48].
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Numerous studies have confirmed the relevance of
optimization algorithms and component modeling in achieving
reliable and economical off-grid energy systems [8], [9]. These works
underscore the importance of using accurate environmental data,
practical component datasets, and cost-based objective functions
(such as Life Cycle Cost (LCC) and Levelized Cost of Electricity (LCOE))
to inform the design of systems intended for remote deployment.
The integration of simulation with optimization frameworks
provides a structured approach to solving complex sizing problems
in renewable energy applications.

2.1 Site and system configuration

This study focuses on a school located in the rural area of
Pos Musoh, Perak, Malaysia. The load profile was directly obtained
from on-site measurements of the school’s energy consumption,
rather than from assumed or generic load models. The data reflect
the actual energy requirements of six classrooms, five laboratories,
a canteen, an administrative office, restrooms, and a prayer room
(surau). As expected, the load demand exhibited significant variation
between school days and public holidays. Hourly solar irradiation (in
kWh/m?2) data were collected for the same location at latitude
4°15'55.2”N and longitude 101°24'12.1"E [42]. As shown in Fig. 1,
the annual load profile represents the measured variation in energy
demand throughout the year, while Fig. 2 illustrates the hourly solar
irradiation data recorded over 8,760 hours.
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Fig. 1 Load profile during a year (8760 h).
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Fig. 2 Solar irradiation profile during a year (8760 h).
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Table 1 Average daily solar irradiation for Pos Musoh, Perak [42].

Month Jan | Feb | Mac | April [ May | June | July | August | Sept | Oct | Nov | Dec

Irradiation,
405 | 459 | 432 43 4.08 | 4.18 | 4.02 3.52 334 | 33 | 315 | 33

(kWh/m?)

According to Table 1, the monthly average daily peak sun hours
(PSH) in Pos Musoh were calculated using historical data from January
1984 to December 2013. These values are subsequently utilized in the
system sizing process to ensure realistic solar resource estimation.

Two configurations of Stand-Alone Photovoltaic (SAPV)
systems were designed for comparison. The first configuration,
referred to as System 1, consists of a photovoltaic (PV) array, battery
storage, and a hybrid inverter. The second configuration, referred to
as System 2, includes a PV array, battery storage, charge controller,
and a solar inverter. Each component in the database was assigned
an integer code according to its index position.

Consequently, System 1 resulted in 10 x 10 x 10 = 1,000
possible component combinations, while System 2 produced 10 x 10
x 10 x 10 = 10,000 combinations. These models were selected from
commercially available products to capture realistic variations in
cost, efficiency and operational performance. The MOA was used to
determine the optimal combination of components by evaluating
their performance based on life cycle cost (LCC, unit: RM) and
levelized cost of energy (LCOE, unit: RM/kWh).

2.2 System Modelling

In this study, the Stand-Alone Photovoltaic (SAPV) system is
modeled using a components-based energy flow approach that
accounts for hourly solar irradiance, load demand and system
efficiency parameters. The energy output from photovoltaic (PV) array
in the nth hour, Epy(n) is computed using [49] the following equation:

Epy (M) = Parray_stc X PSH(M) X fremp(n) X ...

fmm X fdirt X Ncabte X Ninv X Nee X Npatt

(1)

where  Pgrray stc is the rated power output of the PV array under
Standard Test Conditions (STC) in watts, PSH(n) is the peak sun hour
in hours, fmm is the reduction factor due to mismatch of power on
PV modules, f4ir+ represents the factor of dust and dirt accumulation
on PV modules, neapre is the efficiency of cabling set as 95%, nec is
efficiency of charge controller, nua is the efficiency of battery and
fremp(n) is the derating factor.

The operation of battery storage is determined by the energy
generated by the PV system, Epy(n) and the AC demand from the load,
Eioaa(n). When Ejoad(n) < Epv(n), the battery operates in charging mode
and continues to charge until it reaches its maximum kWh capacity.
Conversely, the battery operates in discharging mode when the
energy generated by the PV system is insufficient to meet the load
demand, Epy(n) > Einad(n). The battery storage capacity in kWh at the
nth hour for both charging and discharging modes is formulated based
on the system configuration illustrated in Fig. 1 and Fig. 2. The
equations for battery capacity in these modes are as follows:

Charging mode:

Ebattcharge(n) = Epgee(n —1)(1 —0) ...

Nbatt

E n (2)

+ (Epv(n) _ loa'd( ))
mv

Where Epati(n-1) is the previous amount of the battery capacity in
kWh, o is the battery self-discharge rate.

Discharging mode:

Ebattdischarge(n) = Epar(n — (A — 0)...
_ (Eload(n)

Ninv

(3)
- EPV(n)> Nbatt

The sizing process is based on the methodology outlined in [36],
which integrates energy balance constraints and design rules for
system components. These principles are applied within the objective
function during the optimization. While specific equations are not
presented in this paper, the method ensures that all components are
compatible in terms of voltage, current, and power requirements.

2.3 Performance Indicators

In this study, two key performance indicators are adopted
for the evaluation and optimization of stand-alone photovoltaic
(SAPV) systems: the Life Cycle Cost (LCC), expressed in Malaysian
Ringgit (RM) and the Levelized Cost of Electricity (LCOE), expressed
in RM per kilowatt-hour (RM/kWh). These metrics are selected due
to their ability to reflect both economic and technical aspects of
system performance across the system’s lifetime. Each indicator is
optimized independently to provide insights into trade-offs between
cost-efficiency and long-term energy generation.

The Life Cycle Cost (LCC) represents the total expenditure
incurred by the system owner throughout the operational lifetime
of the SAPV system. This user-focused approach accounts for all
direct costs borne during system ownership and use, making it
especially relevant in evaluating decentralized renewable energy
applications [50-52]. The LCC includes three main cost components:
the initial capital cost (Ci;); the present value of the replacement
cost (Crep) and the present value of the operation and maintenance
cost (Cogm). It is expressed as [23,53-54],

LCC = Cipy + Crep + Coam (4)

The initial capital cost, G, comprises the total upfront investment
required to procure and install all major system components. This
includes photovoltaic modules, battery banks, inverters (whether hybrid
or conventional), charge controllers, as well as installation labor and
commissioning services [30]. Depending on the system configuration
(e.g., System 1 using hybrid inverters or System 2 with modular inverters
and controllers), this cost can vary significantly. The replacement cost
Crep accounts for components with limited operational life spans that
must be replaced periodically. For instance, battery banks typically
require replacement every 5 to 10 years depending on usage depth and
temperature exposure, while inverters often have a service life of 10-15
years [44]. The present value of these future costs is computed using a
discount rate, acknowledging the time value of money over a 25-30
years project horizon. Operation and maintenance costs Cogy cover
annual inspections, system performance monitoring, preventive
maintenance, and potential corrective actions. These costs are often
underestimated in design but can significantly affect long-term
affordability, especially in remote or harsh environments where
technician access and spare parts availability may be constrained
[39,55-56]. Studies have shown that for small-scale PV systems, O&M
costs can represent 1-2% of the initial capital expenditure annually [48].

The second performance indicator is the Levelized Cost of
Electricity (LCOE), which expresses the average cost per kilowatt-hour
(kWh) of electricity generated over the system's operational lifetime.
It integrates both economic and energy production data to evaluate
long-term cost-effectiveness. The LCOE is calculated as [57-58] :
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LCOE = Lee
=YL (EPV(I— 1)) ©)

where t is the project lifetime in year.

LCOE is particularly useful for policymakers, energy
planners, and system designers, as it standardizes costs across
different energy technologies. For SAPV systems, it reflects not only
investment efficiency but also the reliability and consistency of
electricity production. Factors influencing LCOE include component
efficiency, system sizing, geographical irradiance conditions, and
system losses due to soiling, shading, or temperature [59-61]. An
effective LCOE analysis also requires accurate estimation of energy
yield. In this study, the PV energy output is computed hourly using
site-specific irradiance and temperature data, factoring in thermal
derating, module mismatch losses, inverter efficiency, cable losses,
and battery round-trip efficiency. Moreover, the application of a
degradation factor (typically 0.5-1% annually) simulates real-world
PV performance over time [62].

Combining LCC and LCOE as dual performance indicators
provides a balanced and comprehensive framework for assessing
SAPV system viability. While LCC is more sensitive to financial
parameters and replacement schedules, LCOE emphasizes energy
generation sustainability and operational effectiveness. This dual
approach enables decision-makers to identify configurations that
not only minimize total ownership cost but also deliver cost-
effective electricity generation throughout the system lifespan.

2.4 Meerkat Optimizer Algorithm (MOA)

The Meerkat Optimization Algorithm (MOA) is inspired by
the behavior of meerkats, small diurnal mammals that are found in
desert environments. Their unique behavioral patterns, such as
hunting in groups, standing guard as sentinels and responding to
predators, have been modeled to create an optimization algorithm.
The key behavioral strategies of meerkats, which mimic the search,
vigilance and defensive behaviors, are utilized in the MOA to guide
optimization processes [40]. The main components of the algorithm
are outlined below.

Step 1: Input Initialization

Load the component specifications, including models of PV
modaules, batteries, hybrid inverter, inverters and charge controllers.
Solar irradiance data and hourly load demand profiles are also
imported as part of the simulation inputs. These datasets define the
system’s operating environment and boundary constraints. The
decision variables differ depending on the system configuration:

1. For System 1 (PV-battery-hybrid inverter):
® x;: PV model
® x,: Battery model
® x3: Hybrid inverter model
2. For System 2 (PV-battery-charge controller-solar inverter):
® x;: PV model
® x,: Battery model
® x3: Charge controller model
® x,: Solar inverter model

Each candidate solution (meerkat agent) in the population
encodes one unique combination of the above decision variables,
depending on the system being optimized. Similar representations
are common in other population-based metaheuristics, where each
agent holds a distinct configuration for system-level evaluation [41].

Step 2: Objective Function Formulation
Case 1: Optimize LCC
Case 2: Optimize LCOE

Step 3: Population Initialization

A population of meerkat agents is randomly initialized,
where each agent represents a different combination of system
components. Initialization parameters include the population size
(P), scaling factor (for movement adaptation), and the sentry
probability (which controls behavioral switching between
exploration and exploitation modes).

Step 4: Fitness Function Evaluation

Each meerkat agent is evaluated based on an objective
function that quantifies system performance. In this study, two
optimization cases are considered: (1) minimizing the Life Cycle Cost
(LCC), and (2) minimizing the Levelized Cost of Electricity (LCOE). For
the LCOE-based case, each agent's fitness corresponds directly to its
computed LCOE value, which reflects the economic efficiency of the
system over its lifetime. The agent with the lowest fitness score (i.e.,
the minimum LCOE or LCC, depending on the case) is recorded as
the global best solution in that iteration.

Step 5: Meerkat Movement and Exploration

The core of MOA is executed [40]:

e Group coordination is applied to direct agents toward
superior solutions based on social learning and position
updates.

e Emergency response behavior is triggered to escape
poor-performing areas when threats (e.g., infeasible or
stagnant solutions) are detected.

e Levy flight mechanism introduces randomness for
escaping local optima and improving global search.

Step 6: Boundary Control

Each updated position is verified to ensure it lies within
allowable bounds for each component. Boundary correction is
applied to restore feasibility for out-of-bound solutions.

Step 7: Convergence Criteria

The algorithm checks whether convergence has been
achieved by monitoring population diversity or reaching the
maximum number of iterations.

Step 8: Best Solution Extraction

The solution with the best fitness value based on the
optimize LCC/LCOE is stored as the final optimal configuration.

2.5 Benchmark Algorithms for Comparison

To assess the effectiveness of the Meerkat Optimization
Algorithm (MOA), this study conducts a comparative analysis with
three well-established metaheuristic algorithms: Particle Swarm
Optimization (PSO), Firefly Algorithm (FA) and Slime Mould Algorithm
(SMA). All four algorithms were applied to both System 1 and System 2
configurations and the parameter settings for each are summarized in
Table 2 [42]. For the MOA, the tuning involves three key parameters:
the probability factor, P = 0.1, , the sentry value, sentry = 0.5 and the
scale factor, scale = 0.3. The probability factor determines the chance
of performing a local exploitation step, while the sentry value balances
exploration by mimicking the behavior of sentry meerkats that scan
for optimal zones. The scale parameter adjusts the step size during
solution updates, controlling convergence speed. In the case of PSO,
the acceleration coefficients, C1 = 0 and C2 = 2 were used, consistent
with prior studies [40]. These parameters govern how much influence
a particle’s personal best and the global best have on its velocity update.
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Table 2 The parameter set of algorithms.

Algorithms Parameters
MOA P =0.1, sentry = 0.5, scale = 0.3
PSO C1=0,C2=2[40]
SMA Z=0.03 [44]
FA a=0.5B=1,v=1[44]

In this configuration, the algorithm emphasizes global exploration
while suppressing local search. The SMA was configured with
Z = 0.03, where Z is a dynamic weight parameter that simulates
the oscillatory movement of slime mould toward food sources [44].
This parameter controls the adaptive behaviour of the search agents,
helping the algorithm switch between exploration and exploitation
modes. Finally, the FA was tuned with three parameters: a = 0.5,
B =1andy=1[44]. Here, a (alpha) represents the strength of random
movement, B (beta) governs the attractiveness between fireflies and
v (gamma) controls the rate at which attractiveness decreases with
increasing distance. These parameters collectively guide fireflies toward
brighter and more optimal regions in the solution space. By adopting
these parameter settings, each algorithm was ensured to operate
under standard and literature-supported configurations, allowing for
a fair and rigorous performance comparison across the two system
configurations.

3. Result and discussion

This section presents the optimization results for sizing the
Stand-Alone Photovoltaic (SAPV) system using the Meerkat
Optimization Algorithm (MOA) and compares its performance with
three other metaheuristic algorithms: Particle Swarm Optimization
(PSO), Firefly Algorithm (FA), and Slime Mould Algorithm (SMA). The
evaluation focuses on two critical performance metrics, namely Life
Cycle Cost (LCC) and Levelized Cost of Electricity (LCOE), to determine
the overall cost-effectiveness and energy performance of two distinct
SAPV system configurations, referred to as System 1 and System 2.

3.1 Optimization Result Based on LCC

Table 3 illustrates the optimization outcomes for both
System 1 and System 2 when the objective is to minimize the Life
Cycle Cost (LCC). These results were obtained using MOA under
consistent simulation parameters. In both configurations, the
optimal PV module (code 4) and battery (code 9) were identical,
indicating a uniform preference for these components due to their
balance of cost, efficiency, and durability. However, divergence
occurred in inverter and control strategies. System 1 employed a
hybrid inverter (code 1), integrating the functions of both an inverter
and a charge controller, which simplifies system design and reduces
the number of discrete components. On the other hand, System 2
utilized a separate solar inverter (code 10) and charge controller
(code 1), resulting in a more modular but complex architecture. In
terms of PV module sizing, both systems maintained the same total
number of PV modules (Ns pv = 24), however, the total of PV
modules per charge controller differed, with System 1 utilizing 8
modules per charge controller compared to 5 for System 2. In terms
of cost performance, System 1 achieved a significantly lower LCC of
RM 262,550.25 compared to RM 278,086.57 for System 2,
demonstrating its greater cost-effectiveness. This 5.6% cost reduction
confirms the economic advantage of integrating functionalities through
hybrid components. Furthermore, System 1 completed its
optimization process slightly faster (2.7851 seconds) than System 2
(2.8818 seconds), indicating computational benefits stemming from
reduced complexity. Overall, System 1's design proved more cost-
efficient and computationally leaner.
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Table 3 MOA sizing result of SAPV system for System 1 and System 2 (LCC).

Sizing results System 1 System 2
Optimal PV module code 4 4
Optimal battery code 9 9
Optimal hybrid inverter code 1 -
Optimal inverter code - 10
Optimal charge controller code - 1
Ns_pvin integer 10 2

Nt pvin integer 24 24
Ntotal_PVper charge controller in intEger 8 5
Ns_batein integer 4 4
Np_battin integer 63 63

N¢ barein integer 252 252
N¢_hybria_invin integer 4 N
N¢_hybria_invin integer - 5

Nt invin integer - 7
Optimal life cycle cost (LCC) in RM 262,550.25 278,086.57
Overall computation time, in seconds 2.7851 2.8818

3.2 Optimization Result Based on LCOE

Table 4 summarizes the optimization results when the
objective function was LCOE. Unlike the LCC case, both systems
showed variation in selected PV modules. System 1 used PV module
code 4, while System 2 used code 5, indicating a potential trade-off
between module performance and energy yield. Although both
systems again shared the same battery model (code 9), their
inverter strategies differed: System 1 used a hybrid inverter (code
3), while System 2 retained the modular solar inverter (code 10) and
charge controller (code 1). These selections reflect the algorithms’
preference for compact integration in minimizing unit energy cost.
In terms of configuration, System 1 used fewer PV modules in series
(Ns_pv = 3) compared to System 2 (Ns pv = 2), but both maintained
nearly the same total PV count (24 vs. 25). This indicates that while
total array capacity was similar, the internal arrangement differed
to accommodate system-level efficiency goals.

The calculated LCOE for System 1 was RM 1.0151/kWh,
which is 9.2% lower than the RM 1.1183/kWh achieved by System 2.
The relatively low LCOE suggests that System 1 not only requires lower
capital investment but also delivers more cost-effective electricity
over time. Moreover, the computational time for System 1 (3.6439
seconds) was slightly less than that of System 2 (3.8115 seconds),
reinforcing the operational simplicity of the hybrid design.

Table 4 MOA sizing result of SAPV system for System 1 and System 2 (LCOE).

Sizing results System 1 System 2
Optimal PV module code 4 5
Optimal battery code 9 9
Optimal hybrid inverter code 3 -
Optimal inverter code - 10
Optimal charge controller code - 1
Ns_pvin integer 3 2
Nt pvin integer 24 25
Ntota/,PVper charge controller in integer 10 5
Ns pattin integer 4 4
Np_battin integer 62 62
Nt nybrid_invin integer 248 248
Nt _hybrid_invin integer 5 -
N¢_hybrid_invin integer - 5
Neinvin integer - 7
Optimal Levelized Cost of Energy (LCOE), in

(RM/kWh) 1.0151 1.1183
Overall computation time, in seconds 3.6439 3.8115
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3.3 Convergence Analysis and MOA, PSO, FA and SMA

Fig. 3(a) and Fig. 3(b) present the convergence characteristics
of MOA, PSO, FA, and SMA in minimizing the Life Cycle Cost (LCC) for
System 1 and System 2, respectively. For System 1, the MOA achieves
the most rapid and stable convergence, reaching its optimal LCC
value of approximately RM 262,550.25 at the second iteration and
maintaining this best value throughout the remaining simulation
period up to iteration 30. In contrast, the PSO and SMA attain near-
optimal performance after approximately five iterations, exhibiting
transient fluctuations before stabilizing. The FA demonstrates the
slowest convergence behaviour, stagnating at a higher cost level
(around RM 264,500), indicating a weaker ability to escape local
optima and limited exploitation capability.

A similar trend is observed for System 2, where the MOA
again achieves the lowest LCC (approximately RM 278,086.57) by
iteration 4. The SMA converges faster than the PSO for this
configuration and stabilizes by iteration 6, whereas the PSO reaches
a plateau around iteration 13. The FA continues to exhibit the
slowest response and converges at a noticeably higher cost value.

Fig. 4(a) and Fig. 4(b) illustrate the convergence characteristics
of MOA, PSO, FA, and SMA in minimizing the Levelized Cost of Electricity
(LCOE) for System 1 and System 2, respectively. For System 1, the MOA
again demonstrates the fastest and most stable convergence, reaching
its optimal LCOE value of approximately 1.0151 RM/kWh at the second
iteration and maintaining this optimum throughout the 30-iteration
period. The PSO achieves its minimum LCOE at iteration 8, while the FA

reaches its lowest value at iteration 10, both showing slower
convergence compared to the MOA. In contrast, the SMA exhibits the
slowest convergence, with a gradual decline in cost and final
stabilization around iteration 12 at approximately 1.12 RM/kWh,
indicating weaker exploitation ability and limited efficiency in
minimizing the cost function compared with the other algorithms.

For System 2, a similar pattern is observed. The MOA
achieves the most rapid and consistent convergence, reaching its
lowest LCOE value of approximately 1.1183 RM/kWh within the first
five iterations and maintaining this best value until the end of the
simulation. The SMA converges next, achieving its minimum cost
around iteration 10, while the PSO reaches its lowest value near
iteration 16. The FA, however, shows the slowest convergence
behaviours, stabilizing at a noticeably higher LCOE (about 1.135
RM/kWh), suggesting lower exploitation capability and a higher
tendency to remain trapped in local optima.

In conclusion, the convergence analyses presented in Fig. 3
and 4 collectively demonstrate that the Meerkat Optimization
Algorithm (MOA) consistently delivers outstanding performance in
optimizing both Life Cycle Cost (LCC) and Levelized Cost of Energy
(LCOE) for the two SAPV configurations. In both cases, MOA rapidly
attains the optimal solution within the first few iterations and
maintains stable convergence without oscillation, reflecting its
effective balance between exploration and exploitation.
In contrast, PSO and SMA show slower convergence with minor
fluctuations before stabilizing, while FA exhibits the weakest search
ability and remains trapped at higher cost levels.
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4. Conclusion

The comparative analysis presented in this study reveals that
System 1, which integrates a photovoltaic (PV) array, battery storage,
and a hybrid inverter, demonstrates greater efficiency and cost-
effectiveness compared to System 2, which utilizes separate inverter
and charge controller components. Optimization results for both life
cycle cost (LCC) and levelized cost of energy (LCOE) consistently favor
System 1. This advantage is primarily attributed to its simpler
configuration, reduced number of components, and easier integration
process. The hybrid inverter, which consolidates multiple power
conditioning functions into a single device, not only minimizes the
overall system cost but also streamlines the control architecture,
leading to faster convergence during the optimization process.
Consequently, System 1 emerges as the most suitable configuration
for stand-alone photovoltaic (SAPV) systems, especially in rural or off-
grid regions where cost-performance trade-offs are critical.

Among the four metaheuristic algorithms evaluated
Meerkat Optimization Algorithm (MOA), Particle Swarm
Optimization (PSO), Firefly Algorithm (FA) and Slime Mould
Algorithm (SMA), the MOA consistently produced the most
favorable optimization results across both objective functions. The
MOA demonstrated strong convergence behavior, often reaching
near-optimal solutions in fewer than five iterations. This
performance underscores the algorithm’s strength, computational
efficiency, and capacity to deliver stable outcomes even under
constrained processing resources or real-world conditions. Its
search mechanism, inspired by cooperative animal behavior and
supported by adaptive parameter control, allows it to maintain an
effective balance between exploration and exploitation phases
throughout the optimization process.

Furthermore, the results affirm that the MOA is a reliable
and effective tool for addressing multi-objective optimization
problems in SAPV system design. By simultaneously considering
both economic (LCC) and energy-based (LCOE) performance metrics,
the MOA facilitates well-informed decision-making for engineers
and system planners. Its ability to rapidly identify cost-optimal
configurations makes it particularly suitable for applications
involving real-world load profiles, variable irradiance data, and
geographically diverse deployment scenarios.

Overall, this study contributes a novel and practical
framework for optimizing SAPV systems using a bio-inspired
algorithm under dual-configuration analysis. The findings serve as a
valuable reference for the design and implementation of standalone
renewable energy systems, particularly in remote or resource-
constrained areas. Future work may extend this research by
incorporating additional objectives such as system reliability,
battery degradation modeling, and carbon footprint minimization,
thereby enhancing the comprehensiveness of sustainability-focused
optimization in off-grid energy planning.
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