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ABSTRACT 
 

Erythemal ultraviolet ( EUV)  irradiance, with a wavelength range of 280–400 nm, is 
associated with both health risks and physiological benefits. While moderate EUV exposure 
stimulates vitamin D synthesis—essential for bone health and immune function—excessive 
exposure can cause skin damage, ocular complications, and increased risk of skin cancer, 
highlighting the need for accurate UV monitoring. However, ground-based measurements 
remain limited due to the high cost of instrumentation.  This study introduces a semi-
empirical model for estimating hourly EUV irradiance in Thailand using meteorological and 
satellite data.   The model was developed using cloud index, visibility, total column ozone, 
and the cosine of the solar zenith angle across four stations: Chiang Mai, Ubon Ratchathani, 
Nakhon Pathom, and Songkhla. The baseline model, constructed using data from 2016 to 
2019, achieved a mean bias difference (MBD) of 3.57%, a root mean square difference 
(RMSD) of 21.80%, and an R² of 0.81. However, its performance declined in areas with high 
aerosol loading and low visibility, particularly in Chiang Mai, where seasonal biomass 
burning is prevalent. To improve accuracy, a modified model was developed by 
incorporating aerosol optical depth (AOD) at stations where such data were available.  
The enhanced model yielded an MBD of 6.18%, an RMSD of 15.16%, and an R² of 0.93. 
These results highlight the critical role of aerosols in UV attenuation and demonstrate the 
model’s potential for scalable, cost-effective applications in UV risk assessment, especially 
in regions lacking high-resolution ground monitoring infrastructure. 

 

1. Introduction 

Ultraviolet radiation (UV) is part of the solar spectrum and 
consists of three bands i.e. UV-A (320-400 nm), UV-B (280-320 nm) 
and UV-C (100-280 nm). As stratospheric ozone can strongly absorb 
short wavelength radiation, all of UV-C cannot transmit to the 
earth’s surface. Thus, only UV-A and part of UV-B reach the earth’s 
surface with typical amounts of about 6.2% and 1.3% of the total 
energy from the sun respectively [1]. Although the total incident flux 
accounts for only a small fraction, approximately 8%, the high 
energy of the radiation may still damage living tissues [2-3]. The 
responses of organism to UV radiation are different, depending on 
wavelength. In this work, we are interested in UV radiation which 
has an effect on human skin. This radiation is usually called 
erythemal ultraviolet radiation or EUV. It covers the spectral UV 
irradiance between 280 – 400 nm weighted by the erythema action 
spectrum or erythemal response defined by Commission Internationale 
de l’Eclairage (CIE). Erythemal ultraviolet radiation (EUV) intensity can 
be calculated by integrating of the product of solar spectrum and 
erythemal response over 280 to 400 nm as follows:  

𝐸𝑈𝑉 = න 𝑅ாఒ𝐼ఒ

ସ଴଴

ଶ଼଴

𝑑𝜆 (1) 

where EUV is the solar erythemal ultraviolet radiation in W. m- 2, 
𝑅ாఒ is erythemal response in dimensionless, 𝐼ఒ is solar spectrum in 
W.m-2 and 𝜆 is wavelength in nm. 

The strength of UV radiation depends on atmospheric 
components, particularly stratospheric ozone. The ozone layer 
filters UVC and UVB from reaching the atmosphere, but substances 
like chlorofluorocarbons (CFCs) have depleted it [4-5]. UV radiation 
reaches Earth's surface more. Besides ozone, clouds, dust, and 
atmospheric moisture can impact UV radiation intensity [6-7]. 

UV radiation, when administered in suitable quantities, 
facilitates the synthesis of vitamin D in the human body, prevents 
rickets in children, and is employed in medical therapies for 
disorders such as psoriasis and sterilization [8]. Nonetheless, 
excessive exposure can result in skin burns, erythema, and a 
heightened risk of skin cancer. It can also damage human eyes, 
resulting in disorders such as inflammation and cataracts [9]. 
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Considering the benefits and risks associated with ultraviolet 
radiation, both researchers and the general public strive to monitor 
daily ultraviolet radiation levels to mitigate its potential hazards. 
Researchers have deployed instruments at various locations to 
monitor the intensity of ultraviolet radiation. Also they try to develop 
model for prediction these value such as Hu et al. (2008) [10] studied 
the influence of the clearness index on ultraviolet solar radiation at 
two high-altitude locations on the Tibetan Plateau: Lhasa and 
Haibei. The research examines the relationship between UV 
radiation, global solar radiation, optical mass, and atmospheric 
conditions. Lhasa has stronger yearly UV radiation than Haibei due 
to its altitude and lower aerosol and ozone levels. The study found 
that cloud cover attenuates global solar radiation more than UV 
radiation and raises the UV-to-global solar radiation ratio. 
Quantifying UV radiation-optical mass relationships revealed UV 
behavior under different air conditions. These findings help explain 
UV climate and UV radiation's ecological effects, especially in high-
altitude places with distinct atmospheric circumstances. Choosri et 
al. (2017) [11] estimated monthly average hourly diffuse erythemal 
ultraviolet (EUV) radiation in Thailand under all sky conditions using 
an empirical model. The model included air mass, aerosol optical 
depth, and a satellite-derived cloud index, which matched ground-
based data. Diurnal and seasonal diffuse EUV radiation maps 
generated by the model showed significant geographical and 
temporal variability influenced by cloud cover and solar zenith 
angle. These findings help explain UV radiation's distribution and 
potential effects on tropical ecosystems and health. Lamy et al. 
(2018) [12] used Bentham spectroradiometer readings and satellite 
observations to estimate Reunion Island's surface UV radiation 
(SUR). The island has higher SUR than comparable sites due to its 
tropical location, low ozone, and low aerosol concentration. UVI is 
estimated using the Tropospheric Ultraviolet and Visible (TUV) 
radiative transfer model under clear skies and pyranometer data 
during cloudy times. Ozone cross-sections and total column ozone 
greatly affect UVI estimates in SUR modeling, according to the study. 
Aerosol characteristics and alien solar spectra are also examined. 
The typical relative difference between predicted and observed data 
is 0.5%, with SBUV ozone data being most accurate. These findings 
improve tropical UVI parameterization for climate modeling and UV 
exposure risk assessments. García-Rodríguez et al. (2023) [13] 
examined UV erythemal irradiance (UVER) in Burgos, Spain, under 
various sky conditions using meteorological data from September 
2020 to June 2022. Multilinear regression (MLR) and artificial neural 
networks (ANN) are used to model UVER using climatic factors, 
overcome the lack of UV sensors. ANN models outperform MLR with 
higher accuracy (R² > 0.95) and lower error (nRMSE < 15%), especially 
under clear skies. UVER/GHI peaked at noon and in summer, while 
cloud cover strongly attenuated it. The study found that ANN-based 
models can accurately estimate UVER from meteorological factors, 
which has implications for public health, climate studies, and solar 
energy. Buntoung et al. (2024) [14] used ground-based and satellite-
based data to estimate monthly average hourly vitamin D–weighted 
solar UV radiation over Thailand. Ozone, cloud, aerosol, solar zenith 
angle, air mass, and extraterrestrial UV radiation are inputs. 
Numerous researchers have examined UV radiation changes or 
developed models using readily available atmospheric variables 
[3,15-21]. Thailand has four UV radiation monitoring stations in 
Chiang Mai, Ubon Ratchathani, Nakhon Pathom, and Songkhla. Each 
station represents a region in Thailand. For Chiang Mai, it is located at 
98.98°E and 18.78°N, which displays the geographical characteristics 
of the northern region. The local climate is characterized by tropical 
savanna climate type Aw of the Köppen climate classification [22-23]. 

The southwest monsoon (May–October) has a significant impact on 
Chiang Mai, resulting in elevated humidity and substantial rainfall. 
The climate is pleasant during the Northeast Monsoon (November–
February), which is characterized by dry air. Aerosols are an important 
component of climate science. Aerosols in Chiang Mai are produced by 
both natural and human-made sources. The concentrations of aerosols 
in Chiang Mai are subject to significant seasonal fluctuations [24-25]. 
Ubon Ratchathani is a province in the Isan region of northeastern 
Thailand, famous for its tropical climate, bending plateaus, and 
border with the Mekong River.  One of Thailand's largest provinces, 
it is characterized by a combination of plains, rivers, forests, and 
hills. Ubon Ratchathani is located at 104.87oE and 15.25oN. Ubon 
Ratchathani experiences a tropical savanna climate (Aw), which is 
comparable to that of Chiang Mai.  Ubon Ratchathani is affected by 
the influence of two primary monsoons: The Southwest Monsoon 
(May–October), which brings warm, moisture-laden air from  
the Indian Ocean, resulting in heavy rainfall, high humidity, and 
occasional flooding, particularly along the Mun and Mekong Rivers; 
and the Northeast Monsoon (November–February), which carries 
cool, dry air from China and Siberia, resulting in cooler temperatures, 
dry weather, and occasional cold waves during the winter months. 
Nakhon Pathom is a central province of Thailand, situated 
approximately 56 km west of Bangkok, at 13.82°N, 100.04°E.  
It is situated within the Chao Phraya River Basin and features a flat 
terrain that is characterized by agricultural lands, canals, and a few 
low-lying hills. Throughout the year, the climate and weather patterns 
of Nakhon Pathom are significantly influenced by the monsoon.  
The province, like much of central Thailand, is influenced by two 
primary monsoons: The Southwest Monsoon and the Northeast 
Monsoon. Songkhla is located at 7.2° N latitude and 100.6° E 
longitude. Songkhla is a coastal province in southern Thailand, located 
along the Gulf of Thailand. It is characterized by a tropical climate, 
which is characterized by consistently warm temperatures and 
significant rainfall throughout the year. The province is a site of 
various geographical features, including mountains, lakes, beaches, 
and islands [26-27]. 

Each station exhibits distinct climatic and geographical 
characteristics, as previously described. Although these four stations 
provide valuable data for EUV monitoring, their spatial coverage is 
insufficient to represent the entire country. Consequently, 
researchers have attempted to develop models using easily 
accessible and spatially comprehensive atmospheric data to 
estimate UV irradiance across broader areas. However, studies 
focusing specifically on the development of models for hourly or 
instantaneous UV radiation particularly erythemal ultraviolet 
remain limited in Thailand. 

 In response to this research gap, the present study introduces 
a semi-empirical model for estimating hourly EUV irradiance using 
commonly available meteorological and satellite-derived data.  
The model is designed to strike a balance between computational 
simplicity and scientific accuracy, making it suitable for use in 
regions with limited monitoring infrastructure. Given the high 
spatial and temporal variability of atmospheric constituents—
particularly aerosols and clouds in tropical regions like Thailand— 
his approach enables scalable, low-cost, and regionally adaptable 
UV estimation across diverse environmental conditions. 

 Recent studies have underscored the critical role of aerosols 
in modulating UV radiation, especially in Southeast Asia, where 
seasonal biomass burning leads to sharp fluctuations in atmospheric 
transparency [28-30]. Integrating such variables into modeling 
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frameworks is increasingly important for improving spatial accuracy 
and supporting public health applications, such as UV exposure 
forecasting and environmental risk communication. 

 The objective of this study is to develop a semi-empirical model 
for estimating hourly EUV irradiance using satellite and meteorological 
parameters. The model aims to estimate EUV irradiance in areas lacking 
direct measurements, offering a cost-effective alternative to ground-
based instruments. Moreover, the results obtained from the model can 
support public health initiatives by serving as a reference for UV 
exposure alerts and long-term risk assessments. 

2. Data and Instruments   

2.1 Ground-based measurement data   

2.1.1 Erythemal ultraviolet irradiance 

Hourly erythemal ultraviolet (EUV) irradiance was measured 
using UV biometers (Solar Light, model 501A) at four stations across 
Thailand, namely Chiang Mai (18.78oN, 98.98oE), Ubon Ratchathani 
(15.25oN, 104.87oE), Nakhon Pathom (13.82oN, 100.04oE) and 
Songkhla (7.20oN, 100.60oE) as shown in Fig. 1. The instruments are 
based on a filtered photodiode system and are regularly calibrated 
using a UV spectroradiometer (Bentham DMC150) at the Atmospheric 
Physics Laboratory, Silpakorn University [14]. Measurements were 
recorded every minute from 2016 to 2021, and converted to hourly 
averages using the method proposed by Webb et al. (2006) [31]. 

 

Fig. 1 Study area of erythemal ultraviolet irradiance in Thailand. 

Data quality control followed the procedures outlined in 
Webb et al. (1988) [32] and Seckmeyer et al. (2007) [33]. The dataset 
was divided into two groups: 2016–2019 for analysis and model 
development, and 2020–2021 for model validation. 

 Example of monthly average hourly EUV irradiance data at 
four stations during 2016-2021 are shown in Fig. 2.

 

Fig. 2 Monthly average hourly erythemal ultraviolet (EUV) irradiance at four stations in Thailand (2016–2021). Each curve represents the hourly 
average across all days and years during the selected month.  
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 Fig. 2 presents the monthly average of hourly EUV irradiance 
variations at four stations across Thailand during the 2016–2021 
period. All stations exhibit a similar diurnal pattern, with irradiance 
increasing in the morning, peaking around solar noon (approximately 
12:00 local time), and decreasing in the afternoon. The intensity of the 
monthly average hourly EUV irradiance ranges from 0.190 to 0.270 
W·m⁻². This trend reflects the influence of the solar zenith angle, 
which determines the atmospheric path length that solar radiation 
must traverse. Despite the overall uniform pattern, variations in peak 
intensities among the stations are evident. Chiang Mai and Nakhon 
Pathom tend to exhibit slightly higher EUV levels, likely due to drier 
conditions and reduced cloud cover during certain months. 
Conversely, Songkhla records lower peak values and a flatter curve, 
possibly influenced by persistent cloud cover and higher humidity 
typical of southern Thailand’s tropical climate. These spatial and 
temporal variations highlight the importance of multi-parameter 
modeling that incorporates solar geometry, cloud index, and visibility 
to accurately estimate hourly EUV irradiance. 

2.1.2 Visibility data 

 A useful surrogate for aerosol optical depth (AOD), which 
plays a critical role in modulating EUV irradiation through scattering 
and absorption mechanisms, is the visibility parameter [34-35]. 
Although direct AOD data from satellites or ground-based sun 
photometers are more accurate, such data are often limited in 
spatial and temporal coverage. In contrast, the Thai Meteorological 
Department consistently records visibility at more than 80 stations 
nationwide, providing broader geographic coverage and more 
continuous data availability. This widespread accessibility makes 
visibility a practical and readily available parameter for large-scale 
modeling, especially in areas lacking direct aerosol observations. 
Moreover, previous studies have shown that, under typical 
meteorological conditions in Southeast Asia, visibility correlates well 
with aerosol loading—particularly during haze episodes or biomass 
burning events. Therefore, incorporating visibility into the model not 
only enhances spatial applicability but also supports the estimation of 
EUV irradiation in regions where AOD data are unavailable or sparse. 

 In this work, visibility data were obtained from 86 meteorological 
stations distributed across Thailand, as illustrated in Fig. 3. These stations 
are operated by the Thai Meteorological Department (TMD), ensuring 
standardized procedures and consistent data quality nationwide.  
The data were recorded by professional meteorologists trained in 
observation techniques, adhering to established protocols defined 
by the World Meteorological Organization (WMO). 

 

Fig. 3 location of meteorological stations in Thailand.  

 Visibility observations were taken every three hours at local 
time specifically at 01:00, 04:00, 07:00, 10:00, 13:00, 16:00, 19:00, 
and 20:00. These multiple time points throughout the day capture 
diurnal variation in aerosol conditions, which is essential for 
estimating EUV irradiance. The high spatial and temporal density of 
the data makes it particularly useful for interpolation across 
unsampled areas, enabling full spatial coverage of the country. 
Furthermore, the availability of long-term visibility records allows 
for integration with satellite data and supports reliable model 
development and validation over multiple years. 

 Hourly visibility data were generated using linear interpolation 
from 3-hourly observations, ensuring smooth temporal transitions and 
consistency with other hourly parameters in the model. This interpolation 
process enables the estimation of visibility values at locations where no 
meteorological stations are present, ensuring full spatial coverage for 
model application. The interpolation technique employed considers 
both spatial proximity and temporal trends, allowing for smoother 
and more realistic transitions between observation points. 

 By obtaining hourly visibility data, the model can more 
accurately reflect short-term variations in aerosol content, which is 
particularly important for capturing diurnal dynamics of EUV irradiance. 
This comprehensive dataset is essential for both model formulation  
and validation, as it allows consistent integration with other hourly 
parameters such as solar zenith angle, cloud index, and EUV 
measurements. Ultimately, the interpolated visibility data enhance the 
generalizability and scalability of the model, supporting its application in 
regions with limited or no ground-based observations.  

 Ground-based aerosol optical depth (AOD) measurements 
were obtained using sun photometers (CIMEL, model CE-318) installed 
at the same four stations as the EUV irradiance measurements.  
The instruments are part of the AERONET network and all raw data 
undergo quality control and are further processed into scientific 
variables from the AERONET central facility. Average daily values of 
wavelength exponent can be downloaded from the AERONET website 
at http://aeronet.gsfc.nasa.gov. In this work, the wavelength exponent 
at 340 nm were retrieved from 2016-2021 for each station. The relation 
between AOD and visibility as follow: 

𝛽 = 0.589 − 0.068(𝑉𝐼𝑆) + 0.0019(𝑉𝐼𝑆)ଶ (2) 

 Angstrom’s turbidity coefficient (𝛽) was computed from 
visibility data (𝑉𝐼𝑆) in km as follows [35]. 

 Angstrom’ s turbidity coefficient can be used to calculate 
AOD by using the Angstrom’s equation [36] as follows: 

𝐴𝑂𝐷ଷସ଴ = 𝛽𝜆ିఈ (3) 

where 𝐴𝑂𝐷ଷସ଴ is aerosol optical depth at 340 nm, 𝛼 is wavelength 
exponent, 𝜆 is wavelength in µm and 𝛽 is Angstrom’s turbidity coefficient. 

2.1.3 solar zenith angle 

 Air molecules, water vapor, clouds, and aerosols absorb  
and scatter solar radiation as it travels through the atmosphere.  
If the distance to the atmosphere or optical path is long, the solar 
radiation will be more attenuated. The path length is also related to 
air mass; as longer path lengths contain higher air mass.  Generally, 
air mass is used in term of relative air mass [36] and relative air mass 
is usually estimated from solar zenith angle [𝜃௭]. Therefore, in order 
to estimate hourly EUV irradiance in this work, we used air mass in 
term of solar zenith angle.       
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 Variation of hourly EUV irradiance depends on the solar path 
length. High path length during sunrise and sunset affect large 
extinction of solar radiation.  While, small extinction at low path length 
leads high solar radiation intensity. Solar zenith angle can be 
calculating by Iqbal (1983) [36].  

2.1.4 Extraterrestrial erythemal ultraviolet irradiance 

 Extraterrestrial EUV irradiance refers to the intensity of 
ultraviolet radiation—specifically within the erythemally effective 
wavelength range—received at the top of Earth’s atmosphere, prior 
to any attenuation by atmospheric components such as ozone, 
aerosols, clouds, and gases. This radiation originates from the sun 
and represents the maximum potential UV exposure that could 
affect human skin in the absence of atmospheric filtering. 

 In scientific modeling, extraterrestrial EUV irradiance serves 
as a reference or baseline value for estimating surface-level UV 
exposure after accounting for atmospheric absorption and 
scattering. Its calculation depends on parameters such as the solar 
zenith angle, Earth–Sun distance, and the spectral distribution of 
solar radiation. A standard method for this calculation can be found 
in Iqbal (1983) [36]. 

2.2 Satellite data 

2.2.1 Cloud index 

 Cloud index (n) represents the effect of clouds on erythemal 
ultraviolet irradiance. For cloud index data, these data can be 
obtained from Himawari-8 satellite. Himawari is owned by Japan 
Meteorological Agency (JMA). This satellite is located around 
140.7°E above the equator and it was launched in 2016 to replace 
MTSAT. The Advanced Himawari Imager (AHI) sensor, a new payload 
forecast and aviation controls. For meteorology research, it 
comprises of a 16 channel multispectral imager to capture visible 
light and infrared images of the Asia-Pacific region. The Himawari 
system is scanned at a frequency of 10 minutes and the product 
comprises of 16 bands. The functions and specifications are 
improved from MTSATs. Color images will be derived by compositing 
three visible bands (blue: 0.47 µm; green: 0.51 µm; red: 0.64 µm). In 
this work, visible band for representation of cloud effected was 
used. The satellite data are 8-bit digital visible channel of 
Geostationary meteorology satellite. The data were collected 
between 8:30-16:30 during 2016-2021. Firstly, a digital count for 
each image (550x850 pixels) was converted to pseudo-reflectivity 
using a calibration table by satellite agency. The table consists of 
gray level value (0-255) and this value relates with earth-
atmospheric albedo (0-1). The value was divided by the cosine of 
local solar zenith angle, and then earth-atmosphere reflectivity was 
obtained using these methods (Fig. 4). The formation of cloud index 
proposed by Cano et al. (1986) [37] as shown in Eq. 4  

𝑛 =
𝜌ா஺ − 𝜌௠௜௡

𝜌௠௔௫ −  𝜌௠௜௡
 (4) 

where 𝑛 is cloud index, 𝜌ா஺ is an earth-atmosphere reflectivity, 
𝜌௠௔௫ is maximum reflectivity and  𝜌௠௜௡ is minimum reflectivity. To 
obtain 𝜌௠௜௡ , the reflectivity image was selected at noontime and 
then compared pixel by pixel for each month. The minimum 
reflectivity of each pixel was selected and used as representative of 
ground surface albedo. In contrast, the maximum pixel value for 
each pixel was selected and represented as cloud reflectivity. Cloud 
index related to cloud cover, with high cloud index (close to 1) 
representing high cloud cover (close to 10) and vice-versa. 

 

Fig. 4 An example of a navigated image. 

2.2.2 Total column ozone 

 Total column ozone plays a crucial role in modulating 
erythemal ultraviolet irradiance by absorbing significant portions of 
UV- B radiation within the stratosphere.  This protective effect is 
essential in limiting the biological impacts of solar radiation on 
human health.  In this study, daily total column ozone data were 
acquired from the Ozone Monitoring Instrument ( OMI)  onboard 
NASA's Aura satellite.  OMI provides high- quality, near- global 
measurements based on backscattered UV and visible radiation, 
with a spatial resolution of 0.25° x 0.25°, enabling region-specific 
analysis.  The data were processed in Level 3e format and spatially 
matched to the locations of the ground stations.  Given its well-
established reliability, OMI- derived ozone measurements were 
selected to ensure robust and consistent input for the model.  To 
align with the model’ s hourly resolution, the daily ozone data were 
interpolated accordingly.  For the total column ozone data in this 
work, daily total column ozone was obtained from OMI/ AURA 
satellite during 2016-2021 (6 years). These data were accessed from 
https://acd-ext.gsfc.nasa.gov/anonftp/toms/omi/data/Level3e/ozone/. 

 For the data found that ozone concentration over Thailand 
typically ranges between 250 and 300 Dobson Units (DU), depending on 
the season and geographic location. Higher ozone values, around 280-
300 DU, are commonly observed during the dry and summer seasons 
(March–May), when solar radiation is intense and atmospheric circulation 
enhances ozone formation. In contrast, values tend to decrease to about 
250-270 DU during the rainy season (June–October), due to increased 
cloud cover and reduced photochemical activity.  Regional variations 
also occur, with the northern part of Thailand often recording slightly 
higher ozone levels than southern regions.  

3. Model formulation 

 In this study, a semi-empirical model was formulated to 
estimate hourly erythemal ultraviolet irradiance using both satellite-
derived and ground-based meteorological parameters. The dataset 
used for model development covers diverse climatic and geographical 
conditions across Thailand, ensuring that the model captures regional 
variability in EUV irradiance. This station distribution ensures that the 
model can capture regional variability in EUV irradiance influenced by 
local weather conditions, aerosol loading, and cloud dynamics. 
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 To ensure robust model construction and minimize the risk 
of overfitting, the complete dataset spanning 6 years (2016–2021) 
was divided into two subsets: one for model training and parameter 
fitting (2016–2019), and the other for independent model validation 
(2020–2021). This temporal separation allows for unbiased model 
evaluation and simulates real-world predictive performance, as 
supported by previous studies [38-39].  

 The foundational variable in this modeling approach is the solar 
zenith angle, which directly determines the path length of solar 
radiation through the atmosphere.  Since EUV irradiance is strongly 
dependent on the angle at which sunlight penetrates the atmosphere, 
only data with a solar zenith angle less than 70° were selected.  
This threshold minimizes cosine error and ensures measurement 
reliability, as supported by Cordero et al. (2008) [40]. 

 As a first step, hourly EUV irradiance was plotted against the 
cosine of the solar zenith angle for each station (Fig.5). The observed 
relationship exhibits a clear exponential trend, aligning with 
theoretical expectations from radiative transfer models. However, 
notable data scatter around the curve was also observed, 
particularly under cloudy or hazy conditions. This deviation 
highlights the influence of additional atmospheric variables namely, 
cloud index and visibility on EUV transmission.  

 In Fig. 5, shown the relationship between hourly EUV 
irradiance and the cosine of the solar zenith angle at 4 stations in 
Thailand. For all stations, EUV irradiance increases nonlinearly with 
increasing cosine of the solar zenith angle, confirming an 
exponential trend. This trend is consistent with the radiative transfer 
theory, where the path length of solar radiation shortens as the sun 
moves closer to zenith, thus reducing atmospheric attenuation. 
Despite the general exponential pattern, the data show significant 
scatter around the trend, especially during lower sun zenith angle 
(cosine of the solar zenith angle < 0.6). This variance can be defined 
to atmospheric components including cloud and aerosol, which are 
not included into this one-variable correlation. 

 

Fig. 5 The relation between the EUV data and cosine of solar zenith 
angle for A) Chiang Mai (CM), B) Ubon Ratchathani (UB), C) Nakhon 
Pathom (NP) and D) Songkhla (SK). N is total number of the data.  

 These variations generate attention to the need of other 
criteria like cloud index and visibility in the design of the model. 
Therefore, in the next step of the analysis, the difference between  
the measured EUV irradiance (𝐸𝑈𝑉௠௘௔௦௨௥௘ௗ) and the exponentially 
modeled EUV (𝐸𝑈𝑉௠௢ௗ௘௟(𝑧)) for each station was calculated.  
The difference was then plotted against the cloud index and  
visibility data. The relationship for both of these is linear relations, 
the statistics for each parameter, as shown in Fig.6 and Table 1-2. 

Table 1 Statistic result of parameter with effect of cloud (n) on EUV.  

Stations 
𝐸𝑈𝑉௠௘௔௦௨௥௘ௗ − 𝐸𝑈𝑉௠௢ௗ௘௟(𝑧) = 𝛽௢ + 𝛽ଵ𝑛 

𝛽௢ 𝛽ଵ t-stat p-value R 

Chiang Mai 0.03134 -0.11423 -47.7439 <0.01 0.44 
Ubon Ratchathani 0.03551 -0.17405 -74.9143 <0.01 0.62 
Nakhon Pathom 0.03320 -0.18289 -89.5774 <0.01 0.68 
Songkhla 0.04616 -0.21972 -103.488 <0.01 0.72 

Table 2 Statistic result of parameter with effect of visibility (VIS) on EUV.  

Stations 
𝐸𝑈𝑉௠௘௔௦௨௥௘ௗ − 𝐸𝑈𝑉௠௢ௗ௘௟(𝑧) = 𝛾௢ + 𝛾ଵ𝑉𝐼𝑆 

𝛾௢ 𝛾ଵ t-stat p-value R 

Chiang Mai -0.04018 0.004979 15.64721 <0.01 0.16 
Ubon 
Ratchathani 

-0.11063 0.012478 20.29864 <0.01 0.21 

Nakhon Pathom -0.05145 0.007112 20.51142 <0.01 0.21 
Songkhla -0.18335 0.018835 40.77891 <0.01 0.37 

 The regression coefficients (𝛽௢ , 𝛽ଵ, 𝛾௢, 𝛾ଵ) in both tables are 
statistically significant at the 99% confidence level, as indicated by 
p-values less than 0.01 and t-statistic values exceeding ±2.576 [39]. 
These results confirm that the relationships between cloud index, 
visibility, and EUV irradiance are not due to random variation, but 
represent statistically significant atmospheric influences on UV radiation. 

 As shown in Fig. 6, a comparative analysis across the four 
monitoring stations—Chiang Mai, Ubon Ratchathani, Nakhon 
Pathom, and Songkhla—reveals region-specific patterns in model 
deviation (𝐸𝑈𝑉௠௘௔௦௨௥௘ௗ − 𝐸𝑈𝑉௠௢ௗ௘௟(𝑧))under varying atmospheric 
conditions. These trends are further supported by the statistical 
data in Tables 1 and 2, which show that both cloud index and 
visibility significantly affect EUV variation. For instance, Songkhla 
consistently presents low deviation under conditions of high 
humidity and persistent cloud cover. This is consistent with its 
location in southern Thailand near the ocean, where clouds and 
rainfall occur throughout much of the year, and maritime aerosols 
contribute to reduced irradiance. Conversely, Chiang Mai shows the 
highest deviation during periods of low visibility, likely due to 
seasonal biomass burning, yet exhibits minimal impact from cloud 
cover and visibility overall. This is attributable to its inland 
geography, relatively dry climate, and the dominance of fine-mode 
aerosols. Ubon Ratchathani demonstrates marked variability in both 
cloud cover and visibility, while Nakhon Pathom shows relatively 
stable model performance across all variables. These findings 
collectively underscore the importance of incorporating localized 
atmospheric parameters—such as cloud index, visibility, and aerosol 
characteristics—into EUV estimation models to enhance their 
spatial accuracy and robustness. 

 The physical model includes atmospheric parameters such 
as aerosols, clouds, ozone, and air mass, based on the information 
in Iqbal (1983) [36]. Therefore, we proposed a simple semi-empirical 
model similar to the Iqbal model, which is a straightforward formula, 
not complicated.

y = 0.0077e3.4801x

R² = 0.6132

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.20 0.40 0.60 0.80 1.00 1.20

EU
V 

ir
ra

di
an

ce
  (

W
/m

2 )

Cosine of zenith angle (-)

B) Ubon Ratchathani 
N= 8796 

y = 0.0069e3.7016x

R² = 0.7048

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.20 0.40 0.60 0.80 1.00 1.20

EU
V 

irr
ad

ia
nc

e 
 (W

/m
2 )

Cosine of zenith angle (-)

C) Nakhon Pathom 
N=9525 

y = 0.0065e3.8248x

R² = 0.6733

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.20 0.40 0.60 0.80 1.00 1.20

EU
V 

irr
ad

ia
nc

e 
 (W

/m
2 )

Cosine of zenith angle (-)

D) Songkhla
N=10233 

y = 0.0075e3.4481x

R² = 0.5986

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.20 0.40 0.60 0.80 1.00 1.20

EU
V 

irr
ad

ia
nc

e 
 (W

/m
2 )

Cosine of zenith angle (-)

A) Chiang Mai 
N=9711 



Journal of Renewable Energy and Smart Grid Technology, Vol. 20, No. 2, July-December 2025 
  

 

134 

 

Fig 6. Comparison of model deviation (𝐸𝑈𝑉௠௘௔௦௨௥௘ௗ − 𝐸𝑈𝑉௠௢ௗ௘௟(𝑧)) under varying atmospheric conditions across four monitoring stations in Thailand.

The presented model has the following form: 

𝐸𝑈𝑉 = 𝑎଴𝐸𝑈𝑉଴ 𝑒𝑥𝑝( 𝑎ଵ𝑉𝐼𝑆 + 𝑎ଶ𝑛 + 𝑎ଷ𝑂௭ + 𝑎ସ 𝑐𝑜𝑠 𝑧) + 𝑎ହ (5) 

Where  𝐸𝑈𝑉 is hourly erythemal ultraviolet irradiance in W.m-2,  
𝐸𝑈𝑉௢ is hourly extraterrestrial erythemal ultraviolet irradiance in 
W.m-2, 𝑐𝑜𝑠 𝜃௭  is cosine of solar zenith angle , 𝑛 is cloud index, 𝑂௭ is 
total column ozone in DU and 𝑎௢, 𝑎ଵ, … , 𝑎ହ are regression constants 
obtained statistic program as result shown in Table 3. 

From Table 3, depict a high t-statistic related to high 
correlation and a low P-value. These statistical parameters indicated 
that the values of coefficients have a relationship with a level of 
significance at 99% [41]. Therefore, we can use all coefficients to 
estimate the erythemal ultraviolet irradiance for the entry area. 

Table 3 Regression coefficients between EUV and their respective 
parameters. Coefficients have been obtained from Eq. 5 (R is correlation 
coefficient and N is total number of data). 

Coef. Value t-stat p-value R N 

𝑎଴ 0.014309 36.494 

<0.001 0.92 38265 

𝑎ଵ 0.057646 72.385 

𝑎ଶ -0.990261 -105.361 

𝑎ଷ -0.004162 -40.727 

𝑎ସ 1.455262 62.434 

𝑎ହ -0.033050 -25.386 

Note: p-values and correlation coefficients correspond to individual 
regression parameters in the exponential model. 
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 In this work, a modified version of the model incorporating AOD 
was applied to stations where aerosol optical depth measurements 
were available. The modified model has the following form: 

𝐸𝑈𝑉 = 𝑎଴𝐸𝑈𝑉଴ 𝑒𝑥𝑝( 𝑎ଵ𝐴𝑂𝐷 + 𝑎ଶ𝑉𝐼𝑆 + 𝑎ଷ𝑛 + 𝑎ସ𝑂௭ + 𝑎ହ 𝑐𝑜𝑠 𝑧) + 𝑎଺   (6) 

Where  𝐸𝑈𝑉 is hourly erythemal ultraviolet irradiance in W.m-2,  
𝐸𝑈𝑉௢ is hourly extraterrestrial erythemal ultraviolet irradiance in 
W.m-2, 𝑐𝑜𝑠 𝜃௭  is cosine of solar zenith angle , 𝑛 is cloud index, 𝑂௭ is 
total column ozone in DU,  𝐴𝑂𝐷ଷସ଴ is aerosol optical depth at 340 
nm and 𝑎௢, 𝑎ଵ, … , 𝑎଺ are regression constants obtained statistic 
program as result shown in Table 4. 

Table 4 Regression coefficients between EUV and their respective 
parameters. Coefficients have been obtained from Eq. 6 (R is correlation 
coefficient and N is total number of data). 

Coef. Value t-stat p-value R N 

𝑎଴ 0.014462 35.0073 

<0.001 0.97 3990 

𝑎ଵ -0.238315 -80.1634 

𝑎ଶ 0.051149 64.1800 

𝑎ଷ -0.280279 -21.4171 

𝑎ସ -0.003851 -35.1104 

𝑎ହ 1.482060 58.8198 

𝑎଺ -0.027874 -19.3956    

Note: p-values and correlation coefficients correspond to individual 
regression parameters in the exponential model. 

 Table 4 illustrates a low P-value and a high t-statistic, which 
are indicative of a high correlation. These statistical parameters 
suggested that the coefficient values are associated with a level of 
significance of 99% [41]. Consequently, the hourly EUV irradiance at 
four stations can be estimated by utilizing all coefficients.  

 Statistical analyses for the evaluation of the semi-empirical 
model performance are root mean square difference (RMSD) and 
mean bias difference (MBD) as described in Eq. (7) and (8). 

𝑅𝑀𝑆𝐷(%) =

ඨ∑ ൫𝐸𝑈𝑉௜,௠௢ௗ − 𝐸𝑈𝑉௜,௠௘௔௦൯
ଶ௡

௜ୀଵ

𝑛

∑ 𝐸𝑈𝑉௜,௠௘௔௦
௡
௜ୀଵ

𝑛

 × 100 
(7) 

𝑀𝐵𝐷(%) =

∑ ൫𝐸𝑈𝑉௜,௠௢ௗ − 𝐸𝑈𝑉௜,௠௘௔௦൯௡
௜ୀଵ

𝑛
∑ 𝐸𝑈𝑉௜,௠௘௔௦

௡
௜ୀଵ

𝑛

× 100 (8) 

Where 𝐸𝑈𝑉௜,௠௢ௗ  is EUV from the semi-empirical model, 𝐸𝑈𝑉௜,௠௘௔௦  is 
EUV from ground-based measurements and 𝑛 is total number of the data.  

4. Results and discussion 

4.1 Baseline Model Validation 

For model validation, the dependent hourly data namely, EUV, 
visibility, cloud index and total ozone column from 2020-2021 were 
selected.  The modeled EUV value at four stations was estimated by 
Eq.  5 with regression coefficients 𝑎௢, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ  and 𝑎ହ.  Fig.  5. 
compares the calculated and measured hourly EUV irradiance.  

Fig.  7, the comparison between modeled and observed 
hourly EUV irradiance at each of the four stations, namely Chiang 
Mai, Ubon Ratchathani, Nakhon Pathom, and Songkhla reveals 
distinct differences in model performance. 

 

Fig. 7 Comparing erythemal ultraviolet irradiance from mapping 
model (𝐸𝑈𝑉௠௢ௗ௘௟) and ground-based measurement (𝐸𝑈𝑉௠௘௔௦௨௘ௗ) 
for all stations.  

 Chiang Mai exhibited the highest RMSD at 26.09%, 
indicating greater variability between modeled and measured 
values, possibly due to complex topography and seasonal aerosol 
variations from biomass burning events, which may not be fully 
captured by visibility data. The MBD of -2.41% also suggests a slight 
underestimation by the model in this region. 

 For Ubon Ratchathani, the RMSD was 23.47%, with a 
positive MBD of 8.22%, indicating a moderate overestimation of EUV 
irradiance by the model. This could be attributed to frequent cloud 
cover and fluctuating humidity levels during the wet season, which 
may introduce uncertainty in satellite-derived cloud index values. 
Nakhon Pathom showed improved agreement between observed 
and modeled values, with a lower RMSD of 18.24% and an MBD of 
3.80%. Its relatively flat terrain and moderate atmospheric 
variability may contribute to the model's better performance in this 
central region. Songkhla achieved the lowest RMSD 18.01% among 
all stations, reflecting strong model reliability. However, the MBD of 
4.57% points to a consistent slight overestimation. The province’s 
persistent cloud cover and humid tropical conditions may reduce 
variability, allowing the model to perform more consistently, though 
some fine-scale cloud features might still contribute to bias. 

 When considering the overall model performance across all 
four stations, the average RMSD was approximately 21.95%, and the 
average MBD was around 3.55%. These results demonstrate that the 
semi-empirical model maintains a relatively high level of accuracy 
and consistency in estimating hourly EUV irradiance under varying 
atmospheric and geographical conditions.  

4.2 Modified Model Validation 

 As an alternative for stations with available AOD measurements, 
modified model (Eq.6) can be applied to enhance the accuracy of EUV 
estimation. The validation results are presented in the following Fig. 8. 

 Fig. 8 illustrates the comparison between modeled and 
measured hourly EUV irradiance using the modified model that 
incorporates AOD for the four stations. The inclusion of AOD as an 
additional parameter significantly improved the model's 
performance, particularly in regions where aerosols play a major 
role in attenuating UV radiation. 
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Fig. 8 Comparing erythemal ultraviolet irradiance from mapping 
model (𝐸𝑈𝑉௠௢ௗ௘௟) and ground-based measurement (𝐸𝑈𝑉௠௘௔௦௨௘ௗ) 
for all stations.  

Table 5 Performance comparison between the models derived 
from Eq. 5 and Eq. 6. 

station 

Eq.5 Eq. 6 

RMSD 

(%) 

MBD 

(%) 
R2 

RMSD 

(%) 

MBD 

(%) 
R2 

Chiang Mai 26.09 -2.40 0.75 14.17 -1.80 0.92 

Ubon Ratchathani 23.47 8.22 0.84 15.13 6.30 0.94 

Nakhon Pathom 18.24 3.80 0.90 17.40 11.69 0.95 

Songkhla 18.01 4.57 0.90 13.94 8.54 0.93 

all 21.80 3.57 0.86 15.16 6.18 0.93 

 As shown in Table 5, the root mean quare difference and 
mean bias difference values for all stations decreased when using 
modified model (Eq.6) compared to the original model (Eq.5). 
Chiang Mai exhibited the most substantial improvement, with RMSD 
reducing from 26.09% to 14.17%, and the coefficient of 
determination (R²) increasing from 0.75 to 0.92. This suggests that 
including AOD better captures aerosol-related variability, which is 
prominent in northern Thailand due to seasonal biomass burning. 
Ubon Ratchathani also showed marked improvement, with RMSD 
dropping from 23.47% to 15.13%, and R² rising from 0.84 to 0.94. In 
this region, where fluctuating humidity and cloud cover are 
common, the AOD parameter complements the cloud index in 
accounting for UV attenuation. Nakhon Pathom, while the RMSD 
improvement was modest (from 18.24% to 17.40%), the R² still 
improved slightly, reflecting more consistent estimation under 
stable central climatic conditions. Similarly, in Songkhla, the RMSD 
decreased from 18.01% to 13.94%, and R² increased from 0.90 to 
0.93, indicating improved accuracy even in a humid, tropical 
environment with frequent cloud cover. 
 Overall, the average RMSD across all stations decreased 
from 21.80% (Eq.5) to 15.16% (Eq.6), and the average MBD 
increased slightly from 3.57% to 6.18%, indicating a mild positive 
bias. However, the improvement in correlation (R² increasing from 
0.86 to 0.93) demonstrates that the inclusion of AOD enhances the 
model's predictive capacity. 

These results affirm that aerosol effects, particularly in regions 
impacted by biomass burning or industrial pollution, must be directly 
considered in EUV estimation models. The modified model provides a 
more robust framework for future applications in UV forecasting, 
public health planning, and environmental monitoring. 

Among the atmospheric parameters considered, the solar 
zenith angle exhibited the most significant influence on EUV irradiance, 
as expected due to its direct relationship with solar geometry and 
atmospheric path length. This finding aligns with previous studies, such 
as Cordero et al. (2008) [37], which confirmed the exponential 
dependence of UV radiation on the cosine of the solar zenith angle. 

The baseline model (Eq.5), which integrates solar zenith 
angle, cloud index, visibility, and total column ozone, demonstrated 
satisfactory performance across all four stations, with an average 
RMSD of 21.80% and a coefficient of determination (R²) of 0.86. 
These results indicate that the model is both practical and applicable 
in areas where aerosol data are unavailable, offering a low-cost 
alternative for estimating EUV irradiance based on routinely 
measured meteorological and satellite parameters. 

 To further enhance model accuracy, aerosol optical depth 
(AOD) was introduced as an additional parameter in Eq. 6 and 
applied at stations where AOD data were available. The inclusion of 
AOD resulted in a notable improvement in model performance. As 
summarized in Table 5 and illustrated in Fig. 8, the average RMSD 
decreased significantly to 15.16%, and the coefficient of 
determination (R²) increased to 0.93. Chiang Mai—where seasonal 
biomass burning leads to elevated levels of fine-mode aerosols—
exhibited the most substantial improvement, with RMSD decreasing 
from 26.09% to 14.17% and R² rising from 0.75 to 0.92. Similarly, 
Ubon Ratchathani, which is often affected by fluctuating humidity 
and cloud cover during the monsoon season, also showed enhanced 
estimation accuracy with the integration of AOD. This observation is 
consistent with previous studies that report high aerosol loading in 
northern Thailand during the biomass burning season [42-43] 

 Although the improvement in Nakhon Pathom and Songkhla 
was less dramatic, both stations still benefited from increased model 
precision, particularly in capturing short term fluctuations in 
atmospheric transparency.  These findings underscore the importance 
of including aerosol-related parameters in radiative transfer modeling, 
especially in regions prone to particulate pollution or seasonal haze. 

 Collectively, the findings indicate that the baseline model 
(Eq.5) remains a robust and versatile tool for nationwide application, 
particularly in areas where detailed aerosol measurements are 
unavailable. In contrast, the modified model (Eq.6) demonstrates 
superior accuracy and should be prioritized in research or 
operational settings where high-resolution AOD data—such as those 
from AERONET or satellite-based sources—are accessible. The 
enhanced performance of the modified model highlights the 
importance of accounting for site-specific atmospheric conditions in 
UV irradiance modeling and underscores the potential benefits of 
expanding ground-based AOD monitoring networks to improve EUV 
estimation in Thailand and other tropical regions. 

4.3 Strengths and Limitations of the Model 

 The developed semi-empirical models, both baseline and 
AOD-enhanced versions, demonstrate several practical strengths. 
First, the models are relatively simple and computationally efficient, 
making them well-suited for integration into large-scale or real-time 
environmental monitoring systems. By using routinely available satellite-
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derived parameters—such as solar zenith angle, cloud index, and 
visibility—the models provide a cost-effective solution for estimating 
hourly erythemal UV (EUV) irradiance without requiring sophisticated 
instrumentation. 

 Another strength lies in the model’s flexibility across different 
geographic regions. The inclusion of multiple monitoring stations 
representing diverse climatic zones—ranging from the relatively dry 
inland region of Chiang Mai to the humid coastal area of Songkhla—
demonstrates the model’s generalizability. Moreover, the enhanced 
model incorporating aerosol optical depth (AOD) significantly 
improves performance, especially under conditions of high aerosol 
loading, such as during biomass burning events in northern Thailand. 

 Despite these strengths, the models also have limitations. The 
baseline model tends to underperform in regions or seasons 
characterized by high aerosol concentrations or complex atmospheric 
conditions, as it does not account for aerosol-specific attenuation. 
Although the inclusion of AOD improves accuracy, the availability of 
high-resolution, real-time AOD data remains a constraint in some 
regions. Additionally, visibility, used as a surrogate for AOD in the baseline 
model, may be influenced by local meteorological noise and non-aerosol-
related phenomena, introducing potential bias in the estimates. 

 Finally, the models are deterministic and assume consistent 
behavior across atmospheric layers and conditions. They do not 
account for vertical aerosol distribution, cloud type variability, or 
other dynamic interactions such as photochemical reactions, which 
could affect UV transmittance. As such, further improvements may 
involve integrating machine learning techniques and high-resolution 
temporal datasets to better capture the nonlinearities and interactions 
in atmospheric parameters. 

 5. Conclusions  

 In this study, a semi-empirical model was successfully 
developed to estimate hourly erythemal ultraviolet (EUV) irradiance 
across Thailand using satellite and meteorological data. The initial 
model (Eq.5) integrated four parameters: solar zenith angle, cloud 
index, visibility, and total column ozone. It demonstrated a strong 
correlation with ground-based measurements, with an overall 
RMSD of 21.8% and MBD of 3.57%. To enhance accuracy, a modified 
version of the model (Eq.6) was formulated by incorporating AOD at 
stations where such data were available. The validation results 
indicated that Eq.6 significantly improved performance across all 
stations, reducing the average RMSD to 15.16% and increasing the 
overall R² to 0.93. The greatest improvement was observed in 
Chiang Mai, where AOD played a critical role due to seasonal 
biomass burning and fine particulate matter. These findings confirm 
that including AOD as a parameter improves model accuracy, 
especially in areas affected by aerosol variability. The model’s 
simplicity and reliance on readily available data make it suitable for 
real-world applications in UV risk management, public health 
planning, and environmental monitoring. 

 Future research should explore broader integration of AOD 
using satellite products and PM2.5 datasets to extend the model's 
applicability on a nationwide scale. To further enhance predictive 
performance, seasonal variability should be incorporated, and advanced 
machine learning approaches, such as artificial neural networks (ANN), 
should be employed to improve resolution under complex atmospheric 
conditions. Additionally, future studies should incorporate post-2021 
datasets to update model parameters and better capture recent 
trends in atmospheric variability and aerosol dynamics. 
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