JOURNAL OF RENEWABLE ENERGY AND SMART GRID TECHNOLOGY

Vol. 20, No. 2, July-December 2025

A Model for Estimating Hourly Erythemal UV Radiation from Satellite Data

Pranomkorn Choosri'*, Noppamas Pratummasoot?, Sumaman Buntoung?

1Department of Biomedical Engineering, College of Health Sciences, Christian University of Thailand,

Nakhon Pathom 73000, Thailand

2Applied Physics Program, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage,

Pathum Thani 13180, Thailand

3Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand

Article info:

Received: 18 May 2025

Revised: 11 July 2025

Accepted: 20 August 2025

DOI: 10.69650/rast.2025.262196

Keywords:

Erythema

Ultraviolet Radiation
Modeling
Meteorology
Satellite Data

*Corresponding author’s email: pranomkorn.aum@gmail.com

ABSTRACT

Erythemal ultraviolet ( EUV) irradiance, with a wavelength range of 280-400 nm, is
associated with both health risks and physiological benefits. While moderate EUV exposure
stimulates vitamin D synthesis—essential for bone health and immune function—excessive
exposure can cause skin damage, ocular complications, and increased risk of skin cancer,
highlighting the need for accurate UV monitoring. However, ground-based measurements
remain limited due to the high cost of instrumentation. This study introduces a semi-
empirical model for estimating hourly EUV irradiance in Thailand using meteorological and
satellite data. The model was developed using cloud index, visibility, total column ozone,
and the cosine of the solar zenith angle across four stations: Chiang Mai, Ubon Ratchathani,
Nakhon Pathom, and Songkhla. The baseline model, constructed using data from 2016 to
2019, achieved a mean bias difference (MBD) of 3.57%, a root mean square difference
(RMSD) of 21.80%, and an R? of 0.81. However, its performance declined in areas with high
aerosol loading and low visibility, particularly in Chiang Mai, where seasonal biomass
burning is prevalent. To improve accuracy, a modified model was developed by
incorporating aerosol optical depth (AOD) at stations where such data were available.
The enhanced model yielded an MBD of 6.18%, an RMSD of 15.16%, and an R? of 0.93.
These results highlight the critical role of aerosols in UV attenuation and demonstrate the
model’s potential for scalable, cost-effective applications in UV risk assessment, especially
in regions lacking high-resolution ground monitoring infrastructure.

1. Introduction

Ultraviolet radiation (UV) is part of the solar spectrum and
consists of three bands i.e. UV-A (320-400 nm), UV-B (280-320 nm)
and UV-C (100-280 nm). As stratospheric ozone can strongly absorb
short wavelength radiation, all of UV-C cannot transmit to the
earth’s surface. Thus, only UV-A and part of UV-B reach the earth’s
surface with typical amounts of about 6.2% and 1.3% of the total
energy from the sun respectively [1]. Although the total incident flux
accounts for only a small fraction, approximately 8%, the high
energy of the radiation may still damage living tissues [2-3]. The
responses of organism to UV radiation are different, depending on
wavelength. In this work, we are interested in UV radiation which
has an effect on human skin. This radiation is usually called
erythemal ultraviolet radiation or EUV. It covers the spectral UV
irradiance between 280 — 400 nm weighted by the erythema action
spectrum or erythemal response defined by Commission Internationale
de 'Eclairage (CIE). Erythemal ultraviolet radiation (EUV) intensity can
be calculated by integrating of the product of solar spectrum and
erythemal response over 280 to 400 nm as follows:

400
EUV = Rpalp dA (1)
280
where EUV is the solar erythemal ultraviolet radiation in W.m2,
Rpg;,is erythemal response in dimensionless, I;is solar spectrum in
W.m2and A is wavelength in nm.

The strength of UV radiation depends on atmospheric
components, particularly stratospheric ozone. The ozone layer
filters UVC and UVB from reaching the atmosphere, but substances
like chlorofluorocarbons (CFCs) have depleted it [4-5]. UV radiation
reaches Earth's surface more. Besides ozone, clouds, dust, and
atmospheric moisture can impact UV radiation intensity [6-7].

UV radiation, when administered in suitable quantities,
facilitates the synthesis of vitamin D in the human body, prevents
rickets in children, and is employed in medical therapies for
disorders such as psoriasis and sterilization [8]. Nonetheless,
excessive exposure can result in skin burns, erythema, and a
heightened risk of skin cancer. It can also damage human eyes,
resulting in disorders such as inflammation and cataracts [9].
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Considering the benefits and risks associated with ultraviolet
radiation, both researchers and the general public strive to monitor
daily ultraviolet radiation levels to mitigate its potential hazards.
Researchers have deployed instruments at various locations to
monitor the intensity of ultraviolet radiation. Also they try to develop
model for prediction these value such as Hu et al. (2008) [10] studied
the influence of the clearness index on ultraviolet solar radiation at
two high-altitude locations on the Tibetan Plateau: Lhasa and
Haibei. The research examines the relationship between UV
radiation, global solar radiation, optical mass, and atmospheric
conditions. Lhasa has stronger yearly UV radiation than Haibei due
to its altitude and lower aerosol and ozone levels. The study found
that cloud cover attenuates global solar radiation more than UV
radiation and raises the UV-to-global solar radiation ratio.
Quantifying UV radiation-optical mass relationships revealed UV
behavior under different air conditions. These findings help explain
UV climate and UV radiation's ecological effects, especially in high-
altitude places with distinct atmospheric circumstances. Choosri et
al. (2017) [11] estimated monthly average hourly diffuse erythemal
ultraviolet (EUV) radiation in Thailand under all sky conditions using
an empirical model. The model included air mass, aerosol optical
depth, and a satellite-derived cloud index, which matched ground-
based data. Diurnal and seasonal diffuse EUV radiation maps
generated by the model showed significant geographical and
temporal variability influenced by cloud cover and solar zenith
angle. These findings help explain UV radiation's distribution and
potential effects on tropical ecosystems and health. Lamy et al.
(2018) [12] used Bentham spectroradiometer readings and satellite
observations to estimate Reunion Island's surface UV radiation
(SUR). The island has higher SUR than comparable sites due to its
tropical location, low ozone, and low aerosol concentration. UVI is
estimated using the Tropospheric Ultraviolet and Visible (TUV)
radiative transfer model under clear skies and pyranometer data
during cloudy times. Ozone cross-sections and total column ozone
greatly affect UVI estimates in SUR modeling, according to the study.
Aerosol characteristics and alien solar spectra are also examined.
The typical relative difference between predicted and observed data
is 0.5%, with SBUV ozone data being most accurate. These findings
improve tropical UVI parameterization for climate modeling and UV
exposure risk assessments. Garcia-Rodriguez et al. (2023) [13]
examined UV erythemal irradiance (UVER) in Burgos, Spain, under
various sky conditions using meteorological data from September
2020 to June 2022. Multilinear regression (MLR) and artificial neural
networks (ANN) are used to model UVER using climatic factors,
overcome the lack of UV sensors. ANN models outperform MLR with
higher accuracy (R? > 0.95) and lower error (nRMSE < 15%), especially
under clear skies. UVER/GHI peaked at noon and in summer, while
cloud cover strongly attenuated it. The study found that ANN-based
models can accurately estimate UVER from meteorological factors,
which has implications for public health, climate studies, and solar
energy. Buntoung et al. (2024) [14] used ground-based and satellite-
based data to estimate monthly average hourly vitamin D-weighted
solar UV radiation over Thailand. Ozone, cloud, aerosol, solar zenith
angle, air mass, and extraterrestrial UV radiation are inputs.
Numerous researchers have examined UV radiation changes or
developed models using readily available atmospheric variables
[3,15-21]. Thailand has four UV radiation monitoring stations in
Chiang Mai, Ubon Ratchathani, Nakhon Pathom, and Songkhla. Each
station represents a region in Thailand. For Chiang Mai, it is located at
98.98°E and 18.78°N, which displays the geographical characteristics
of the northern region. The local climate is characterized by tropical
savanna climate type Aw of the Kdppen climate classification [22-23].
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The southwest monsoon (May—October) has a significant impact on
Chiang Mai, resulting in elevated humidity and substantial rainfall.
The climate is pleasant during the Northeast Monsoon (November—
February), which is characterized by dry air. Aerosols are animportant
component of climate science. Aerosols in Chiang Mai are produced by
both natural and human-made sources. The concentrations of aerosols
in Chiang Mai are subject to significant seasonal fluctuations [24-25].
Ubon Ratchathani is a province in the Isan region of northeastern
Thailand, famous for its tropical climate, bending plateaus, and
border with the Mekong River. One of Thailand's largest provinces,
it is characterized by a combination of plains, rivers, forests, and
hills. Ubon Ratchathani is located at 104.87°E and 15.25°N. Ubon
Ratchathani experiences a tropical savanna climate (Aw), which is
comparable to that of Chiang Mai. Ubon Ratchathani is affected by
the influence of two primary monsoons: The Southwest Monsoon
(May—October), which brings warm, moisture-laden air from
the Indian Ocean, resulting in heavy rainfall, high humidity, and
occasional flooding, particularly along the Mun and Mekong Rivers;
and the Northeast Monsoon (November—February), which carries
cool, dry air from China and Siberia, resulting in cooler temperatures,
dry weather, and occasional cold waves during the winter months.
Nakhon Pathom is a central province of Thailand, situated
approximately 56 km west of Bangkok, at 13.82°N, 100.04°E.
It is situated within the Chao Phraya River Basin and features a flat
terrain that is characterized by agricultural lands, canals, and a few
low-lying hills. Throughout the year, the climate and weather patterns
of Nakhon Pathom are significantly influenced by the monsoon.
The province, like much of central Thailand, is influenced by two
primary monsoons: The Southwest Monsoon and the Northeast
Monsoon. Songkhla is located at 7.2° N latitude and 100.6° E
longitude. Songkhla is a coastal province in southern Thailand, located
along the Gulf of Thailand. It is characterized by a tropical climate,
which is characterized by consistently warm temperatures and
significant rainfall throughout the year. The province is a site of
various geographical features, including mountains, lakes, beaches,
and islands [26-27].

Each station exhibits distinct climatic and geographical
characteristics, as previously described. Although these four stations
provide valuable data for EUV monitoring, their spatial coverage is
insufficient to represent the entire country. Consequently,
researchers have attempted to develop models using easily
accessible and spatially comprehensive atmospheric data to
estimate UV irradiance across broader areas. However, studies
focusing specifically on the development of models for hourly or
instantaneous UV radiation particularly erythemal ultraviolet
remain limited in Thailand.

In response to this research gap, the present study introduces
a semi-empirical model for estimating hourly EUV irradiance using
commonly available meteorological and satellite-derived data.
The model is designed to strike a balance between computational
simplicity and scientific accuracy, making it suitable for use in
regions with limited monitoring infrastructure. Given the high
spatial and temporal variability of atmospheric constituents—
particularly aerosols and clouds in tropical regions like Thailand—
his approach enables scalable, low-cost, and regionally adaptable
UV estimation across diverse environmental conditions.

Recent studies have underscored the critical role of aerosols
in modulating UV radiation, especially in Southeast Asia, where
seasonal biomass burning leads to sharp fluctuations in atmospheric
transparency [28-30]. Integrating such variables into modeling
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frameworks is increasingly important for improving spatial accuracy
and supporting public health applications, such as UV exposure
forecasting and environmental risk communication.

The objective of this study is to develop a semi-empirical model
for estimating hourly EUV irradiance using satellite and meteorological
parameters. The model aims to estimate EUV irradiance in areas lacking
direct measurements, offering a cost-effective alternative to ground-
based instruments. Moreover, the results obtained from the model can
support public health initiatives by serving as a reference for UV
exposure alerts and long-term risk assessments.

2. Data and Instruments
2.1 Ground-based measurement data
2.1.1 Erythemal ultraviolet irradiance

Hourly erythemal ultraviolet (EUV) irradiance was measured
using UV biometers (Solar Light, model 501A) at four stations across
Thailand, namely Chiang Mai (18.78°N, 98.98°E), Ubon Ratchathani
(15.25°N, 104.87°E), Nakhon Pathom (13.82°N, 100.04°E) and
Songkhla (7.20°N, 100.60°E) as shown in Fig. 1. The instruments are
based on a filtered photodiode system and are regularly calibrated
using a UV spectroradiometer (Bentham DMC150) at the Atmospheric
Physics Laboratory, Silpakorn University [14]. Measurements were
recorded every minute from 2016 to 2021, and converted to hourly
averages using the method proposed by Webb et al. (2006) [31].
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Fig. 1 Study area of erythemal ultraviolet irradiance in Thailand.

Data quality control followed the procedures outlined in
Webb et al. (1988) [32] and Seckmeyer et al. (2007) [33]. The dataset
was divided into two groups: 2016-2019 for analysis and model
development, and 2020-2021 for model validation.

Example of monthly average hourly EUV irradiance data at
four stations during 2016-2021 are shown in Fig. 2.
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Fig. 2 Monthly average hourly erythemal ultraviolet (EUV) irradiance at four stations in Thailand (2016—2021). Each curve represents the hourly

average across all days and years during the selected month.
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Fig. 2 presents the monthly average of hourly EUV irradiance
variations at four stations across Thailand during the 2016-2021
period. All stations exhibit a similar diurnal pattern, with irradiance
increasing in the morning, peaking around solar noon (approximately
12:00 local time), and decreasing in the afternoon. The intensity of the
monthly average hourly EUV irradiance ranges from 0.190 to 0.270
W-m™2, This trend reflects the influence of the solar zenith angle,
which determines the atmospheric path length that solar radiation
must traverse. Despite the overall uniform pattern, variations in peak
intensities among the stations are evident. Chiang Mai and Nakhon
Pathom tend to exhibit slightly higher EUV levels, likely due to drier
conditions and reduced cloud cover during certain months.
Conversely, Songkhla records lower peak values and a flatter curve,
possibly influenced by persistent cloud cover and higher humidity
typical of southern Thailand’s tropical climate. These spatial and
temporal variations highlight the importance of multi-parameter
modeling that incorporates solar geometry, cloud index, and visibility
to accurately estimate hourly EUV irradiance.

2.1.2 Visibility data

A useful surrogate for aerosol optical depth (AOD), which
plays a critical role in modulating EUV irradiation through scattering
and absorption mechanisms, is the visibility parameter [34-35].
Although direct AOD data from satellites or ground-based sun
photometers are more accurate, such data are often limited in
spatial and temporal coverage. In contrast, the Thai Meteorological
Department consistently records visibility at more than 80 stations
nationwide, providing broader geographic coverage and more
continuous data availability. This widespread accessibility makes
visibility a practical and readily available parameter for large-scale
modeling, especially in areas lacking direct aerosol observations.
Moreover, previous studies have shown that, under typical
meteorological conditions in Southeast Asia, visibility correlates well
with aerosol loading—particularly during haze episodes or biomass
burning events. Therefore, incorporating visibility into the model not
only enhances spatial applicability but also supports the estimation of
EUV irradiation in regions where AOD data are unavailable or sparse.

In this work, visibility data were obtained from 86 meteorological
stations distributed across Thailand, as illustrated in Fig. 3. These stations
are operated by the Thai Meteorological Department (TMD), ensuring
standardized procedures and consistent data quality nationwide.
The data were recorded by professional meteorologists trained in
observation techniques, adhering to established protocols defined
by the World Meteorological Organization (WMO).
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Fig. 3 location of meteorological stations in Thailand.
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Visibility observations were taken every three hours at local
time specifically at 01:00, 04:00, 07:00, 10:00, 13:00, 16:00, 19:00,
and 20:00. These multiple time points throughout the day capture
diurnal variation in aerosol conditions, which is essential for
estimating EUV irradiance. The high spatial and temporal density of
the data makes it particularly useful for interpolation across
unsampled areas, enabling full spatial coverage of the country.
Furthermore, the availability of long-term visibility records allows
for integration with satellite data and supports reliable model
development and validation over multiple years.

Hourly visibility data were generated using linear interpolation
from 3-hourly observations, ensuring smooth temporal transitions and
consistency with other hourly parameters in the model. This interpolation
process enables the estimation of visibility values at locations where no
meteorological stations are present, ensuring full spatial coverage for
model application. The interpolation technique employed considers
both spatial proximity and temporal trends, allowing for smoother
and more realistic transitions between observation points.

By obtaining hourly visibility data, the model can more
accurately reflect short-term variations in aerosol content, which is
particularly important for capturing diurnal dynamics of EUV irradiance.
This comprehensive dataset is essential for both model formulation
and validation, as it allows consistent integration with other hourly
parameters such as solar zenith angle, cloud index, and EUV
measurements. Ultimately, the interpolated visibility data enhance the
generalizability and scalability of the model, supporting its application in
regions with limited or no ground-based observations.

Ground-based aerosol optical depth (AOD) measurements
were obtained using sun photometers (CIMEL, model CE-318) installed
at the same four stations as the EUV irradiance measurements.
The instruments are part of the AERONET network and all raw data
undergo quality control and are further processed into scientific
variables from the AERONET central facility. Average daily values of
wavelength exponent can be downloaded from the AERONET website
at http://aeronet.gsfc.nasa.gov. In this work, the wavelength exponent
at 340 nm were retrieved from 2016-2021 for each station. The relation
between AOD and visibility as follow:

B =0.589 — 0.068(VIS) + 0.0019(VIS)? (2)

Angstrom’s turbidity coefficient () was computed from
visibility data (VIS) in km as follows [35].

Angstrom’ s turbidity coefficient can be used to calculate
AOD by using the Angstrom’s equation [36] as follows:

AOD3yg = p17° (3)

where AOD5,, is aerosol optical depth at 340 nm, a is wavelength
exponent, A is wavelength in um and £ is Angstrom’s turbidity coefficient.

2.1.3 solar zenith angle

Air molecules, water vapor, clouds, and aerosols absorb
and scatter solar radiation as it travels through the atmosphere.
If the distance to the atmosphere or optical path is long, the solar
radiation will be more attenuated. The path length is also related to
air mass; as longer path lengths contain higher air mass. Generally,
air mass is used in term of relative air mass [36] and relative air mass
is usually estimated from solar zenith angle [6,]. Therefore, in order
to estimate hourly EUV irradiance in this work, we used air mass in
term of solar zenith angle.
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Variation of hourly EUV irradiance depends on the solar path
length. High path length during sunrise and sunset affect large
extinction of solar radiation. While, small extinction at low path length
leads high solar radiation intensity. Solar zenith angle can be
calculating by Igbal (1983) [36].

2.1.4 Extraterrestrial erythemal ultraviolet irradiance

Extraterrestrial EUV irradiance refers to the intensity of
ultraviolet radiation—specifically within the erythemally effective
wavelength range—received at the top of Earth’s atmosphere, prior
to any attenuation by atmospheric components such as ozone,
aerosols, clouds, and gases. This radiation originates from the sun
and represents the maximum potential UV exposure that could
affect human skin in the absence of atmospheric filtering.

In scientific modeling, extraterrestrial EUV irradiance serves
as a reference or baseline value for estimating surface-level UV
exposure after accounting for atmospheric absorption and
scattering. Its calculation depends on parameters such as the solar
zenith angle, Earth-Sun distance, and the spectral distribution of
solar radiation. A standard method for this calculation can be found
in Igbal (1983) [36].

2.2 Satellite data
2.2.1 Cloud index

Cloud index (n) represents the effect of clouds on erythemal
ultraviolet irradiance. For cloud index data, these data can be
obtained from Himawari-8 satellite. Himawari is owned by Japan
Meteorological Agency (JMA). This satellite is located around
140.7°E above the equator and it was launched in 2016 to replace
MTSAT. The Advanced Himawari Imager (AHI) sensor, a new payload
forecast and aviation controls. For meteorology research, it
comprises of a 16 channel multispectral imager to capture visible
light and infrared images of the Asia-Pacific region. The Himawari
system is scanned at a frequency of 10 minutes and the product
comprises of 16 bands. The functions and specifications are
improved from MTSATSs. Color images will be derived by compositing
three visible bands (blue: 0.47 um; green: 0.51 um; red: 0.64 um). In
this work, visible band for representation of cloud effected was
used. The satellite data are 8-bit digital visible channel of
Geostationary meteorology satellite. The data were collected
between 8:30-16:30 during 2016-2021. Firstly, a digital count for
each image (550x850 pixels) was converted to pseudo-reflectivity
using a calibration table by satellite agency. The table consists of
gray level value (0-255) and this value relates with earth-
atmospheric albedo (0-1). The value was divided by the cosine of
local solar zenith angle, and then earth-atmosphere reflectivity was
obtained using these methods (Fig. 4). The formation of cloud index
proposed by Cano et al. (1986) [37] as shown in Eq. 4

PEA — Pmin
n=— "=

(4)

Pmax — Pmin

where n is cloud index, pgs is an earth-atmosphere reflectivity,
Pmax 1S maximum reflectivity and pnin is minimum reflectivity. To
obtain ppin , the reflectivity image was selected at noontime and
then compared pixel by pixel for each month. The minimum
reflectivity of each pixel was selected and used as representative of
ground surface albedo. In contrast, the maximum pixel value for
each pixel was selected and represented as cloud reflectivity. Cloud
index related to cloud cover, with high cloud index (close to 1)
representing high cloud cover (close to 10) and vice-versa.
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Fig. 4 An example of a navigated image.
2.2.2 Total column ozone

Total column ozone plays a crucial role in modulating
erythemal ultraviolet irradiance by absorbing significant portions of
UV- B radiation within the stratosphere. This protective effect is
essential in limiting the biological impacts of solar radiation on
human health. In this study, daily total column ozone data were
acquired from the Ozone Monitoring Instrument (OMI) onboard
NASA's Aura satellite. OMI provides high- quality, near- global
measurements based on backscattered UV and visible radiation,
with a spatial resolution of 0.25° x 0.25°, enabling region-specific
analysis. The data were processed in Level 3e format and spatially
matched to the locations of the ground stations. Given its well-
established reliability, OMI- derived ozone measurements were
selected to ensure robust and consistent input for the model. To
align with the model’s hourly resolution, the daily ozone data were
interpolated accordingly. For the total column ozone data in this
work, daily total column ozone was obtained from OMI/ AURA
satellite during 2016-2021 (6 years). These data were accessed from
https://acd-ext.gsfc.nasa.gov/anonftp/toms/omi/data/Level3e/ozone/.

For the data found that ozone concentration over Thailand
typically ranges between 250 and 300 Dobson Units (DU), depending on
the season and geographic location. Higher ozone values, around 280-
300 DU, are commonly observed during the dry and summer seasons
(March—May), when solar radiation is intense and atmospheric circulation
enhances ozone formation. In contrast, values tend to decrease to about
250-270 DU during the rainy season (June—October), due to increased
cloud cover and reduced photochemical activity. Regional variations
also occur, with the northern part of Thailand often recording slightly
higher ozone levels than southern regions.

3. Model formulation

In this study, a semi-empirical model was formulated to
estimate hourly erythemal ultraviolet irradiance using both satellite-
derived and ground-based meteorological parameters. The dataset
used for model development covers diverse climatic and geographical
conditions across Thailand, ensuring that the model captures regional
variability in EUV irradiance. This station distribution ensures that the
model can capture regional variability in EUV irradiance influenced by
local weather conditions, aerosol loading, and cloud dynamics.
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To ensure robust model construction and minimize the risk
of overfitting, the complete dataset spanning 6 years (2016—2021)
was divided into two subsets: one for model training and parameter
fitting (2016—2019), and the other for independent model validation
(2020-2021). This temporal separation allows for unbiased model
evaluation and simulates real-world predictive performance, as
supported by previous studies [38-39].

The foundational variable in this modeling approach is the solar
zenith angle, which directly determines the path length of solar
radiation through the atmosphere. Since EUV irradiance is strongly
dependent on the angle at which sunlight penetrates the atmosphere,
only data with a solar zenith angle less than 70° were selected.
This threshold minimizes cosine error and ensures measurement
reliability, as supported by Cordero et al. (2008) [40].

As a first step, hourly EUV irradiance was plotted against the
cosine of the solar zenith angle for each station (Fig.5). The observed
relationship exhibits a clear exponential trend, aligning with
theoretical expectations from radiative transfer models. However,
notable data scatter around the curve was also observed,
particularly under cloudy or hazy conditions. This deviation
highlights the influence of additional atmospheric variables namely,
cloud index and visibility on EUV transmission.

In Fig. 5, shown the relationship between hourly EUV
irradiance and the cosine of the solar zenith angle at 4 stations in
Thailand. For all stations, EUV irradiance increases nonlinearly with
increasing cosine of the solar zenith angle, confirming an
exponential trend. This trend is consistent with the radiative transfer
theory, where the path length of solar radiation shortens as the sun
moves closer to zenith, thus reducing atmospheric attenuation.
Despite the general exponential pattern, the data show significant
scatter around the trend, especially during lower sun zenith angle
(cosine of the solar zenith angle < 0.6). This variance can be defined
to atmospheric components including cloud and aerosol, which are
not included into this one-variable correlation.
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These variations generate attention to the need of other
criteria like cloud index and visibility in the design of the model.
Therefore, in the next step of the analysis, the difference between
the measured EUV irradiance (EUV,cqsureq) and the exponentially
modeled EUV (EUV,,,4.(2)) for each station was calculated.
The difference was then plotted against the cloud index and
visibility data. The relationship for both of these is linear relations,
the statistics for each parameter, as shown in Fig.6 and Table 1-2.

Table 1 Statistic result of parameter with effect of cloud (n) on EUV.

EUVmeasured - EUVmodel (Z) = Bo + Bln

Stations

Bo By t-stat p-value R
Chiang Mai 0.03134 -0.11423 -47.7439 <0.01 0.44
Ubon Ratchathani  0.03551 -0.17405 -74.9143 <0.01 0.62
Nakhon Pathom 0.03320 -0.18289 -89.5774 <0.01 0.68
Songkhla 0.04616 -0.21972 -103.488 <0.01 0.72

Table 2 Statistic result of parameter with effect of visibility (VIS) on EUV.

EUVmeasured - EUVmodel (Z) =Y th VIS

Stations
Yo Y1 t-stat p-value R
Chiang Mai -0.04018 0.004979 15.64721 <0.01 0.16
Ubon . -0.11063  0.012478 20.29864 <0.01 0.21
Ratchathani
Nakhon Pathom  -0.05145 0.007112 20.51142 <0.01 0.21
Songkhla -0.18335 0.018835 40.77891 <0.01 0.37

The regression coefficients (B,, 81, Vo, V1) in both tables are
statistically significant at the 99% confidence level, as indicated by
p-values less than 0.01 and t-statistic values exceeding +2.576 [39].
These results confirm that the relationships between cloud index,
visibility, and EUV irradiance are not due to random variation, but
represent statistically significant atmospheric influences on UV radiation.

As shown in Fig. 6, a comparative analysis across the four
monitoring stations—Chiang Mai, Ubon Ratchathani, Nakhon
Pathom, and Songkhla—reveals region-specific patterns in model
deviation (EUVeqsurea — EUVmoaer(2))under varying atmospheric
conditions. These trends are further supported by the statistical
data in Tables 1 and 2, which show that both cloud index and
visibility significantly affect EUV variation. For instance, Songkhla
consistently presents low deviation under conditions of high
humidity and persistent cloud cover. This is consistent with its
location in southern Thailand near the ocean, where clouds and
rainfall occur throughout much of the year, and maritime aerosols
contribute to reduced irradiance. Conversely, Chiang Mai shows the
highest deviation during periods of low visibility, likely due to
seasonal biomass burning, yet exhibits minimal impact from cloud
cover and visibility overall. This is attributable to its inland
geography, relatively dry climate, and the dominance of fine-mode
aerosols. Ubon Ratchathani demonstrates marked variability in both
cloud cover and visibility, while Nakhon Pathom shows relatively
stable model performance across all variables. These findings
collectively underscore the importance of incorporating localized
atmospheric parameters—such as cloud index, visibility, and aerosol
characteristics—into EUV estimation models to enhance their
spatial accuracy and robustness.

The physical model includes atmospheric parameters such
as aerosols, clouds, ozone, and air mass, based on the information
in Igbal (1983) [36]. Therefore, we proposed a simple semi-empirical
model similar to the Igbal model, which is a straightforward formula,
not complicated.
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Fig 6. Comparison of model deviation (EUV,,cqsurea — EUVimoaer (2)) Under varying atmospheric conditions across four monitoring stations in Thailand.

The presented model has the following form:

EUV = agEUVyexp(a VIS + an + az0, + a, cos z) + as

Where EUV is hourly erythemal ultraviolet irradiance in W.m?,
EUV, is hourly extraterrestrial erythemal ultraviolet irradiance in
is cosine of solar zenith angle, n is cloud index, 0, is
as are regression constants

W.m?2, cos 6,

total column ozone in DU and a,, a4, ...,

obtained statistic program as result shown in Table 3.

From Table 3, depict a high t-statistic related to high
correlation and a low P-value. These statistical parameters indicated
that the values of coefficients have a relationship with a level of
significance at 99% [41]. Therefore, we can use all coefficients to

estimate the erythemal ultraviolet irradiance for the entry area.

Table 3 Regression coefficients between EUV and their respective

(5)

parameters. Coefficients have been obtained from Eq. 5 (R is correlation

coefficient and N is total number of data).

Coef. Value t-stat p-value R N
a, 0.014309 36.494
a, 0.057646 72.385
a, -0.990261 -105.361
a -0.004162 -40.727 <0.001 0.92 38265
a, 1.455262 62.434
as -0.033050 -25.386

Note: p-values and correlation coefficients correspond to individual

regression parameters in the exponential model.
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In this work, a modified version of the model incorporating AOD
was applied to stations where aerosol optical depth measurements
were available. The modified model has the following form:

EUV = ayEUVyexp(a,AOD + a,VIS + agn + a,0, + as cos z) + a5 (6)

Where EUV is hourly erythemal ultraviolet irradiance in W.m?,
EUYV, is hourly extraterrestrial erythemal ultraviolet irradiance in
W.m=2, cos 6, is cosine of solar zenith angle , n is cloud index, O, is
total column ozone in DU, AODs,, is aerosol optical depth at 340
nm and a,,a, ..., Qg are regression constants obtained statistic
program as result shown in Table 4.

Table 4 Regression coefficients between EUV and their respective
parameters. Coefficients have been obtained from Eq. 6 (R is correlation
coefficient and N is total number of data).

Coef. Value t-stat p-value R N
a, 0.014462 35.0073
a; -0.238315 -80.1634
a, 0.051149 64.1800
<0.001 0.97 3990
as -0.280279 -21.4171
a, -0.003851 -35.1104
as 1.482060 58.8198
ag -0.027874 -19.3956

Note: p-values and correlation coefficients correspond to individual
regression parameters in the exponential model.

Table 4 illustrates a low P-value and a high t-statistic, which
are indicative of a high correlation. These statistical parameters
suggested that the coefficient values are associated with a level of
significance of 99% [41]. Consequently, the hourly EUV irradiance at
four stations can be estimated by utilizing all coefficients.

Statistical analyses for the evaluation of the semi-empirical
model performance are root mean square difference (RMSD) and
mean bias difference (MBD) as described in Eq. (7) and (8).

2
?:1(EUVi,mod — EUVi,meas)

RMSD(%) = " «100 )
?:1 EUVi,meas
n
n
i:l(EUVi,mod - EUVi,meas)
MBD (%) = i x 100 (8)
( ) ?=1 EUVi,meas

n

Where EUV; 1104 is EUV from the semi-empirical model, EUV; peqs is
EUV from ground-based measurements and n is total number of the data.

4. Results and discussion
4.1 Baseline Model Validation

For model validation, the dependent hourly data namely, EUV,
visibility, cloud index and total ozone column from 2020-2021 were
selected. The modeled EUV value at four stations was estimated by
Eq. 5 with regression coefficients a,, a4, a,, as, a4 and as. Fig. 5.
compares the calculated and measured hourly EUV irradiance.

Fig. 7, the comparison between modeled and observed
hourly EUV irradiance at each of the four stations, namely Chiang
Mai, Ubon Ratchathani, Nakhon Pathom, and Songkhla reveals
distinct differences in model performance.
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Fig. 7 Comparing erythemal ultraviolet irradiance from mapping
model (EUV,,04e1) @and ground-based measurement (EUVp,eqsued)
for all stations.

Chiang Mai exhibited the highest RMSD at 26.09%,
indicating greater variability between modeled and measured
values, possibly due to complex topography and seasonal aerosol
variations from biomass burning events, which may not be fully
captured by visibility data. The MBD of -2.41% also suggests a slight
underestimation by the model in this region.

For Ubon Ratchathani, the RMSD was 23.47%, with a
positive MBD of 8.22%, indicating a moderate overestimation of EUV
irradiance by the model. This could be attributed to frequent cloud
cover and fluctuating humidity levels during the wet season, which
may introduce uncertainty in satellite-derived cloud index values.
Nakhon Pathom showed improved agreement between observed
and modeled values, with a lower RMSD of 18.24% and an MBD of
3.80%. Its relatively flat terrain and moderate atmospheric
variability may contribute to the model's better performance in this
central region. Songkhla achieved the lowest RMSD 18.01% among
all stations, reflecting strong model reliability. However, the MBD of
4.57% points to a consistent slight overestimation. The province’s
persistent cloud cover and humid tropical conditions may reduce
variability, allowing the model to perform more consistently, though
some fine-scale cloud features might still contribute to bias.

When considering the overall model performance across all
four stations, the average RMSD was approximately 21.95%, and the
average MBD was around 3.55%. These results demonstrate that the
semi-empirical model maintains a relatively high level of accuracy
and consistency in estimating hourly EUV irradiance under varying
atmospheric and geographical conditions.

4.2 Modified Model Validation

As an alternative for stations with available AOD measurements,
modified model (Eq.6) can be applied to enhance the accuracy of EUV
estimation. The validation results are presented in the following Fig. 8.

Fig. 8 illustrates the comparison between modeled and
measured hourly EUV irradiance using the modified model that
incorporates AOD for the four stations. The inclusion of AOD as an
additional parameter significantly improved the model's
performance, particularly in regions where aerosols play a major
role in attenuating UV radiation.
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Table 5 Performance comparison between the models derived
from Eq. 5 and Eq. 6.

Eq.5 Eqg. 6
station RMSD  MBD R? RMSD MBD R?

(%) (%) (%) (%)
Chiang Mai 26.09 -2.40 075 14.17 -1.80 0.92
Ubon Ratchathani 23.47 822 084 1513 6.30 0.94
Nakhon Pathom 18.24 380 090 1740 11.69 0.95
Songkhla 18.01 457 090 13.94 8.54  0.93
all 21.80 3.57 086 15.16 6.18 0.93

As shown in Table 5, the root mean quare difference and
mean bias difference values for all stations decreased when using
modified model (Eq.6) compared to the original model (Eq.5).
Chiang Mai exhibited the most substantial improvement, with RMSD
reducing from 26.09% to 14.17%, and the coefficient of
determination (R?) increasing from 0.75 to 0.92. This suggests that
including AOD better captures aerosol-related variability, which is
prominent in northern Thailand due to seasonal biomass burning.
Ubon Ratchathani also showed marked improvement, with RMSD
dropping from 23.47% to 15.13%, and R? rising from 0.84 to 0.94. In
this region, where fluctuating humidity and cloud cover are
common, the AOD parameter complements the cloud index in
accounting for UV attenuation. Nakhon Pathom, while the RMSD
improvement was modest (from 18.24% to 17.40%), the R? still
improved slightly, reflecting more consistent estimation under
stable central climatic conditions. Similarly, in Songkhla, the RMSD
decreased from 18.01% to 13.94%, and R? increased from 0.90 to
0.93, indicating improved accuracy even in a humid, tropical
environment with frequent cloud cover.

Overall, the average RMSD across all stations decreased
from 21.80% (Eq.5) to 15.16% (Eq.6), and the average MBD
increased slightly from 3.57% to 6.18%, indicating a mild positive
bias. However, the improvement in correlation (R? increasing from
0.86 to 0.93) demonstrates that the inclusion of AOD enhances the
model's predictive capacity.
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These results affirm that aerosol effects, particularly in regions
impacted by biomass burning or industrial pollution, must be directly
considered in EUV estimation models. The modified model provides a
more robust framework for future applications in UV forecasting,
public health planning, and environmental monitoring.

Among the atmospheric parameters considered, the solar
zenith angle exhibited the most significant influence on EUV irradiance,
as expected due to its direct relationship with solar geometry and
atmospheric path length. This finding aligns with previous studies, such
as Cordero et al. (2008) [37], which confirmed the exponential
dependence of UV radiation on the cosine of the solar zenith angle.

The baseline model (Eq.5), which integrates solar zenith
angle, cloud index, visibility, and total column ozone, demonstrated
satisfactory performance across all four stations, with an average
RMSD of 21.80% and a coefficient of determination (R?) of 0.86.
These results indicate that the model is both practical and applicable
in areas where aerosol data are unavailable, offering a low-cost
alternative for estimating EUV irradiance based on routinely
measured meteorological and satellite parameters.

To further enhance model accuracy, aerosol optical depth
(AOD) was introduced as an additional parameter in Eq. 6 and
applied at stations where AOD data were available. The inclusion of
AOD resulted in a notable improvement in model performance. As
summarized in Table 5 and illustrated in Fig. 8, the average RMSD
decreased significantly to 15.16%, and the coefficient of
determination (R?) increased to 0.93. Chiang Mai—where seasonal
biomass burning leads to elevated levels of fine-mode aerosols—
exhibited the most substantial improvement, with RMSD decreasing
from 26.09% to 14.17% and R? rising from 0.75 to 0.92. Similarly,
Ubon Ratchathani, which is often affected by fluctuating humidity
and cloud cover during the monsoon season, also showed enhanced
estimation accuracy with the integration of AOD. This observation is
consistent with previous studies that report high aerosol loading in
northern Thailand during the biomass burning season [42-43]

Although the improvement in Nakhon Pathom and Songkhla
was less dramatic, both stations still benefited from increased model
precision, particularly in capturing short term fluctuations in
atmospheric transparency. These findings underscore the importance
of including aerosol-related parameters in radiative transfer modeling,
especially in regions prone to particulate pollution or seasonal haze.

Collectively, the findings indicate that the baseline model
(Eq.5) remains a robust and versatile tool for nationwide application,
particularly in areas where detailed aerosol measurements are
unavailable. In contrast, the modified model (Eq.6) demonstrates
superior accuracy and should be prioritized in research or
operational settings where high-resolution AOD data—such as those
from AERONET or satellite-based sources—are accessible. The
enhanced performance of the modified model highlights the
importance of accounting for site-specific atmospheric conditions in
UV irradiance modeling and underscores the potential benefits of
expanding ground-based AOD monitoring networks to improve EUV
estimation in Thailand and other tropical regions.

4.3 Strengths and Limitations of the Model

The developed semi-empirical models, both baseline and
AOD-enhanced versions, demonstrate several practical strengths.
First, the models are relatively simple and computationally efficient,
making them well-suited for integration into large-scale or real-time
environmental monitoring systems. By using routinely available satellite-
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derived parameters—such as solar zenith angle, cloud index, and
visibility—the models provide a cost-effective solution for estimating
hourly erythemal UV (EUV) irradiance without requiring sophisticated
instrumentation.

Another strength lies in the model’s flexibility across different
geographic regions. The inclusion of multiple monitoring stations
representing diverse climatic zones—ranging from the relatively dry
inland region of Chiang Mai to the humid coastal area of Songkhla—
demonstrates the model’s generalizability. Moreover, the enhanced
model incorporating aerosol optical depth (AOD) significantly
improves performance, especially under conditions of high aerosol
loading, such as during biomass burning events in northern Thailand.

Despite these strengths, the models also have limitations. The
baseline model tends to underperform in regions or seasons
characterized by high aerosol concentrations or complex atmospheric
conditions, as it does not account for aerosol-specific attenuation.
Although the inclusion of AOD improves accuracy, the availability of
high-resolution, real-time AOD data remains a constraint in some
regions. Additionally, visibility, used as a surrogate for AOD in the baseline
model, may be influenced by local meteorological noise and non-aerosol-
related phenomena, introducing potential bias in the estimates.

Finally, the models are deterministic and assume consistent
behavior across atmospheric layers and conditions. They do not
account for vertical aerosol distribution, cloud type variability, or
other dynamic interactions such as photochemical reactions, which
could affect UV transmittance. As such, further improvements may
involve integrating machine learning techniques and high-resolution
temporal datasets to better capture the nonlinearities and interactions
in atmospheric parameters.

5. Conclusions

In this study, a semi-empirical model was successfully
developed to estimate hourly erythemal ultraviolet (EUV) irradiance
across Thailand using satellite and meteorological data. The initial
model (Eq.5) integrated four parameters: solar zenith angle, cloud
index, visibility, and total column ozone. It demonstrated a strong
correlation with ground-based measurements, with an overall
RMSD of 21.8% and MBD of 3.57%. To enhance accuracy, a modified
version of the model (Eq.6) was formulated by incorporating AOD at
stations where such data were available. The validation results
indicated that Eq.6 significantly improved performance across all
stations, reducing the average RMSD to 15.16% and increasing the
overall R? to 0.93. The greatest improvement was observed in
Chiang Mai, where AOD played a critical role due to seasonal
biomass burning and fine particulate matter. These findings confirm
that including AOD as a parameter improves model accuracy,
especially in areas affected by aerosol variability. The model’s
simplicity and reliance on readily available data make it suitable for
real-world applications in UV risk management, public health
planning, and environmental monitoring.

Future research should explore broader integration of AOD
using satellite products and PM2.5 datasets to extend the model's
applicability on a nationwide scale. To further enhance predictive
performance, seasonal variability should be incorporated, and advanced
machine learning approaches, such as artificial neural networks (ANN),
should be employed to improve resolution under complex atmospheric
conditions. Additionally, future studies should incorporate post-2021
datasets to update model parameters and better capture recent
trends in atmospheric variability and aerosol dynamics.
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