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ABSTRACT

Hybrid Petri nets (HPN) are frequently used to model and study hybrid systems, i.e. those with both
discrete (events, state changes) and continuous (flows, changing physical variables) dynamics. In
recent years, their field of application has been extended to energy systems, and in particular to
the modeling of electrical microgrids. These microgrids are often powered by renewable energy
sources, whose operation is variable and subject to environmental constraints. With this in mind,
the present study suggests an HPN-based modeling technique to illustrate the operation of an
electrical microgrid that integrates a photovoltaic installation associated with a battery storage
system. The idea is to capture the complex interaction between various energy sources, storage
units, energy demand and possible complementary sources. The associated mathematical model is
based on a linear algebraic representation of type Ax < b, which formalizes the system's constraints,
tracks the evolution of its state over time, and anticipates its future behavior. Simultaneously, a state
observer is developed with the intention of evaluating the current Petri net marking exclusively from
observable results, in order to deduce an accurate estimate of the internal state. By comparing the
simulation results with the estimation results, we are able to assess the robustness and accuracy of
the suggested model. This research is part of an approach aimed at optimizing and intelligently

supervising sustainable energy systems.

1. Introduction

With the gradual depletion of fossil fuels and increasing
pollution, the need for sustainable, accessible energy systems is
becoming ever more pressing worldwide. the development of
green energies, such as solar, wind, hydroelectric and geothermal
power, is crucial to the energy transition, as it reduces our reliance
on fossil fuels. With this in mind, microgrids are a sensible way of
incorporating these renewable energies (RES) into electricity grids,
thereby guaranteeing a stable, high-level supply [1-6].

A microgrid is an autonomous energy production system
consisting of distributed generators, storage devices and consumers,
connected to the main grid via a common coupling point (CCP). It is
capable of operating in grid-connected or stand-alone mode,
guaranteeing a constant energy supply even during disturbances on
the main grid. What's more, the modeling and examination of these
systems represent a crucial challenge due to their hybrid nature,
combining continuous dynamics such as energy flows with discrete
incidents such as outages, failures or state changes [7-9].

Energy microgrids are, by nature, hybrid systems, comprising
both continuous elements (such as energy flows, voltages or currents)
and discrete elements (such as switching operations, control decisions
or logic events). The temporal evolution of such a system depends
directly on the interaction between all its components.

In this context, hybrid Petri nets (HPN) are a particularly well-
suited formalism for modeling such systems. Indeed, they enable
continuous dynamics and discrete events to be represented
simultaneously within the same structure. This capability is essential
to accurately capture the overall behavior of a microgrid,
particularly when coordinating energy sources, managing storage,
or implementing complex control strategies. HPN modeling thus
enables improved simulation, state estimation and anomaly detection
in distributed energy systems.

Conventional power system modeling methods, such as
matrix state analysis, allow the continuous dynamics of energy
networks to be represented. However, they often tend to ignore
punctual events that could affect these dynamics, such as changes
in the position of transformer taps or the regulation of battery
charge/discharge cycles. A more appropriate option would be to
use HPN, which are able to represent discrete and continuous
aspects of energy systems in an integrated way [10-12]. Section 3
will provide a more in-depth description of this method.
By integrating discrete and continuous elements within a single
structure, HPNs offer the possibility of faithfully representing
energy flows, operational decisions and state transitions in
microgrids. This approach simplifies the study of the complicated
interactions between solar power generation and storage
management, while optimizing the system as a whole [13-17].
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As part of this research, a modeling approach is suggested,
based on an algebraic linear model of the type Ax < b, with the aim of
illustrating microgrid dynamics. A state estimator is also developed to
judge the accuracy of predictions, by confronting simulation results
with data from estimation [18-21]. The effectiveness of this technique
is demonstrated by a case study, attesting to its relevance for
the analysis and optimization of energy flows.

This research concerns the implementation of state and
input estimators derived from counter and dater methods, aimed
at enhancing the monitoring and management skills of hybrid
systems. These techniques take advantage of the inherent
structure of HPN to faithfully represent the progression of system
states and input transitions, even in the case of incomplete or
dubious observations.

The counter approach is specially designed for discrete-
event systems such as microgrids, where tracking events such as
switching, activation or resource management is essential. The dater
approach, on the other hand, emphasizes the temporal accuracy of
events and transitions, enabling detailed reconstruction of system
trajectories through time.

This research presents a hybrid modeling and evaluation
framework for energy microgrids, based on HPN. By combining
counter- and dating approaches for state and input evaluation,
our approach offers a mathematically sound and practically
applicable tool for monitoring, analyzing and managing microgrid
systems under observable and uncertain conditions. Its uniqueness
derives from the incorporation of the HPN structure into
the algebraic inequalities, enabling robust simulation and real-time
estimation capability, illustrated by a concrete example of a 4-DG
microgrid. It is particularly significant to opt for a microgrid with
four distributed generators (4-DG) as the case study subject.
It represents the true complexity of modern decentralized energy
systems, where several diverse energy sources (such as solar, wind,
battery storage and diesel backup) are required to operate
simultaneously and in a coordinated fashion. To model such
a configuration correctly, it is necessary to take into account
asynchronous behavior, changing production rates and evolving
demand profiles, all of which are inherently hybrid. By implementing
our estimation framework in this multi-source environment, we
demonstrate the robustness and scalability of our approach.
Not only does this case study confirm the theoretical model, it also
establishes our method as an effective resource for use in
intelligent energy management systems (EMS), under both normal
and disturbed operating conditions.

By presenting the estimation problem in the form of linear
matrix inequalities (LMI), the suggested estimators simultaneously
guarantee the robustness and stability of the estimation process.
This combined method proves to be an effective tool for real-time
monitoring, error identification and efficiency assessment of
complex energy systems.

The article begins with an introduction, followed by a literature
review detailed in section 2. Section 3 focuses on the introduction of
HPN and the notations employed. The core of section 4 is the
suggested state model, while the design of the state observer is
detailed in section 5. In the sixth section, the model and observer
are implemented on a microgrid in the context of a simulation.
Section 7 concludes with a comparative analysis of the results.
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2. Related literature

Much research has been devoted to the modeling and
analysis of microgrids using HPN, to improve energy management
and accurately reflect the complex dynamics inherent in these
systems, this research exploits the ability of Hybrid Petri Networks
(HPN) to represent both discrete events and continuous evolutions,
two fundamental aspects of microgrids.

The research highlighted in [22] demonstrates this approach
by suggesting an HPN-based technique for energy management of
an autonomous microgrid, whose main aim is to improve energy
distribution according to user requirements.

Indeed, they propose to use HPN model of a micro grid to
take an hourly decision about dispatching energy between the
connected installation according to the need of each installation.
Also, in [23], an HPN based approach is used to model an intelligent
microgrid based on a principle of power balance within a bus,
enabling modular integration of energy sources and storage. Finally,
[24] focuses on the variability of renewable sources, generating
a system state evolution diagram from the HPN model to better
analyze uncertainties. The authors in [12] used the reachability graph
of the proposed HPN to synchronize between four energy sources.

However, unlike these approaches, our work proposes a
rigorous formulation based on a linear algebraic model Ax<b to
represent the hybrid dynamics of the system. In addition, we
develop a state observer enabling not only accurate estimation of
system evolution, but also input vector reconstruction and
anomaly detection. This dual modeling (simulation and estimation)
is not covered in [22-24]. Indeed, the work presented in [22-24]
analyze the system behavior according to the evolution of the HPN
marking, but in our work, we consider the number of firings of each
transition at each time as the system state if the counter approach
is considered. Only the initial marking is supposed known.

Our results stand out for their high accuracy, and better
analytical significance, in line with the formal structure of the proposed
model. Comparison between simulated and estimated results shows
rapid convergence of residuals, illustrating the robustness and high
performance of our method compared with existing work.

In addition to the above-mentioned contributions, a large
body of research has investigated HPN-based structures for
supervisory control and fault resilience in decentralized energy
systems. For example, [25] investigates a hierarchical control
structure combining PN with rule-based logic to coordinate
multiple energy sources in a smart microgrid. Although this
method is effective for modular control, it suffers from the absence
of a quantitative evaluation framework and does not take into
account state reconstruction in situations of partial observability.
Thus, [26] suggests an HPN model for power quality control,
focusing on event-based behavior, but without addressing the
analytical interplay between discrete and continuous domains
necessary for dynamic estimation.

Furthermore, [27] employed HPN to model energy exchanges
between subsystems, focusing on graphical representation and scenario
testing. However, this research remains essentially descriptive and
lacks formal evaluation tools or mathematical verification of system
operation. Our method, however, combines behavioral simulation
and analytical estimation in a unified context, enabling further
analysis of microgrid performance under a variety of input conditions
and structural configurations.
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3. HPN formalism

A HPN is a method for representing and analyzing dynamic
systems, integrating both discrete aspects (such as events and
state changes) and continuous aspects (such as the evolution of
physical variables over time). It is an extension of traditional Petri
nets, developed to integrate continuous elements frequently
encountered in physical, industrial or energy systems. In a PHN:

e Places can accommodate either discrete markings
(integers, symbolizing a certain number of tokens), or
continuous markings (real values, which can
represent degrees of energy or fluids, for example).

e Transitions can be discrete (triggered by events) or
continuous (operating with speeds or flows).

e The arcs linking locations and transitions are assigned
weights, which define the firing conditions and
dynamics of token transfer.

Differential or constant-velocity equations are frequently
used to represent continuous dynamics, enabling us to simulate
the temporal progression of various flows (production, energy,
temperature, etc.).

This type of network is particularly suitable for modeling
complex hybrid systems such as electrical microgrids, industrial
automation processes, transportation systems or biological systems.
It offers an integrated approach to capturing the interaction between
(discrete) control logic and (continuous) physical phenomena, while
providing tools for structured analysis, simulation, verification and
observation.

According to [28], a HPN is defined as a structure comprising
the following elements:

N = (P,T,P",P%t,C,D)
with:

e The set of places P encompasses two subcategories:
discrete places Pg and continuous places Pc, whose

cardinalities are respectively noted as ng and n,

e The set of locations amounts to n. Each location is
designated by the label P; with 7 €{1, ..., 72} [29-32].
In the graphical context, discrete locations are
symbolized by single circles, while continuous
locations are depicted by two concentric circles.

e T transitions are also classified into two types:
discrete Ty, transitions and continuous T¢ transitions.
Segments illustrate discrete transitions, while double
contoured rectangles depict continuous transitions.

e The weights assigned to the arcs in the network are
defined by the pre and post incidence functions.
The first of these functions is specifically designed for
continuous squares, while the second applies to
discrete squares.

P.XT > R*, Py4xT—>N

In a HPN, the simultaneous presence of discrete and
continuous dynamics allows four kinds of interaction between
places and transitions. A discrete location can be associated with
either a discrete or a continuous transition. It is also possible to
link a continuous place to either a discrete transition or
a continuous transition. These various configurations offer the
possibility of accurately representing the complex interactions
specific to hybrid systems.
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A HPN is considered to be well structured if, for t € t. and

p € p4, the pre-incidence and post-incidence functions satisfy the
following condition:

PTé(p,t) = P (p, 1)

This condition ensures that the activation of a continuous
transition does not affect the marking of discrete places [33-34].

The HPN incidence matrix can therefore be defined as follows:

w(p,t) = P (p,t) — P (p,t) (1)
w = W_{Post} _ W_{Pre} (2)

We use the notation x to symbolize internal transitions, u
for input transitions and y for output transitions, in order to
differentiate them.

We also denote T;jas the duration related to location P,
which corresponds to the time a tag remains in that location.

4. State model design
4.1. Objective

The aim of this section is to develop a new state model for
analyzing the temporal evolution of the microgrids state and
outputs. The hybrid system requires a model that can
simultaneously represent discrete event-related behavior (such as
mode changes and control actions) as well as continuous evolution
(such as energy accumulation or power flow). To remedy this, we
propose a formal model structure producing two key linear
inequalities: the first enables us to estimate the internal state of
the system, and the second provides a mechanism for calculating
system outputs based on transition triggers and model structure.
These inequalities form the basis of our estimation strategy.

The model established is analogous to a continuous state-
space representation, but adapted to the hybrid structure of the
HPN. The state vector is not based on markings as in classical Petri
net analysis, but on the cumulative number of transition triggers,
offering greater flexibility and abstraction in systems with limited
observability. The model is developed using a complementary
method: the counter approach, which focuses on quantifying events.

4.2. Counter approach

The counter-based approach is a modeling technique that
focuses on counting the occurrences of each transition in a hybrid
Petri net over time. Rather than tracking the instantaneous
marking of locations, this method relies on the accumulation of
transition triggers, reflecting the cumulative behavior of the
system and providing a useful abstraction for hybrid systems such
as microgrids.

In this approach, the state of the system is represented by
a vector x(t), where each component corresponds to the total
number of triggers of a specific transition up to time t. This makes
it possible to track the evolution of the system. This makes it
possible to track the evolution of the system as events (such as
energy production, storage charging or load switching) occur
repeatedly. The advantage is a continuous, monotonic view of
system activity, perfect for estimation and analysis.

State evolution is then governed by a set of linear
inequalities, usually expressed as:

Ax(t) < b(t)
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Here, An incorporates the system's structural and
operational constraints, such as energy balances, priority rules or
capacity constraints. The vector b(t) includes time-varying bounds
or thresholds, possibly derived from system specifications or real-
time measurements.

This formulation makes it possible to capture system
behavior even when certain variables (such as markings or exact
energy levels) are not directly observable. It is particularly effective
in detection-limited scenarios, where only events such as
“generator on” or “battery charging” are available.

In the context of a microgrid, transitions can model
discrete decisions such as connecting a generator, triggering a
battery discharge or redirecting energy to a critical load. By
accounting for these actions over time, the counter-based
approach enables energy consumption trends to be estimated,
anomalies to be detected and energy allocation to be optimized.

What's more, this modeling framework integrates
perfectly with estimation algorithms, enabling the reconstruction
of internal dynamics and input behaviors from observed events.
The counter representation thus serves as the basis for the
observer design presented later in this article.

The matrices Wiy, Wy, W, Wy, Wz, Wry, Wity and wyy,

which symbolize components of the global incidence matrix w, are
determined by the equations below:

+cc +cd —cc —cd
+ _ [ Wux Wyx - _ [Wux Wyx 3
Wox =\ +ac , +ad |'Wox =\ —ac | —da (3a)
va WVX WVX va
(e ) (g w )
Wex =\ vdc  +ad |'Wex =\ _ac | —da (3b)
XX Wayx Wix Waxx
L A N 3
Wey =\ yrac raa | Wey T\ -ac |, -aa ¢
xy xy xy xy
A A I L 3ad)
Woy =\ p+dc +ad |'Woy =\ —ac |, -aa
vy vy vy vy

where the index cc refers to continuous transitions and index cd refers
to discrete transitions. In addition index cc models the link between
continuous places, index dd models the link between discrete places,
index dc describes the link from discrete to continuous places and cd
models the link from continuous to discrete places.

In a Petri net, the set of places can be divided into four
distinct subgroups, each representing a specific type of connection

between transitions. The set P, gathers the places that lie between
input transitions and internal transitions. The subset Py

encompasses the places that lie between two internal transitions.
Subsequently, the locations between internal and output transitions

are combined in the group Pyy. Finally, transitions that establish a

direct connection between inputs and outputs are embedded in Pyy.
Based on these notations, we can then establish the following

inequalities:
Cuite w0 (L) = () @
Cute = ((C ) = G (5
(—wiy  —wiy) igg)s(ﬁg) (6)
(—wih —w;y)(zgg)s(ﬁz) ?)
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Inequality (4) describes the interactions between input
transitions and internal transitions, while inequality (5) illustrates
the dependencies among internal transitions. Inequality (6)
illustrates the relationships between internal transitions and end
transitions. In situations where loci establish a direct link between
input and output transitions, they are defined by inequality (7).

Remark 1: Inequalities (4) to (7) can be elaborated and
specified, resulting in a series of extended inequalities identified
from (8) to (15).

WiV () — Wik (8) 4+ widxc (t)
Fwfhxg (1) < (Myy)

(8)

_thxdcvc(t) - Wltxddvd @® + Wu_xdcxc ®)
+Wu_xddxd(t) =< (mvx)

(9)

—WHx(t — 1) — wihxg (6 — 1) + wif€x (t)

_ (10)
+WxxCdxd(t) < (Myy)
- ;xdcxc(t - 1) - W;xddxd(t - 1)
+ wdex (t) (11)
W hxg (6) < (M)
W a0) = W xa (0) + W0 )
Wi ?ya(t) < (myy)
Wi exe (£) — wii g () + wexc () (13)
+Wx_yddxd(t) < (mxy)
_Wlfyccvc(t) - W;)fdvd @®) + Wv_yccyc ®) (14)
+Wv_yCdyd ® =< (mvy)
- Jydcvc(t) - WJyddvd (t) + Wv_ydcyc (t) (15)

+Wv_yddyd(t) < (mvy)

The system must have an ascending time progression, or at
least not be in decline. To guarantee this property, inequalities
(16) to (19) are implemented.

xc(t=1) < x(t) = —x.(0) < —x(t - 1) (16)
Xg(t—1) < x4(t) =2 —x4(t) < —x4(t—1) (17)
v (8) < Yo () = —ye(8) < —v.(8) (18)
va(t) < ya(0) = —ya(t) < —va(t) (19)

Inequalities (8) to (19) are gathered to obtain inequalities
(20) and (21).

The inequality (20) provides an upper bound for the state
vector x(t), which represents the simulated time evolution of the
system’s internal state. On the other hand, inequality (21) gives an
upper bound for the output y(t), which represents the simulated
trajectory of the system over time.

WiEe wpse \ Moy
—-dc ,,,-dd
W'UX WVX . xc (t) mvx
Wit Wik S| My |+
B ® m
WXX Wxx (;CX
B (20)
Wi wicd 0 0
+dc tdd 0 ve(t)
Wyx Wyx v4(t)
0 0 W;XCC W;;(Cd Xe (t _ 1)
0 0 W;xdc Wag‘xdd xq(t—1)
0 0 -1 —1



- —cd

Wae Wi ey
—d —dd

Wi Wiy ) Myy,

wsee  pmed (yf ) Myy | +
”_3; ’13; . ya(t) My

Wyt wyy 0
-1 -1

Wi w0 0

wrde p+dd 0 0 xc(t)
Xy xy
0 0wy wi? );d((g

(o

0 0 wite wiit | \vy(6)
0 0 -1 -1
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(21)

With regard to inequalities (20) and (21), we can therefore suggest
the following state model:

t t t
[4¢ A2] [j::%tg] [45 A4] L’;Et + [Bf B [Ud((t)) + [M,]
(22)
¢ ray [Ye(© ¢ ra [Xe(®) e pat [ve®
leses1[Je o] - lescsa [ ] + e 2] + 14
With:
Wv—xcc\ 0 mvx\
W,,_xdc 0 Myx
A = welt | 5= —wiEEe S My = Myx |,
Wx—xdc W;xdc m(;(x
_WJ;CCC
_W;rxdc
Bi=| o
0
0
WV_XCd 0 _WJ;CCd
wy 0 —whdd
Af = wgea ;49 = | —wE? |, BY = 0 (24)
Wx_xdd _W;xdd 0
-1 -1 0
Wy —wyee May
wite —wige Myy
G=|wye [(G=] o [My=|My|;
w;ydf 0 oy
-1 (25)
Df — W];I-XCC
W;xdc
cd
/ Wy \ / wied 0
~ad dd 0
d = d —Wiy d +ed
= Wv_yCd HE 0 , DI =] —wpy (26)
w—dd 0 —wdd
vy
-1 -1 0

The trajectory and dynamic behavior of the system may be
analyzed by the simulation of the state model represented by
equation (22). It makes it possible to calculate the number of
transition firings xc(t), xd(t), yc(t), ya(t) based on the system inputs
ve(t), xq(t) and the prior firings xc(t-1), x4(t-1), yc(t-1) and yq(t-1).
The system's status at a specific time t is characterized by the
number of firings.

106

x(t): System state indicating the accumulated total of

internal transition triggers at time t.

v(t): Input vector indicating the number of triggers of input

transitions at time t.

y(t): Output vector indicating the number of output

transition triggers at time t.

A, B, C: Incidence submatrices from the HPN structure.

e b(t): Vector representing restrictions or constraints at time
t, based on system specifications.

3.4. Dater approach

The dating approach is based on the use of time stamps
(dates) linked to transition events, thus facilitating a temporal
reconstruction of the system's operating sequences. In a hybrid
Petri net system, the dynamics are both continuous and discrete.
The dater method takes advantage of this duality by exploiting the
time intervals associated with transitions to constrain and estimate
the evolution of network marking over time.

The date-based approach assumes that each transition is
linked to a potential start date. The state vector indicates these
potential start dates. System events are modeled using timed
transitions that trigger an action on a specific date or when certain
conditions are met.

Using the matrices established in (3) and the symbols
presented earlier, we can state the following inequalities:

i o (19) < ()
i e (U Y) = () (28)
ot =) (o) < ( ;"y) (29)
oy () < (Cry) a0

The input transition and internal transitions are linked by
inequality (27). Inequality (28) highlights the interactions between
internal transitions, while inequality (29) illustrates the links
between internal transitions and outputs. In the case where a
hybrid Petri net has places that link input and output transitions,
these connections are represented by inequality (30).

Remark 3: We can also extend inequalities (27) to (30), which gives
rise to the following extended inequalities:

wirEve (k) + wihfvg (k) — wifex, (k) (31)
_va xd(k) =< ( Tvx)
WJ-deUc(k) + erxddvd (k) - Wu_xdcxc(k) (32)
_Wux xd(k) < (—Tow)
wiiECxe (ke — 1) + wi@xq (e — 1) — wifx (k) (33)
—Wi xd(k) < (—Txx)
w;xdfxc(k - D +wixa(k — D) —wifex (k) (34)
_Wxx xd(k) < (—Tax)
+chc(k) + wil g (k) — wi €y, (k) (35)
—cd
Ya (k) < ( Txy)
+dcxc (k) + W;yddxd (k) - Wx_ydcxc(k) (36)
_ny xd(k) <(= Txy)
Wi ve (k) + wilitvg (k) — wiy €y (k) (37)
_Wuy Yd(k) < (_Tvy)
wihev (k) + wihvg (k) — wyyy (k) (38)

_va yd(k) <( Tvy)
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System direction must be non-decreasing over time. To guarantee
this behavior, the following disparities are integrated.

xo(k — 1) < x.(k) = —x.(k) < —x.(k — 1) (39)
Xq(k —1) <xq(k) = —xq(k) < —xq(k = 1) (40)
ve(k) < Ye(k) = =y (k) < —vc(k) (41)
va(k) <ya(k) = —ya(k) < —va(k) (42)

In order to represent the discrete and continuous state of the
system as well as its output, constraints (39) to (42) are
consolidated into constraints (43) and (44).

/ —wyfe —wpce T,
wide  _yy-dd _T
1;—xcc —cd xc(k) < TVX —
Wy —Wyy x (k) =1 T ixx
—dc —aa | ¢ -
—Wxx —Wyx xx
! ! ° (43)
/ Wi wid 0 0 \ v (k)
wide whdd o 0 v; )
0 0 W;xcc W;xCd Xc (k _ 1)
0 0w wil | \x, (k- 1)
0 0 -1 -1
_Wx—yCC _Wx—;c —Txy
_wode  _yy-dd _T
x_ycc Xy (yc(k)) < _Txy _
—Wyy W,,y (k) = vy
e Ya _T
—Wilt —wpy Ovy
-1 -1
Wi w00y ® (44)
W;—ydc W;ydd 0 0 xc (k)
0 0 W,j'yc ¢ WJyCd Ut: ( k)
0 0 wihde  wihdd [\, (k)
0 0 -1 -1

Inequality (43) provides an upper bound estimate for the state
vector x(k), illustrating the temporal progression of the system's
internal state. At the same time, inequality (44) serves as an upper
bound for the system output y(k), illustrating the progression of
the system's output trajectory over time.

Taking into account inequalities (43) and (44), we can
suggest the following state-space model (45):

¢ qa1 [%c MO e qap [k —1) ¢ pay [Ve(®)
s af) [ o - 15 [ |+ et |+ 17 s)
e (k c(k . o (k
e T
With:
Wv—xcc 0 W];I-xcc
w,,‘xdc 0 witde
—wiee |LAS = | wiEES [, Bf =] o (46)
Wx_xdc W;Xdc 0
-1 0
—wy 0 —Tox
_Wv_xdd 0 _Tvx
Af = | —wgea [, A = wEd [T =| —Ty |,
_W;xad wgdd —Tyx
e - ° (47
Wyx
W;xdd
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—Wx}; WJ-Ci-yCC\ /_Txy\
_,—dc —
Wiy W;ydc Txy
c - C — —
G=|-wy|.Gz=| o |[I=|-Ty|
—Wv_ydc 0 _Tvy
-1 -1 0 (48)
0
0
+cc
Df = | wy¥
+dc
W’IiX
-1
_y,—cd
Wiy Wi d 0
—wgtd wrdd 0
d d d_| d_ +cd
Cl - —Wv_yc ,C2 = 0 ;Dl = | Wpx (49)
+dd
_Wv_ydd 0 Wyx
-1 -1 0

Analysis of the system's trajectory and dynamic behavior
can be carried out by simulating the state model (45). The suggested
approach (48) offers the possibility of defining initiation dates

xc(k ,xd(k), yc(k) and yq(k) from previous dates xc(k-1), xd(k-1) ,yc(k-
1) and y4(k-1) as well as system inputs v¢(k) and vg(k). These trigger
dates define the system state.

Where:
e x(k): Estimation of the state vector at time k
o y(k): (Estimated) input vector for time k

e A, B: Matrices of dating models reflecting system
restrictions.

The inequality takes into account cumulative time constraints.

5. input and state-estimator design
5.1. Objective

In the context of hybrid systems, involving both continuous
and discrete dynamics, accurate estimation of the internal state
and unknown inputs is crucial for monitoring, control and fault
diagnosis. In many practical applications, it is often impossible to
directly measure all state variables or external inputs due to
physical, technological or cost constraints. Consequently, the
development of an estimator capable of reconstructing these
variables from the available measurements becomes essential.

In the system considered in this study, the state and input
estimation problem is addressed using a representation based on
matrix inequalities. These inequalities provide a framework for
modeling the hybrid behavior of the system while integrating
possible disturbances or failures. To solve this problem, we
propose the counter approach and dater approach, which offers a
way of tracking the evolution of the system's state and estimating
unknown inputs.

This section aims to synthesize a new form of observer
used to estimate the state of the system and its inputs. This
observer is composed of two matrix inequalities:

The first is used to evaluate the state of the system, while the
second is used to reconstruct its inputs. The observer proposed
here is similar to the state observer used for continuous systems,
and has been developed in this article using counter- and date-
based methods.

Throughout this work, the estimated parameters are described by
the symbol 'A'.
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5.2. Counter approach

In this framework, counter evolution is governed by a set of
matrix inequalities encoding the logical and temporal relationships
between system events. By analyzing the variation of these counters
from the available measurements, we can reconstruct the trajectories
of hidden state variables and estimate unknown inputs.

One of the main advantages of the counter-based approach
is its ability to handle systems with a high degree of switching or
mode transitions, characteristic of hybrid systems. This approach is
also particularly effective in systems where continuous measurements
are rare, and where the timing and order of events provide significant
information on system behavior.

The state observer synthesis approach is based on
transforming the inequalities used to simulate the system into
suitable formats. Indeed, to reconstitute the state and inputs of
the system, we calculate them from the known output. Details of
the estimator's design are given below.

Xo(t) S Xo(t+ 1)

A A (50)

Ve(t) < Ve(®)
va(t) < va(t)

Inequalities (8) to (15), (50) and (51) can be gathered to
obtain inequalities (52) and (53).

(51)

+ +cd
Wv;f ¢ vac \ m,,y
+d +dd
va ¢ va | Ié\c (t) mvy
+cc +cd A S| Myy | —
Wyx Wyx ¢
+dc +dd va(t) Myx
va WVX 0
I 1
(52)
—cc —cd A
00 (0
—dc —dd A
Wpy Wy 0 0 ) 0
0 0 W€ wpf A ©
0 0 wode y-dd || %e
vXx vXx A
I 1 0 0 xq(t)
+ +cd
nyc ¢ nyc mxy
d dd
W;y ¢ W;y Jé\c (t) mxy
+cc +cd A S| Myy | —
Wiex Wyx ¢
vac o +da | \Xa(t) Mk
Wyx Wyx 0
I I
(53)
/ Wx_; ¢ Wx_yCd 0 0 .’)ﬁ\c ©
—dc —dd A
Wey ' Wy 0 0 ¢
0 0 wet e A}’d( )
Zac o —aa || X+ 1)
0 0 Wyx Wyx A
0 0 I 1 xq(t+1)

Inequality (52) proposes a lower bound for the system
input v(t), while inequality (53) also offers a lower bound for the
state vector x(t).

Based on these disparities, the following can be suggested
as a state observer:

A A A
(t [(t+1 c - (t
[45, A1 )f\ (t) ,» [45, A )s\ (t + ) +[C§; €] [)//\ ® + [Mox]
X, X,
19d(t) Ad(t) . <3d 54
c xc c
[B§, BSy1 [ A ]u (B, BS,] [ A +[D§, D§:] }/]\ + [Moy]
va(t xq(8) Va(t)
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Where:
Wiy 0 Myx
W;ydc 0 Myx
01 = | wiee |46 = Wix | Mox = | My |,
wihde wgde Myy
I I 0
(55)
Wiy ©
—dc
Wy
Cs = 0
0
0
foge) (o) [
—dd 0 —dd
ny w.
i i _ xy
Agr = yoea [ A% = wet | =] g (56)
w-dd widd 0
xx
I 0 0
IV
. W;—ydc . Wv—ydc My
Bg, = witse D1 = 0 s Moy = | Mo |,
W;xdc 0 Myx
I 0 0
(57)
0
0
Bf, = | wix®
Wv—xdc
0
wie? wpy? 0
W];i—ydd Wv_dd 0
Y —cd
By =| wiea [.DG=| o | BS:= va:id (58)
w24 0 Wy
i 0 0

The suggested observation system evaluates the values of
Xc(t), xd(t), vc(t), va(t) from their posterior times xc(t+1), xq4(t+1),
ye(t+1), yd(t+1) and its output at time yc(t), yd(t).

5.2. Dater approach

For the synthesis of the state observer based on the so-
called dater approach, it is essential to carefully modify the
inequalities specified in equations (31) to (38). The aim is to
facilitate simultaneous evaluation of the hybrid system's internal
state and unmeasured inputs, based solely on the observations
collected at the output. This is a vital phase for system diagnosis,
management and control, especially when faced with complex
dynamic constraints or operational uncertainties.

The state estimator is designed on the basis of a temporal
formalism subject to inequalities, which highlight the lower and
upper bounds of the transition times. These constraints are derived
from the simulated model and reflect the observed temporal
behavior of the system. Evaluation is then carried out by comparing
these limits with the temporal information available during
observation, with the aim of limiting the totality of temporal paths
allowed by the system, and deducing a range of uncertainty
concerning internal states and triggered events. This method is
particularly suitable for systems where events cannot be observed
directly, but whose impacts on outputs can be linked to internal
transitions via defined temporal relations
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We begin by setting out the conditions for non-decline
as follows:

() < %ok + 1)

Xy (k) < Xy(k + 1) (59)

Ve (k) < Ve (k)

(60)
v (k) < ya (k)

Inequalities (31) to (38), (59) and (60) are gathered to obtain
inequalities (61) and (62).
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Inequality (61) allows estimation of the system input by
determining a lower bound for v(k). Inequality (62) estimates the
state by calculating a lower bound for x(k).

Based on inequalities (61) and (62), we can suggest the
following state observer:

A A A
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The algebraic model for evaluating system input and state
is described by the state observer (66). It offers the possibility of

evaluating dates xc(k), xd(k) and vc(k), va(k) based on later dates
Xc(k+1), xd(k+1) and vc(k+1), va(k+1) while assuming that the
system response is known: yc(k), ya(k).

6. Application to a micro-Grid with four distributed generators (4-DGS)

This section presents the application of HPN modeling and
the proposed observer design to a microgrid system integrating
four distributed energy sources (4-DG). As shown in Figure 1, the
microgrid integrates a wind turbine, a battery storage system, a
photovoltaic solar panel and a diesel generator. These energy
sources are coordinated to ensure a stable and reliable power
supply, even in the presence of environmental fluctuations or
variations in energy demand [12].

In order to examine the robustness and efficiency of the
proposed hybrid Petri net model (model 22) and the associated
observer (model 31), we adopt a residual-based validation
approach. In this situation, residuals refer to the difference
between the estimated values provided by the observer and the
actual values obtained by simulating the model. When these
residuals are zero or negligible, this means that the model and
observer produce consistent results, validating the accuracy of the
structural model and estimation algorithm.

In this specific case study, we focus solely on the counter-
based method for building observers, as it is particularly suited to
tracking discrete transitions and energy flows in the microgrid. The
estimation process therefore relies on reformulated inequalities
derived from the simulation model to reconstruct the system state
and inputs from output measurements alone.

Each location and transition in the HPN model (Figure 1) is
associated with precise physical meanings corresponding to the
components and operating modes of the microgrid. Table 1
provides a detailed description of these elements, indicating for
each energy source the associated locations, transitions and
operational conditions. This mapping provides a clear
understanding of the energy flows modeled, and facilitates the
implementation of fault detection or energy optimization
strategies. For a full explanation of the model structure and its
components, please refer to [12].
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The microgrid examined here represents a typical example
of an intelligent energy system based on diverse, complementary
sources. The wind turbine generates electricity in proportion to
wind speed, based on operating modes defined by critical
thresholds of minimum, nominal and maximum wind speeds. The
solar panel converts the sun's energy into electricity, with output
varying according to irradiance, as soon as the latter exceeds a
minimum level. Despite its high economic and ecological cost, the
diesel generator is used when renewable energy production fails
to meet demand, guaranteeing uninterrupted service. These
elements interact dynamically under the management of an
integrated control system, which considers not only the physical
and operational constraints of each source, but also the overall
goals of efficiency, reliability and sustainability of the energy
system. HPN modeling, which takes into account both continuous
(energy flow) and discrete (condition or mode changes) aspects, is
capable of capturing this hybrid complexity. It offers a valuable tool
for the simulation, study and management of intelligent energy
systems.

e  V:current wind speed (in m/s), input variable.
e Vg minimum wind speed for the turbine to start up (start-
up speed).

e Vp: wind speed at which the turbine reaches maximum
power (nominal speed).

e fu): increasing function of wind speed, giving the energy
produced in normal mode.

e vj1:energy production rate of the turbine in normal mode.

e  vj2: energy production rate in maximum power mode,
equal to Emax.

®  Emax: maximum power the wind turbine can produce.

e  FEy:energy produced by the wind turbine.

o Esolgr: energy produced by solar panel.

e v;3: energy production rate of solar panel.

e vis: battery discharge rate.

e vie: energy production rate of diesel generator when
running.

®  vyp: instantaneous combined production of wind turbine
and solar panel (vi1 + viz or viz + v13).

e vj7: system energy demand.

e Mjpsg): amount of energy available.

o Mjpi1): energy deficit.

Table 1 HPN Model: Subsystems, Places, Transitions, and Operating Modes.

Energy Source Places (pi) Transitions (t;) Operating Modes
Normal Mode (V.<V<V,) - Transition t:; activated with (vi: = f (V)
Wind Turbine p1, P2, p3 t1 —te, t11 —t12 Maximum Power Mode (V>V,) - Transition ti2 activated with (vi2 = Emax)
Shutdown Mode (V<a) = No transition occurs, the output energy (Ew = 0)
Photo- voltaic Cell pa, ps th ts, tis Active Mode (ON) — ti3 activated at a rate vis that is affected by solar irradiation.
Inactive Mode (OFF) — Esoiar=0
Charging (ti4) - The rate of transition fires is vis
Battery Ps, pao tus, tis Storage - No transition is started.
Discharging (t1s) - The rate of transition fires is vis
. Energy Production - ps holds a token, tisactivated with vis
Diesel Generator Ps, p7 tg, tig, tie Shutdown - No firing
Sufficient Energy (M (ps)>0) - The system operates under normal conditions.
Load Management pe, pai ti, tis (M (p11) > 0) - both the diesel generator and battery are activated.

stops.

Excess Energy (vwp>v17) - The battery switches to charging mode and the generator

battery

Js p1

118 117

t7 8

t10

pS
photovoltaic cell

diesel generator

Fig. 1 PN-based model for a microgrid with four distributed
generators (4-DGs).
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The inclusion of four distributed generators (4-DG) in
a microgrid represents a contemporary and adaptable structure that
meets the growing demand for energy independence, operational
flexibility and ecological sustainability. This type of hybrid device is
particularly suited to isolated or critical contexts, such as rural areas
not connected to the main grid, hospital facilities or military camps,
where constancy of energy supply is paramount. The use of hybrid
Petri nets for modeling not only enables accurate representation of
the mixed dynamics (discrete and continuous) associated with energy
flows and operational modes, but also the simulation of degraded
operation, optimization or transition scenarios between different
sources. Indeed, one of the main challenges lies in optimal
coordination between generators to avoid energy losses, minimize
reliance on fossil sources, and ensure rapid response to variations in
demand. What's more, the state transitions modeled in HPN make it
possible to include switching times, recharging or start-up constraints,
as well as operating priorities according to defined energy policies.
This approach also facilitates the integration of intelligent or
predictive management algorithms, which can be used for automated
decision-making in embedded energy management systems.
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Finally, the designed observer enables the internal state of the system
to be monitored based solely on measured outputs, which is essential
for remote monitoring, predictive maintenance, or early detection of
potential failures.

Inequalities (68) model the system behavior:

Ti(k) + T3(k) + Ti1(k) < Tyq(k — 1) + Ty(k — 1)

+T,(k— 1) +1 (68a)
?T(lkz)(:_Tél(;c)JrJrlle(k) < Ts(k—1) + Ty(k — 1) (68b)
Ts(k) + To(k) < To(k — 1) + Ty(k — 1) + 1 (68c)
Tig(k) + Tua (k) + To(k) S Tia(k =D+ Tk =1 oy
+Typ(k— 1) + To(k — 1) + 1

E;ff()k+—Ti§(-ll-()1+ Tia(k) + Tys(k) < Ty (k — 1) (630)
Tie(k) + To(k) < Tro(k — 1) + Tig(k — 1) + 1 (68f)
Tio(k) < To(k — 1) + 1 (68¢)
Tys(k) < Tya(k—1) + 8 (68h)
Tia(k) < Tys(k — 1) + 2 (68i)
T,(k) <Tg(k—1)+1 (68))
Tis(k) + To(k) < Ty(k — 1) + Tys(k — 1) + 1 (68K)

For this HPN model, we can rewrite inequalities (68) using
the equivalent structure of inequalities (69):

AT(k) <A, Tk—1D)+M (69)
Where:
101000000010000000
000101000001000000
110010000000000000
000000001011010001
000000000110001100
Ar=l000000001100000100
000000001000000000O
000000000000010000
000000000000001000
000000100000000000O
000000011000100000
010100000010000000
001000010001000000
100001000000000000
000000001011100000
000000000110000000
A,=|000000001000000100
000000000100000000O
000000000000100000
000000000000000100
000000010000000000O
000000100000100000
M=(11111118211D7

T= (Tl TZ T3 T4— TS T6 T7 TS T9 TlO Tll T12 T13 T14 T15 T16 T17 TlB)T
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Input transitions represent exogenous events or energy
flows that directly influence the evolution of the system without
being triggered by internal conditions. These transitions are
considered to be known during the simulation, as they reflect
controllable or observable actions (such as energy demand, energy
injection by a renewable source, or the triggering of a generator).

The choice of input transitions was based on several essential
criteria:

e Direct access to measurement: the chosen transitions
correspond to data available in real time from sensors or
management systems.

e Significant impact on system dynamics: they strongly
influence the state of the network (e.g. rapid change in power
injected or withdrawn).

e Representation of sources of uncertainty: some incoming
transitions allows to model the effect of intermittent sources
(such as solar or wind power), which is necessary to assess the
robustness of the estimation.

6.1. State simulation

In this studied case, transitions Ty, T7, To, T14 and Ty17 were
selected as input transitions, as they correspond respectively to
energy actions from active or regulating sources (photovoltaic,
battery, consumption, DC load flow). This choice makes it possible to
control the system simulation while ensuring that the temporal
evolution remains consistent with the physical operation of the
microgrid.

Table 2 summarizes the key parameters and starting values
used in the simulation. These parameters are selected to represent
the actual operating conditions of a 4-DG microgrid and constitute
the input data for the state-space model presented in Section 4.
Based on these values, the system is simulated as a function of 8
distinct time intervals (k =0 to 7).

Initial Max

Parameter Description Value Value Unit
T Wind turbine trigger count 2 7 events
v Wind energY production ~05 10 KW

rate (approximate)
T; Solar production transitions 3 8 events
Vi3 PV power production rate 0.75 12 kW
To Diesel ggnera.tor 4 9 events
production trigger
Vis Diesel g?nerator 25 63 KW
production rate
T Battery charge transitions 5.0 10.5 events
Vu Battery charge rate ~0.8 ~1.5 kw
Ts Battery discharge 130 205  events
transitions
Vis Battery discharge rate ~15 ~2.2 kw
T Load demand transitions 45 75 events
Vir Energy demand ~1.0 ~16 kW

Using the transitions Ty, T7, Tg, T14 and T17 known for (k) €[0, ..., 7]
and the initial state vector at k = 0, we can simulate the temporal
progression of the system. Since transitions Ti4 and Ti7 are
continuous, they are assigned real values to illustrate their influence
on the system's evolution.
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Table 3: Simulation of system trajectory over time.

T 0 1 2 3 a4 5 6 7
T 2 3 3 4 5 5 6 7
T 2 3 4 4 5 6 6 7
Ts 3 3 4 4 5 6 6 7
Ta 3 4 4 5 5 6 6 7
Ts 4 4 5 5 6 7 7 8
Te 6 7 8 9 10 11 12 13
T/ 3 3 4 5 6 6 7 8
Ts 7 8 9 9 10 11 12 13
To 4 4 6 6 7 7 8 9
Tio 5 6 7 7 8 8 9 100
Tu 20 23 28 31 35 40 45 50
T, 60 62 66 70 75 8.0 86 9.0
T 40 45 50 54 59 65 71 78
Tu 50 60 75 79 83 85 9.0 105
Tis 130 140 155 160 170 180 195 205
T 25 30 35 40 48 52 58 63
T, 45 49 53 60 68 71 73 75
Tie 21 450 550 611 717 842 933 1023

6.2. State estimation
The following inequalities describe the behavior of the state
estimator, derived by inverting the simulation constraints:

If we know the output transitions Tg, Tg, T10, T15, T17and T1g
for k €0, ..., 7], we can predict how the system will evolve over
time. Table 3 shows the results.

The following inequalities describe the behavior of the state
estimator, derived by inverting the simulation constraints:

Tk — 1)+ Ty(k — 1) + T,(k — 1) = Ty (k) + T3(k)

+Ty (k) — 1 (70a)
ET(E (—]()1)_ #Tak =D+ Tk = D20 AT
To(k — 1) + Ty (k — 1) > Ts (k) + To (k) — 1 (700)
Tis(k =D+ Tk =D+ Tl =D +Tolk = D> 0
Tyg(k) + Tug () + To (k) — 1

11%1(5(;)1_) #Tialk = 1) 2 T2 + T+ Tal) 7
Tyo(k = 1) + Tye(k — 1) = Tyg (k) + To (k) — 1 (70f)
To(k — 1) = Tyo(k) — 1 (70g)
Tya(k — 1) = Tys(k) — 8 (70h)
Tys(k — 1) > Ty (k) — 2 (70i)
To(k — 1) = T, (k) — 1 (70j)
Ty(k — 1) + Tus(k — 1) = Tya(k) + To(k) — 1 (70K)

From Tables 3 and 4, it is clear that the system path is non-
decreasing. The following section compares simulated and estimated
results.

6.3. Analysis and comparison

This section provides an in-depth study of the estimated values
for the transitions from T3 to T1g during the discrete time interval from
k=0 to k=7. The study provides an overview of the main trends, typical
behaviors and overall robustness of the suggested model in terms of
the various dynamic elements of the system.
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Table 4 State estimation.

T 0 1 2 3 a 5 6 7
T 2 3 3 4 5 5 6 7
T 2 3 4 4 5 6 6 7
Ts 3 3 4 4 5 6 6 7
Ta 3 4 4 5 5 6 6 7
Ts 4 4 5 5 6 7 7 8
Te 6 7 8 9 10 11 12 13
T/ 3 3 4 5 6 6 7 8
Ts 7 8 9 9 10 11 12 13
To 4 4 6 6 7 7 8 9
Tw 5 6 7 7 8 8 9 10.0
T, 20 23 28 3.1 35 40 45 5.0
T, 60 62 66 7.0 75 80 86 9.0
Ts 40 45 50 54 50 65 7.1 7.8
Tu 50 60 75 79 83 85 90 10.5
Tis 130 140 155 160 170 180 195 205
Ts 25 30 35 40 48 52 58 6.3
T, 45 49 53 6.0 68 71 73 75
T 21 450 550 611 717 842 933 1023

Transitions T; to Ts, T1p to T13 and T16 show regularity and
solid progression throughout the observed period. These transitions
confirm the robustness and consistency of the model, signaling that
the system is running smoothly during these stages. The state
estimates for these transitions closely follow the expected
dynamics, with no significant deviations observed in the results. This
suggests that the model effectively captures steady-state behavior
and can be relied upon under such conditions.

Transitions Ts, Tg, T14 and T15 show more dynamic or critical
behaviors that require special attention. These transitions are
marked by more significant variations in system state, which may
indicate the onset of instability or high sensitivity to certain inputs.
These behaviors need to be closely monitored to avoid potential
saturation or overload of the system, which could lead to
performance errors. In particular, transitions Tgand Ts show higher
volatility, suggesting that these phases require improved control
mechanisms to maintain system stability.

Transition Ty7 remains inactive throughout the observation
period. This inactivity may suggest several possible problems, such
as an unfulfilled condition or a configuration error in the system.
It is important to investigate the underlying causes of this inactivity
to ensure that all system states and transitions are correctly
accounted for, and to prevent potential faults or behaviors not
accounted for in the model.

The Tig transition has a gradual response, which is
particularly useful for control or accumulation functions. The
gradual evolution of this transition makes it well suited to processes
requiring smooth adjustments over time. This feature is essential for
tasks such as energy accumulation or gradual state changes, where
abrupt transitions are undesirable. The evolution of Tig also
illustrates the model's ability to handle more gradual and
predictable changes in the system.

The temporal evolution of transitions from T; to T1g is shown
in Figure 2, highlighting the high accuracy of the proposed state model
and observer. In particular, the observer provides accurate estimates
of the simulated state, with estimated and simulated values perfectly
aligned across all transitions. This indicates that the state estimation
process is highly reliable and that there is no discrepancy between the
estimated state and the actual state of the system. The accuracy of
the model and observer is crucial for practical applications requiring
precise system monitoring and control.
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Fig 2. Evolution in time of simulated and estimated values of transitions T; to T1s.

Overall, the analysis confirms that the proposed state estimates for all transitions suggests that the model is well suited to
model, combined with the observer, is a comprehensive and reliable the monitoring and control of complex hybrid systems.
tool for estimating system dynamics. The consistent accuracy of
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7. Conclusion

This research presents an innovative and methodical
approach to modeling, investigating and controlling microgrids,
based on the formalization of HPN. To illustrate precisely the hybrid
dynamics of microgrids, which combine constant energy flows and
discrete events, a mathematical model based on algebraic
inequalities has been developed. This model offers a structured and
adaptable representation of the interactions between the various
dispersed energy sources and the system's operational restrictions.

At the same time, a state and input observer has been
created to evaluate the internal state of the system and reconstruct
inputs that have not been measured. This observer is essential for
monitoring the system's behavior and detecting anomalies quickly,
thereby helping to enhance the safety and reliability of the
microgrid.

A case study involving a microgrid with four decentralized
generators (4-DG): a wind turbine, a solar panel, a battery and a diesel
generator confirmed the effectiveness of the suggested method.
Simulation have shown that the observer succeeds in faithfully
reconstructing system states in a variety of operational contexts, with
virtually zero residual deviations in most situations. This validates the
accuracy of the model and the estimation method employed.

There are a number of interesting avenues to explore in this
study. In particular, the integration of machine learning techniques
would enable adaptive, real-time state estimation, capable of
dynamically adjusting to uncertainties, especially those linked to
intermittent renewable energies. In addition, the optimization of
microgrid control strategies, using predictive or intelligent
algorithms, could significantly enhance the resilience, energy
efficiency and fault tolerance of tomorrow's smart grids.

Thus, this work lays the foundations for a sound
methodological framework combining formal modeling and
intelligent supervision, and constitutes a promising tool for the

design and management of next-generation energy systems.
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