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ABSTRACT 
 

Hybrid Petri nets (HPN) are frequently used to model and study hybrid systems, i.e. those with both 
discrete (events, state changes) and continuous (flows, changing physical variables) dynamics. In 
recent years, their field of application has been extended to energy systems, and in particular to 
the modeling of electrical microgrids. These microgrids are often powered by renewable energy 
sources, whose operation is variable and subject to environmental constraints. With this in mind, 
the present study suggests an HPN-based modeling technique to illustrate the operation of an 
electrical microgrid that integrates a photovoltaic installation associated with a battery storage 
system. The idea is to capture the complex interaction between various energy sources, storage 
units, energy demand and possible complementary sources. The associated mathematical model is 
based on a linear algebraic representation of type Ax ≤ b, which formalizes the system's constraints, 
tracks the evolution of its state over time, and anticipates its future behavior. Simultaneously, a state 
observer is developed with the intention of evaluating the current Petri net marking exclusively from 
observable results, in order to deduce an accurate estimate of the internal state. By comparing the 
simulation results with the estimation results, we are able to assess the robustness and accuracy of 
the suggested model. This research is part of an approach aimed at optimizing and intelligently 
supervising sustainable energy systems. 

 
 

1. Introduction 

 With the gradual depletion of fossil fuels and increasing 
pollution, the need for sustainable, accessible energy systems is 
becoming ever more pressing worldwide. the development of 
green energies, such as solar, wind, hydroelectric and geothermal 
power, is crucial to the energy transition, as it reduces our reliance 
on fossil fuels.  With this in mind, microgrids are a sensible way of 
incorporating these renewable energies (RES) into electricity grids, 
thereby guaranteeing a stable, high-level supply [1-6].  

 A microgrid is an autonomous energy production system 
consisting of distributed generators, storage devices and consumers, 
connected to the main grid via a common coupling point (CCP). It is 
capable of operating in grid-connected or stand-alone mode, 
guaranteeing a constant energy supply even during disturbances on 
the main grid. What's more, the modeling and examination of these 
systems represent a crucial challenge due to their hybrid nature, 
combining continuous dynamics such as energy flows with discrete 
incidents such as outages, failures or state changes [7-9]. 

 Energy microgrids are, by nature, hybrid systems, comprising 
both continuous elements (such as energy flows, voltages or currents) 
and discrete elements (such as switching operations, control decisions 
or logic events). The temporal evolution of such a system depends 
directly on the interaction between all its components. 

 In this context, hybrid Petri nets (HPN) are a particularly well-
suited formalism for modeling such systems. Indeed, they enable 
continuous dynamics and discrete events to be represented 
simultaneously within the same structure. This capability is essential 
to accurately capture the overall behavior of a microgrid, 
particularly when coordinating energy sources, managing storage, 
or implementing complex control strategies. HPN modeling thus 
enables improved simulation, state estimation and anomaly detection 
in distributed energy systems. 

 Conventional power system modeling methods, such as 
matrix state analysis, allow the continuous dynamics of energy 
networks to be represented.  However, they often tend to ignore 
punctual events that could affect these dynamics, such as changes 
in the position of transformer taps or the regulation of battery 
charge/discharge cycles.  A more appropriate option would be to 
use HPN, which are able to represent discrete and continuous 
aspects of energy systems in an integrated way [10-12]. Section 3 
will provide a more in-depth description of this method.  
By integrating discrete and continuous elements within a single 
structure, HPNs offer the possibility of faithfully representing 
energy flows, operational decisions and state transitions in 
microgrids. This approach simplifies the study of the complicated 
interactions between solar power generation and storage 
management, while optimizing the system as a whole [13-17]. 
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 As part of this research, a modeling approach is suggested, 
based on an algebraic linear model of the type Ax ≤ b, with the aim of 
illustrating microgrid dynamics.  A state estimator is also developed to 
judge the accuracy of predictions, by confronting simulation results 
with data from estimation [18-21]. The effectiveness of this technique 
is demonstrated by a case study, attesting to its relevance for  
the analysis and optimization of energy flows. 

 This research concerns the implementation of state and 
input estimators derived from counter and dater methods, aimed 
at enhancing the monitoring and management skills of hybrid 
systems. These techniques take advantage of the inherent 
structure of HPN to faithfully represent the progression of system 
states and input transitions, even in the case of incomplete or 
dubious observations. 

 The counter approach is specially designed for discrete-
event systems such as microgrids, where tracking events such as 
switching, activation or resource management is essential. The dater 
approach, on the other hand, emphasizes the temporal accuracy of 
events and transitions, enabling detailed reconstruction of system 
trajectories through time. 

 This research presents a hybrid modeling and evaluation 
framework for energy microgrids, based on HPN. By combining 
counter- and dating approaches for state and input evaluation,  
our approach offers a mathematically sound and practically 
applicable tool for monitoring, analyzing and managing microgrid 
systems under observable and uncertain conditions. Its uniqueness 
derives from the incorporation of the HPN structure into  
the algebraic inequalities, enabling robust simulation and real-time 
estimation capability, illustrated by a concrete example of a 4-DG 
microgrid. It is particularly significant to opt for a microgrid with 
four distributed generators (4-DG) as the case study subject.  
It represents the true complexity of modern decentralized energy 
systems, where several diverse energy sources (such as solar, wind, 
battery storage and diesel backup) are required to operate 
simultaneously and in a coordinated fashion. To model such  
a configuration correctly, it is necessary to take into account 
asynchronous behavior, changing production rates and evolving 
demand profiles, all of which are inherently hybrid. By implementing 
our estimation framework in this multi-source environment, we 
demonstrate the robustness and scalability of our approach.  
Not only does this case study confirm the theoretical model, it also 
establishes our method as an effective resource for use in 
intelligent energy management systems (EMS), under both normal 
and disturbed operating conditions. 

  By presenting the estimation problem in the form of linear 
matrix inequalities (LMI), the suggested estimators simultaneously 
guarantee the robustness and stability of the estimation process.  
This combined method proves to be an effective tool for real-time 
monitoring, error identification and efficiency assessment of 
complex energy systems. 

 The article begins with an introduction, followed by a literature 
review detailed in section 2. Section 3 focuses on the introduction of 
HPN and the notations employed. The core of section 4 is the 
suggested state model, while the design of the state observer is 
detailed in section 5. In the sixth section, the model and observer 
are implemented on a microgrid in the context of a simulation. 
Section 7 concludes with a comparative analysis of the results.

2. Related literature 

 Much research has been devoted to the modeling and 
analysis of microgrids using HPN, to improve energy management 
and accurately reflect the complex dynamics inherent in these 
systems, this research exploits the ability of Hybrid Petri Networks 
(HPN) to represent both discrete events and continuous evolutions, 
two fundamental aspects of microgrids. 

 The research highlighted in [22] demonstrates this approach 
by suggesting an HPN-based technique for energy management of 
an autonomous microgrid, whose main aim is to improve energy 
distribution according to user requirements. 

 Indeed, they propose to use HPN model of a micro grid to 
take an hourly decision about dispatching energy between the 
connected installation according to the need of each installation. 
Also, in [23], an HPN based approach is used to model an intelligent 
microgrid based on a principle of power balance within a bus, 
enabling modular integration of energy sources and storage. Finally, 
[24] focuses on the variability of renewable sources, generating  
a system state evolution diagram from the HPN model to better 
analyze uncertainties. The authors in [12] used the reachability graph 
of the proposed HPN to synchronize between four energy sources. 

 However, unlike these approaches, our work proposes a 
rigorous formulation based on a linear algebraic model Ax≤b to 
represent the hybrid dynamics of the system. In addition, we 
develop a state observer enabling not only accurate estimation of 
system evolution, but also input vector reconstruction and 
anomaly detection. This dual modeling (simulation and estimation) 
is not covered in [22-24]. Indeed, the work presented in [22-24] 
analyze the system behavior according to the evolution of the HPN 
marking, but in our work, we consider the number of firings of each 
transition at each time as the system state if the counter approach 
is considered. Only the initial marking is supposed known.   

 Our results stand out for their high accuracy, and better 
analytical significance, in line with the formal structure of the proposed 
model. Comparison between simulated and estimated results shows 
rapid convergence of residuals, illustrating the robustness and high 
performance of our method compared with existing work. 

 In addition to the above-mentioned contributions, a large 
body of research has investigated HPN-based structures for 
supervisory control and fault resilience in decentralized energy 
systems. For example, [25] investigates a hierarchical control 
structure combining PN with rule-based logic to coordinate 
multiple energy sources in a smart microgrid. Although this 
method is effective for modular control, it suffers from the absence 
of a quantitative evaluation framework and does not take into 
account state reconstruction in situations of partial observability.  
Thus, [26] suggests an HPN model for power quality control, 
focusing on event-based behavior, but without addressing the 
analytical interplay between discrete and continuous domains 
necessary for dynamic estimation. 

 Furthermore, [27] employed HPN to model energy exchanges 
between subsystems, focusing on graphical representation and scenario 
testing. However, this research remains essentially descriptive and 
lacks formal evaluation tools or mathematical verification of system 
operation. Our method, however, combines behavioral simulation 
and analytical estimation in a unified context, enabling further 
analysis of microgrid performance under a variety of input conditions 
and structural configurations. 
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3. HPN formalism  

 A HPN is a method for representing and analyzing dynamic 
systems, integrating both discrete aspects (such as events and 
state changes) and continuous aspects (such as the evolution of 
physical variables over time).  It is an extension of traditional Petri 
nets, developed to integrate continuous elements frequently 
encountered in physical, industrial or energy systems. In a PHN: 

 Places can accommodate either discrete markings 
(integers, symbolizing a certain number of tokens), or 
continuous markings (real values, which can 
represent degrees of energy or fluids, for example). 

 Transitions can be discrete (triggered by events) or 
continuous (operating with speeds or flows). 

 The arcs linking locations and transitions are assigned 
weights, which define the firing conditions and 
dynamics of token transfer. 

 Differential or constant-velocity equations are frequently 
used to represent continuous dynamics, enabling us to simulate 
the temporal progression of various flows (production, energy, 
temperature, etc.). 

 This type of network is particularly suitable for modeling 
complex hybrid systems such as electrical microgrids, industrial 
automation processes, transportation systems or biological systems. 
It offers an integrated approach to capturing the interaction between 
(discrete) control logic and (continuous) physical phenomena, while 
providing tools for structured analysis, simulation, verification and 
observation. 

 According to [28], a HPN is defined as a structure comprising 
the following elements: 

� = (�, �, ���, ����, �, �) 
with: 

 The set of places P encompasses two subcategories: 

discrete places Pd and continuous places Pc, whose 

cardinalities are respectively noted as nd and nc 
 The set of locations amounts to �. Each location is 

designated by the label Pi with � ∈ {1, ..., �} [29-32]. 
In the graphical context, discrete locations are 
symbolized by single circles, while continuous 
locations are depicted by two concentric circles. 

 T transitions are also classified into two types: 
discrete Td, transitions and continuous Tc transitions. 
Segments illustrate discrete transitions, while double 
contoured rectangles depict continuous transitions. 

 The weights assigned to the arcs in the network are 
defined by the pre and post incidence functions.  
The first of these functions is specifically designed for 
continuous squares, while the second applies to 
discrete squares. 

�� × � → ��,   �� × � → � 

 In a HPN, the simultaneous presence of discrete and 
continuous dynamics allows four kinds of interaction between 
places and transitions.  A discrete location can be associated with 
either a discrete or a continuous transition.  It is also possible to 
link a continuous place to either a discrete transition or  
a continuous transition.  These various configurations offer the 
possibility of accurately representing the complex interactions 
specific to hybrid systems. 

 A HPN is considered to be well structured if, for t ∈ tc and 
p ∈ pd, the pre-incidence and post-incidence functions satisfy the 
following condition: 

���(�, �) = ����(�, �) 

 This condition ensures that the activation of a continuous 
transition does not affect the marking of discrete places [33-34]. 

 The HPN incidence matrix can therefore be defined as follows: 

�(�, �) = ����(�, �) − ���(�, �) (1) 
� =  �_{����}  −  �_{���} (2) 

 We use the notation � to symbolize internal transitions, � 
for input transitions and � for output transitions, in order to 
differentiate them. 
  We also denote Ti as the duration related to location Pi, 
which corresponds to the time a tag remains in that location. 

4. State model design 

4.1. Objective 

 The aim of this section is to develop a new state model for 
analyzing the temporal evolution of the microgrids state and 
outputs. The hybrid system requires a model that can 
simultaneously represent discrete event-related behavior (such as 
mode changes and control actions) as well as continuous evolution 
(such as energy accumulation or power flow). To remedy this, we 
propose a formal model structure producing two key linear 
inequalities: the first enables us to estimate the internal state of 
the system, and the second provides a mechanism for calculating 
system outputs based on transition triggers and model structure. 
These inequalities form the basis of our estimation strategy. 

 The model established is analogous to a continuous state-
space representation, but adapted to the hybrid structure of the 
HPN. The state vector is not based on markings as in classical Petri 
net analysis, but on the cumulative number of transition triggers, 
offering greater flexibility and abstraction in systems with limited 
observability.  The model is developed using a complementary 
method: the counter approach, which focuses on quantifying events. 

4.2. Counter approach 

 The counter-based approach is a modeling technique that 
focuses on counting the occurrences of each transition in a hybrid 
Petri net over time. Rather than tracking the instantaneous 
marking of locations, this method relies on the accumulation of 
transition triggers, reflecting the cumulative behavior of the 
system and providing a useful abstraction for hybrid systems such 
as microgrids. 

 In this approach, the state of the system is represented by 
a vector x(t), where each component corresponds to the total 
number of triggers of a specific transition up to time t. This makes 
it possible to track the evolution of the system.  This makes it 
possible to track the evolution of the system as events (such as 
energy production, storage charging or load switching) occur 
repeatedly. The advantage is a continuous, monotonic view of 
system activity, perfect for estimation and analysis. 

 State evolution is then governed by a set of linear 
inequalities, usually expressed as: 

��(�) ≤ �(�) 
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Here, An incorporates the system's structural and 
operational constraints, such as energy balances, priority rules or 
capacity constraints.  The vector b(t) includes time-varying bounds 
or thresholds, possibly derived from system specifications or real-
time measurements. 

 This formulation makes it possible to capture system 
behavior even when certain variables (such as markings or exact 
energy levels) are not directly observable. It is particularly effective 
in detection-limited scenarios, where only events such as 
“generator on” or “battery charging” are available. 

 In the context of a microgrid, transitions can model 
discrete decisions such as connecting a generator, triggering a 
battery discharge or redirecting energy to a critical load. By 
accounting for these actions over time, the counter-based 
approach enables energy consumption trends to be estimated, 
anomalies to be detected and energy allocation to be optimized. 

 What's more, this modeling framework integrates 
perfectly with estimation algorithms, enabling the reconstruction 
of internal dynamics and input behaviors from observed events. 
The counter representation thus serves as the basis for the 
observer design presented later in this article. 

The matrices ���
� , ���

� , ���
� , ���

� , ���
� , ���

� , ���
�  and ���

�  
which symbolize components of the global incidence matrix �, are 
determined by the equations below: 

���
� = ����

��� ���
���

���
��� ���

���� , ���
� = ����

��� ���
���

���
��� ���

���� (3a) 

���
� = ����

��� ���
���

���
��� ���

���� , ���
� = ����

��� ���
���

���
��� ���

���� (3b) 

���
� = �

���
��� ���

���

���
��� ���

���� , ���
� = �

���
��� ���

���

���
��� ���

���� (3c) 

���
� = �

���
��� ���

���

���
��� ���

���� , ���
� = �

���
��� ���

���

���
��� ���

���� (3d) 

where the index �� refers to continuous transitions and index �� refers 
to discrete transitions. In addition index �� models the link between 
continuous places, index �� models the link between discrete places, 
index �� describes the link from discrete to continuous places and �� 
models the link from continuous to discrete places. 

 In a Petri net, the set of places can be divided into four 
distinct subgroups, each representing a specific type of connection 
between transitions. The set Pvx gathers the places that lie between 
input transitions and internal transitions. The subset Pxx 
encompasses the places that lie between two internal transitions. 
Subsequently, the locations between internal and output transitions 
are combined in the group Pxy. Finally, transitions that establish a 
direct connection between inputs and outputs are embedded in Pvy. 
Based on these notations, we can then establish the following 
inequalities: 

(−���
� −���

� ) �
�(�)
�(�)� ≤ �

���
���

� (4) 

(−���
� −���

� ) ��(� − 1)
�(�) � ≤ �

���
���

� (5) 

(−���
� −���

� ) �
�(�)
�(�)� ≤ �

���
���

� (6) 

(−���
� −���

� ) ��(�)
�(�)� ≤ �

���
���

� (7) 

 Inequality (4) describes the interactions between input 
transitions and internal transitions, while inequality (5) illustrates 
the dependencies among internal transitions. Inequality (6) 
illustrates the relationships between internal transitions and end 
transitions.  In situations where loci establish a direct link between 
input and output transitions, they are defined by inequality (7). 
 Remark 1: Inequalities (4) to (7) can be elaborated and 
specified, resulting in a series of extended inequalities identified 
from (8) to (15). 

−���
�����(�) − ���

�����(�) + ���
�����(�) 

+���
�����(�) ≤ (���) 

(8) 

−���
�����(�) − ���

�����(�) + ���
�����(�) 

+���
�����(�) ≤ (���) 

(9) 

−���
�����(� − 1) − ���

�����(� − 1) + ���
�����(�) 

+���
�����(�) ≤ (���) 

(10) 

−���
�����(� − 1) − ���

�����(� − 1)
+ ���

�����(�) 
+���

�����(�) ≤ (���) 
(11) 

−���
�����(�) − ���

�����(�) + ���
�����(�) 

+���
�����(�) ≤ (���) 

(12) 

−���
�����(�) − ���

�����(�) + ���
�����(�) 

+���
�����(�) ≤ (���) 

(13) 

−���
�����(�) − ���

�����(�) + ���
�����(�) 

+���
�����(�) ≤ (���) 

(14) 

−���
�����(�) − ���

�����(�) + ���
�����(�) 

+���
�����(�) ≤ (���) 

(15) 

 The system must have an ascending time progression, or at 
least not be in decline.  To guarantee this property, inequalities 
(16) to (19) are implemented. 

��(� − 1) ⩽ ��(�) ⇒ −��(�) ≤ −��(� − 1) (16) 
��(� − 1) ⩽ ��(�) ⇒ −��(�) ≤ −��(� − 1) (17) 

��(�) ⩽ ��(�) ⇒ −��(�) ≤ −��(�) (18) 
��(�) ⩽ ��(�) ⇒ −��(�) ≤ −��(�) (19) 

 Inequalities (8) to (19) are gathered to obtain inequalities 
(20) and (21). 

 The inequality (20) provides an upper bound for the state 
vector x(t), which represents the simulated time evolution of the 
system’s internal state. On the other hand, inequality (21) gives an 
upper bound for the output y(t), which represents the simulated 
trajectory of the system over time. 

⎝

⎜
⎛

���
��� ���

���

���
��� ���

���

���
��� ���

���

���
��� ���

���

−� −� ⎠

⎟
⎞

���(�)
��(�)� ≤

⎝

⎜
⎛

���
���
���
���

0 ⎠

⎟
⎞

+ 

⎝

⎜⎜
⎛

���
��� ���

��� 0 0
���

��� ���
��� 0 0

0 0 ���
��� ���

���

0 0 ���
��� ���

���

0 0 −� −� ⎠

⎟⎟
⎞

�

��(�)
��(�)

��(� − 1)
��(� − 1)

�    

(20) 
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⎝

⎜⎜
⎛

���
��� ���

���

���
��� ���

���

���
��� ���

���

���
��� ���

���

−� −� ⎠

⎟⎟
⎞

���(�)
��(�)� ≤

⎝

⎜
⎛

���
���
���
���

0 ⎠

⎟
⎞

+ 

⎝

⎜⎜
⎛

���
��� ���

��� 0 0
���

��� ���
��� 0 0

0 0 ���
��� ���

���

0 0 ���
��� ���

���

0 0 −� −� ⎠

⎟⎟
⎞

�

��(�)
��(�)
��(�)
��(�)

� 

(21) 

With regard to inequalities (20) and (21), we can therefore suggest 
the following state model: 

⎩
⎨

⎧[��
� ��

�] ���(�)
��(�)� , , [��

� ��
�] ���(� − 1)

��(� − 1)� + [��
� ��

�] ���(�)
��(�)� + [��]

[��
� ��

�] ���(�)
��(�)� , , [��

� ��
�] ���(�)

��(�)� + [��
� ��

�] ���(�)
��(�)� + [��]

 (22) 

With: 

��
� =

⎝

⎜
⎛

���
���

���
���

���
���

���
���

−� ⎠

⎟
⎞

, ��
� =

⎝

⎜
⎛

0
0

−���
���

−���
���

−� ⎠

⎟
⎞

, �� =

⎝

⎜
⎛

���
���
���
���

0 ⎠

⎟
⎞

, 

��
� =

⎝

⎜
⎛

−���
���

−���
���

0
0
0 ⎠

⎟
⎞

 

(23) 

��
� =

⎝

⎜⎜
⎛

���
���

���
���

���
���

���
���

−� ⎠

⎟⎟
⎞

; ��
� =

⎝

⎜
⎛

0
0

−���
���

−���
���

−� ⎠

⎟
⎞

,   ��
� =

⎝

⎜
⎛

−���
���

−���
���

0
0
0 ⎠

⎟
⎞

 (24) 

��
� =

⎝

⎜⎜
⎛

���
���

���
���

���
���

���
���

−� ⎠

⎟⎟
⎞

; ��
� =

⎝

⎜
⎛

−���
���

−���
���

0
0

−� ⎠

⎟
⎞

; �� =

⎝

⎜
⎛

���
���
���
���

0 ⎠

⎟
⎞

; 

��
� =

⎝

⎜
⎛

0
0

−���
���

−���
���

0 ⎠

⎟
⎞

 

(25) 

��
� =

⎝

⎜⎜
⎛

���
���

���
���

���
���

���
���

−� ⎠

⎟⎟
⎞

; ��
� =

⎝

⎜
⎛

−���
���

−���
���

0
0

−� ⎠

⎟
⎞

,   ��
� =

⎝

⎜
⎛

0
0

−���
���

−���
���

0 ⎠

⎟
⎞

 (26) 

 The trajectory and dynamic behavior of the system may be 
analyzed by the simulation of the state model represented by 
equation (22).  It makes it possible to calculate the number of 
transition firings xc(t), xd(t), yc(t), yd(t) based on the system inputs 

vc(t), xd(t) and the prior firings xc(t-1), xd(t-1), yc(t-1) and yd(t-1). 
The system's status at a specific time t is characterized by the 
number of firings. 

 x(t): System state indicating the accumulated total of 
internal transition triggers at time t. 

 v(t): Input vector indicating the number of triggers of input 
transitions at time t. 

 y(t): Output vector indicating the number of output 
transition triggers at time t. 

 A, B, C: Incidence submatrices from the HPN structure. 
 b(t): Vector representing restrictions or constraints at time 

t, based on system specifications. 

3.4. Dater approach  

 The dating approach is based on the use of time stamps 
(dates) linked to transition events, thus facilitating a temporal 
reconstruction of the system's operating sequences. In a hybrid 
Petri net system, the dynamics are both continuous and discrete. 
The dater method takes advantage of this duality by exploiting the 
time intervals associated with transitions to constrain and estimate 
the evolution of network marking over time. 

 The date-based approach assumes that each transition is 
linked to a potential start date.  The state vector indicates these 
potential start dates.  System events are modeled using timed 
transitions that trigger an action on a specific date or when certain 
conditions are met. 

 Using the matrices established in (3) and the symbols 
presented earlier, we can state the following inequalities: 

(���
� −���

� ) ��(�)
�(�)� ≤ �−���

−���
� (27) 

(���
� −���

� ) ��(� − 1)
�(�) � ≤ �−���

−���
� (28) 

(���
� −���

� ) ��(�)
�(�)� ≤ �

−���
−���

� (29) 

(���
� −���

� ) ��(�)
�(�)� ≤ �

−���
−���

� (30) 

 The input transition and internal transitions are linked by 
inequality (27).  Inequality (28) highlights the interactions between 
internal transitions, while inequality (29) illustrates the links 
between internal transitions and outputs. In the case where a 
hybrid Petri net has places that link input and output transitions, 
these connections are represented by inequality (30). 

Remark 3: We can also extend inequalities (27) to (30), which gives 
rise to the following extended inequalities: 

���
�����(�) + ���

�����(�) − ���
�����(�) 

−���
�����(�) ≤ (−���) 

(31) 

���
�����(�) + ���

�����(�) − ���
�����(�) 
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�����(�) ≤ (−���) 

(32) 
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�����(� − 1) + ���

�����(� − 1) − ���
�����(�) 
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�����(�) ≤ (−���) 

(33) 
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�����(� − 1) + ���
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�����(�) 
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�����(�) ≤ (−���) 

(34) 

���
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�����(�) 
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�����(�) ≤ (−���) 

(35) 

���
�����(�) + ���

�����(�) − ���
�����(�) 

−���
�����(�) ≤ (−���) 

(36) 

���
�����(�) + ���

�����(�) − ���
�����(�) 

−���
�����(�) ≤ (−���) 

(37) 

���
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�����(�) 
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�����(�) ≤ (−���) 

(38) 
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System direction must be non-decreasing over time.  To guarantee 
this behavior, the following disparities are integrated. 

��(� − 1) ⩽ ��(�) ⇒ −��(�) ≤ −��(� − 1) (39) 
��(� − 1) ⩽ ��(�) ⇒ −��(�) ≤ −��(� − 1) (40) 
��(�) ⩽ ��(�) ⇒ −��(�) ≤ −��(�) (41) 
��(�) ⩽ ��(�) ⇒ −��(�) ≤ −��(�) (42) 

In order to represent the discrete and continuous state of the 
system as well as its output, constraints (39) to (42) are 
consolidated into constraints (43) and (44). 

⎝
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(43) 

⎝
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(44) 

Inequality (43) provides an upper bound estimate for the state 
vector x(k), illustrating the temporal progression of the system's 
internal state.  At the same time, inequality (44) serves as an upper 
bound for the system output y(k), illustrating the progression of 
the system's output trajectory over time. 

  Taking into account inequalities (43) and (44), we can 
suggest the following state-space model (45): 

�
[��

� ��
�] ���(�)

��(�)� , , [��
� ��

�] ���(� − 1)
��(� − 1)� + [��

� ��
�] ���(�)

��(�)� + [��]

[��
� ��

�] ���(�)
��(�)� , , [��

� ��
�] ���(�)

��(�)� + [��
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 (45) 

With: 
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 (46) 
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(48) 
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⎜
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0
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⎞

 (49) 

  Analysis of the system's trajectory and dynamic behavior 
can be carried out by simulating the state model (45).  The suggested 
approach (48) offers the possibility of defining initiation dates                                                            
xc(k  ,xd(k), yc(k) and yd(k) from previous dates xc(k-1) , xd(k-1) ,yc(k-
1) and yd(k-1) as well as system inputs vc(k) and vd(k).  These trigger 
dates define the system state. 

Where: 

 x(k): Estimation of the state vector at time k 

 v(k): (Estimated) input vector for time k 

 A, B: Matrices of dating models reflecting system 
restrictions. 

 The inequality takes into account cumulative time constraints. 

5. input and state-estimator design 

5.1. Objective 

 In the context of hybrid systems, involving both continuous 
and discrete dynamics, accurate estimation of the internal state 
and unknown inputs is crucial for monitoring, control and fault 
diagnosis. In many practical applications, it is often impossible to 
directly measure all state variables or external inputs due to 
physical, technological or cost constraints. Consequently, the 
development of an estimator capable of reconstructing these 
variables from the available measurements becomes essential. 

 In the system considered in this study, the state and input 
estimation problem is addressed using a representation based on 
matrix inequalities. These inequalities provide a framework for 
modeling the hybrid behavior of the system while integrating 
possible disturbances or failures. To solve this problem, we 
propose the counter approach and dater approach, which offers a 
way of tracking the evolution of the system's state and estimating 
unknown inputs. 

 This section aims to synthesize a new form of observer 
used to estimate the state of the system and its inputs. This 
observer is composed of two matrix inequalities: 
The first is used to evaluate the state of the system, while the 
second is used to reconstruct its inputs.  The observer proposed 
here is similar to the state observer used for continuous systems, 
and has been developed in this article using counter- and date-
based methods. 
Throughout this work, the estimated parameters are described by 
the symbol '∧'. 
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5.2. Counter approach  

 In this framework, counter evolution is governed by a set of 
matrix inequalities encoding the logical and temporal relationships 
between system events. By analyzing the variation of these counters 
from the available measurements, we can reconstruct the trajectories 
of hidden state variables and estimate unknown inputs. 

 One of the main advantages of the counter-based approach 
is its ability to handle systems with a high degree of switching or 
mode transitions, characteristic of hybrid systems. This approach is 
also particularly effective in systems where continuous measurements 
are rare, and where the timing and order of events provide significant 
information on system behavior. 

 The state observer synthesis approach is based on 
transforming the inequalities used to simulate the system into 
suitable formats.  Indeed, to reconstitute the state and inputs of 
the system, we calculate them from the known output.  Details of 
the estimator's design are given below. 

��
∧

(�) ≤ ��
∧

(� + 1) 

��
∧

(�) ≤ ��
∧

(� + 1)
 (50) 

��
∧

(�) ≤ ��
∧

(�) 

��
∧

(�) ≤ ��
∧

(�)
 (51) 

  Inequalities (8) to (15), (50) and (51) can be gathered to 
obtain inequalities (52) and (53). 
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(53) 

 Inequality (52) proposes a lower bound for the system 
input v(t), while inequality (53) also offers a lower bound for the 
state vector x(t).  
 Based on these disparities, the following can be suggested 
as a state observer: 
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Where: 
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 The suggested observation system evaluates the values of 
xc(t), xd(t), vc(t), vd(t) from their posterior times xc(t+1), xd(t+1), 

yc(t+1), yd(t+1) and its output at time yc(t), yd(t). 

5.2. Dater approach  

 For the synthesis of the state observer based on the so-
called dater approach, it is essential to carefully modify the 
inequalities specified in equations (31) to (38).  The aim is to 
facilitate simultaneous evaluation of the hybrid system's internal 
state and unmeasured inputs, based solely on the observations 
collected at the output.  This is a vital phase for system diagnosis, 
management and control, especially when faced with complex 
dynamic constraints or operational uncertainties. 

 The state estimator is designed on the basis of a temporal 
formalism subject to inequalities, which highlight the lower and 
upper bounds of the transition times.  These constraints are derived 
from the simulated model and reflect the observed temporal 
behavior of the system.  Evaluation is then carried out by comparing 
these limits with the temporal information available during 
observation, with the aim of limiting the totality of temporal paths 
allowed by the system, and deducing a range of uncertainty 
concerning internal states and triggered events.  This method is 
particularly suitable for systems where events cannot be observed 
directly, but whose impacts on outputs can be linked to internal 
transitions via defined temporal relations 
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We begin by setting out the conditions for non-decline 
as follows: 
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 Inequalities (31) to (38), (59) and (60) are gathered to obtain 
inequalities (61) and (62). 

⎝

⎜
⎛

���
��� ���

���

���
��� ���

���

���
��� ���

���

���
��� ���

���⎠

⎟
⎞

���
∧

(�)

��
∧

(�)
� ≤ 

⎝

⎜
⎛

���
��� ���

��� 0 0
���

��� ���
��� 0 0

0 0 ���
��� ���

���

0 0 ���
��� ���

���⎠

⎟
⎞

⎝

⎜⎜
⎛

��
∧

(�)

��
∧

(�)

��
∧

(�)

��
∧

(�)⎠

⎟⎟
⎞

− �

���
���
���
���

� 

(61) 

⎝

⎜
⎛

���
��� ���

���

���
��� ���

���

���
��� ���

���

���
��� ���

���⎠

⎟
⎞

���
∧

(�)

��
∧

(�)
� ≤ 

⎝

⎜
⎛

���
��� ���

��� 0 0
���

��� ���
��� 0 0

0 0 ���
��� ���

���

0 0 ���
��� ���

���⎠

⎟
⎞

⎝

⎜⎜
⎛

��
∧

(�)

��
∧

(�)

��
∧

(� + 1)

��
∧

(� + 1)⎠

⎟⎟
⎞

− �

���
���
���
���

� 

(62) 

 Inequality (61) allows estimation of the system input by 
determining a lower bound for v(k).  Inequality (62) estimates the 
state by calculating a lower bound for x(k). 

 Based on inequalities (61) and (62), we can suggest the 
following state observer: 
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 The algebraic model for evaluating system input and state 
is described by the state observer (66).  It offers the possibility of 
evaluating dates xc(k), xd(k) and vc(k), vd(k) based on later dates 
xc(k+1), xd(k+1) and vc(k+1), vd(k+1) while assuming that the 
system response is known: yc(k), yd(k). 

6. Application to a micro-Grid with four distributed generators (4-DGS) 

 This section presents the application of HPN modeling and 
the proposed observer design to a microgrid system integrating 
four distributed energy sources (4-DG). As shown in Figure 1, the 
microgrid integrates a wind turbine, a battery storage system, a 
photovoltaic solar panel and a diesel generator. These energy 
sources are coordinated to ensure a stable and reliable power 
supply, even in the presence of environmental fluctuations or 
variations in energy demand [12]. 

 In order to examine the robustness and efficiency of the 
proposed hybrid Petri net model (model 22) and the associated 
observer (model 31), we adopt a residual-based validation 
approach. In this situation, residuals refer to the difference 
between the estimated values provided by the observer and the 
actual values obtained by simulating the model. When these 
residuals are zero or negligible, this means that the model and 
observer produce consistent results, validating the accuracy of the 
structural model and estimation algorithm. 

 In this specific case study, we focus solely on the counter-
based method for building observers, as it is particularly suited to 
tracking discrete transitions and energy flows in the microgrid. The 
estimation process therefore relies on reformulated inequalities 
derived from the simulation model to reconstruct the system state 
and inputs from output measurements alone. 

 Each location and transition in the HPN model (Figure 1) is 
associated with precise physical meanings corresponding to the 
components and operating modes of the microgrid. Table 1 
provides a detailed description of these elements, indicating for 
each energy source the associated locations, transitions and 
operational conditions. This mapping provides a clear 
understanding of the energy flows modeled, and facilitates the 
implementation of fault detection or energy optimization 
strategies. For a full explanation of the model structure and its 
components, please refer to [12]. 
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 The microgrid examined here represents a typical example 
of an intelligent energy system based on diverse, complementary 
sources.  The wind turbine generates electricity in proportion to 
wind speed, based on operating modes defined by critical 
thresholds of minimum, nominal and maximum wind speeds.  The 
solar panel converts the sun's energy into electricity, with output 
varying according to irradiance, as soon as the latter exceeds a 
minimum level.  Despite its high economic and ecological cost, the 
diesel generator is used when renewable energy production fails 
to meet demand, guaranteeing uninterrupted service.  These 
elements interact dynamically under the management of an 
integrated control system, which considers not only the physical 
and operational constraints of each source, but also the overall 
goals of efficiency, reliability and sustainability of the energy 
system.  HPN modeling, which takes into account both continuous 
(energy flow) and discrete (condition or mode changes) aspects, is 
capable of capturing this hybrid complexity. It offers a valuable tool 
for the simulation, study and management of intelligent energy 
systems. 

 V: current wind speed (in m/s), input variable. 
 Va: minimum wind speed for the turbine to start up (start-

up speed). 

 Vn: wind speed at which the turbine reaches maximum 
power (nominal speed). 

 f(V): increasing function of wind speed, giving the energy 
produced in normal mode. 

 v11: energy production rate of the turbine in normal mode. 
 v12: energy production rate in maximum power mode, 

equal to Emax. 
 Emax: maximum power the wind turbine can produce. 
 Ew: energy produced by the wind turbine. 
 Esolar: energy produced by solar panel. 
 v13: energy production rate of solar panel. 
 v15: battery discharge rate. 
 v16: energy production rate of diesel generator when 

running. 
 vwp: instantaneous combined production of wind turbine 

and solar panel (v11 + v13 or v12 + v13). 
 v17: system energy demand. 
 M(p8): amount of energy available. 
 M(p11): energy deficit.

Table 1 HPN Model: Subsystems, Places, Transitions, and Operating Modes. 

Energy Source Places (pi) Transitions (ti) Operating Modes 

Wind Turbine p1, p2, p3 t1 − t6, t11 − t12 
Normal Mode (Va<V<Vn) → Transi�on t11 activated with (v11 = f (V)) 
Maximum Power Mode (V>Vn) → Transi�on t12 activated with (v12 = Emax) 
Shutdown Mode (V<a) → No transi�on occurs, the output energy (Ew = 0) 

Photo- voltaic Cell p4, p5 t7, t8, t13 Active Mode (ON) → t13 activated at a rate v13 that is affected by solar irradiation. 
Inactive Mode (OFF) → Esolar = 0 

Battery p9, p10 t14, t15 

 
Charging (t14) → The rate of transi�on fires is v14 
Storage → No transi�on is started. 
Discharging (t15) → The rate of transi�on fires is v15 

Diesel Generator p6, p7 t9, t10, t16 Energy Production → p6 holds a token, t16 activated with v16 
Shutdown → No firing 

Load Management p8, p11 t17, t18 

Sufficient Energy (M (p8)>0) → The system operates under normal conditions. 
(M (p11) > 0) → both the diesel generator and battery are activated. 
Excess Energy (vwp>v17) → The ba�ery switches to charging mode and the generator 
stops. 

 

 
Fig. 1 PN-based model for a microgrid with four distributed 
generators (4-DGs). 

 The inclusion of four distributed generators (4-DG) in  
a microgrid represents a contemporary and adaptable structure that 
meets the growing demand for energy independence, operational 
flexibility and ecological sustainability. This type of hybrid device is 
particularly suited to isolated or critical contexts, such as rural areas 
not connected to the main grid, hospital facilities or military camps, 
where constancy of energy supply is paramount. The use of hybrid 
Petri nets for modeling not only enables accurate representation of 
the mixed dynamics (discrete and continuous) associated with energy 
flows and operational modes, but also the simulation of degraded 
operation, optimization or transition scenarios between different 
sources. Indeed, one of the main challenges lies in optimal 
coordination between generators to avoid energy losses, minimize 
reliance on fossil sources, and ensure rapid response to variations in 
demand. What's more, the state transitions modeled in HPN make it 
possible to include switching times, recharging or start-up constraints, 
as well as operating priorities according to defined energy policies. 
This approach also facilitates the integration of intelligent or 
predictive management algorithms, which can be used for automated 
decision-making in embedded energy management systems.  
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Finally, the designed observer enables the internal state of the system 
to be monitored based solely on measured outputs, which is essential 
for remote monitoring, predictive maintenance, or early detection of 
potential failures. 
 Inequalities (68) model the system behavior: 

��(�) + ��(�) + ���(�) ≤ ���(� − 1) + ��(� − 1) 
+��(� − 1) + 1 (68a) 

��(�) + ��(�) + ���(�) ≤ ��(� − 1) + ��(� − 1) 
+���(� − 1) + 1 (68b) 

��(�) + ��(�) ≤ ��(� − 1) + ��(� − 1) + 1 (68c) 

���(�) + ���(�) + ��(�) ≤ ���(� − 1) + ���(� − 1) 
+���(� − 1) + ��(� − 1) + 1 (68d) 

���(�) + ���(�) + ���(�) + ���(�) ≤ ���(� − 1) 
+���(� − 1) + 1 (68e) 

���(�) + ��(�) ≤ ���(� − 1) + ���(� − 1) + 1 (68f) 

���(�) ≤ ��(� − 1) + 1 (68g) 

���(�) ≤ ���(� − 1) + 8 (68h) 

���(�) ≤ ���(� − 1) + 2 (68i) 

��(�) ≤ ��(� − 1) + 1 (68j) 

���(�) + ��(�) ≤ ��(� − 1) + ���(� − 1) + 1 (68k) 

 For this HPN model, we can rewrite inequalities (68) using 
the equivalent structure of inequalities (69): 

���(�) ≤ ���(� − 1) + � (69) 

Where:  
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0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
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� = (1 1 1 1 1 1 1 8 2 1 1)�  

And  

� = (�� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ���)� 

 Input transitions represent exogenous events or energy 
flows that directly influence the evolution of the system without 
being triggered by internal conditions. These transitions are 
considered to be known during the simulation, as they reflect 
controllable or observable actions (such as energy demand, energy 
injection by a renewable source, or the triggering of a generator). 

 The choice of input transitions was based on   several essential 
criteria: 

 Direct access to measurement: the chosen transitions 
correspond to data available in real time from sensors or 
management systems. 

 Significant impact on system dynamics: they strongly 
influence the state of the network (e.g. rapid change in power 
injected or withdrawn). 

 Representation of sources of uncertainty: some incoming 
transitions allows to model the effect of intermittent sources 
(such as solar or wind power), which is necessary to assess the 
robustness of the estimation. 

6.1. State simulation   

 In this studied case, transitions T1, T7, T9, T14 and T17 were 
selected as input transitions, as they correspond respectively to 
energy actions from active or regulating sources (photovoltaic, 
battery, consumption, DC load flow). This choice makes it possible to 
control the system simulation while ensuring that the temporal 
evolution remains consistent with the physical operation of the 
microgrid. 

 Table 2 summarizes the key parameters and starting values 
used in the simulation.  These parameters are selected to represent 
the actual operating conditions of a 4-DG microgrid and constitute 
the input data for the state-space model presented in Section 4.  
Based on these values, the system is simulated as a function of 8 
distinct time intervals (k = 0 to 7). 

Parameter Description Initial 
Value 

Max 
Value Unit 

T₁ Wind turbine trigger count 2 7 events 

v₁₁ Wind energy production 
rate (approximate) ~0.5 1.0 kW 

T₇ Solar production transitions 3 8 events 

v₁₃ PV power production rate 0.75 1.2 kW 

T₉ Diesel generator 
production trigger 4 9 events 

v₁₆ Diesel generator 
production rate 2.5 6.3 kW 

T₁₄ Battery charge transitions 5.0 10.5 events 

v₁₄ Battery charge rate ~0.8 ~1.5 kW 

T₁₅ Battery discharge 
transitions 13.0 20.5 events 

v₁₅ Battery discharge rate ~1.5 ~2.2 kW 

T₁₇ Load demand transitions 4.5 7.5 events 

v₁₇ Energy demand ~1.0 ~1.6 kW 

Using the transitions T1, T7, T9, T14 and T17 known for (k) ∈ [0, ..., 7] 
and the initial state vector at k = 0, we can simulate the temporal 
progression of the system.  Since transitions T14 and T17 are 
continuous, they are assigned real values to illustrate their influence 
on the system's evolution. 
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Table 3: Simulation of system trajectory over time. 

T 0 1 2 3 4 5 6 7 
T1 2 3 3 4 5 5 6 7 
T2 2 3 4 4 5 6 6 7 
T3 3 3 4 4 5 6 6 7 
T4 3 4 4 5 5 6 6 7 
T5 4 4 5 5 6 7 7 8 
T6 6 7 8 9 10 11 12 13 
T7 3 3 4 5 6 6 7 8 
T8 7 8 9 9 10 11 12 13 
T9 4 4 6 6 7 7 8 9 
T10 5 6 7 7 8 8 9 10.0 
T11 2.0 2.3 2.8 3.1 3.5 4.0 4.5 5.0 
T12 6.0 6.2 6.6 7.0 7.5 8.0 8.6 9.0 
T13 4.0 4.5 5.0 5.4 5.9 6.5 7.1 7.8 
T14 5.0 6.0 7.5 7.9 8.3 8.5 9.0 10.5 
T15 13.0 14.0 15.5 16.0 17.0 18.0 19.5 20.5 
T16 2.5 3.0 3.5 4.0 4.8 5.2 5.8 6.3 
T17 4.5 4.9 5.3 6.0 6.8 7.1 7.3 7.5 
T18 2.1 4.50 5.50 6.11 7.17 8.42 9.33 10.23 

6.2. State estimation    

 The following inequalities describe the behavior of the state 
estimator, derived by inverting the simulation constraints: 

 If we know the output transitions T6, T8, T10, T15, T17 and T18 

for k ∈ [0, ..., 7], we can predict how the system will evolve over 
time. Table 3 shows the results. 

 The following inequalities describe the behavior of the state 
estimator, derived by inverting the simulation constraints: 

���(� − 1) + ��(� − 1) + ��(� − 1) ≥ ��(�) + ��(�) 

+���(�) − 1 (70a) 

��(� − 1) + ��(� − 1) + ���(� − 1) ≥ ��(�) + ��(�) 
+���(�) − 1 (70b) 

��(� − 1) + ��(� − 1) ≥ ��(�) + ��(�) − 1 (70c) 

���(� − 1) + ���(� − 1) + ���(� − 1) + ��(� − 1) ≥ 
���(�) + ���(�) + ��(�) − 1 (70d) 

���(� − 1) + ���(� − 1) ≥ ���(�) + ���(�) + ���(�) 
+���(�) − 1 (70e) 

���(� − 1) + ���(� − 1) ≥ ���(�) + ��(�) − 1 (70f) 

��(� − 1) ≥ ���(�) − 1 (70g) 

���(� − 1) ≥ ���(�) − 8 (70h) 

���(� − 1) ≥ ���(�) − 2 (70i) 

��(� − 1) ≥ ��(�) − 1 (70j) 

��(� − 1) + ���(� − 1) ≥ ���(�) + ��(�) − 1 (70k) 

 From Tables 3 and 4, it is clear that the system path is non-
decreasing.  The following section compares simulated and estimated 
results. 

6.3. Analysis and comparison   

 This section provides an in-depth study of the estimated values 
for the transitions from T1 to T18 during the discrete time interval from 
k=0 to k=7.  The study provides an overview of the main trends, typical 
behaviors and overall robustness of the suggested model in terms of 
the various dynamic elements of the system. 

Table 4 State estimation. 

T 0 1 2 3 4 5 6 7 
T1 2 3 3 4 5 5 6 7 
T2 2 3 4 4 5 6 6 7 
T3 3 3 4 4 5 6 6 7 
T4 3 4 4 5 5 6 6 7 
T5 4 4 5 5 6 7 7 8 
T6 6 7 8 9 10 11 12 13 
T7 3 3 4 5 6 6 7 8 
T8 7 8 9 9 10 11 12 13 
T9 4 4 6 6 7 7 8 9 
T10 5 6 7 7 8 8 9 10.0 
T11 2.0 2.3 2.8 3.1 3.5 4.0 4.5 5.0 
T12 6.0 6.2 6.6 7.0 7.5 8.0 8.6 9.0 
T13 4.0 4.5 5.0 5.4 5.9 6.5 7.1 7.8 
T14 5.0 6.0 7.5 7.9 8.3 8.5 9.0 10.5 
T15 13.0 14.0 15.5 16.0 17.0 18.0 19.5 20.5 
T16 2.5 3.0 3.5 4.0 4.8 5.2 5.8 6.3 
T17 4.5 4.9 5.3 6.0 6.8 7.1 7.3 7.5 
T18 2.1 4.50 5.50 6.11 7.17 8.42 9.33 10.23 

 Transitions T1 to T5, T10 to T13 and T16 show regularity and 
solid progression throughout the observed period. These transitions 
confirm the robustness and consistency of the model, signaling that 
the system is running smoothly during these stages. The state 
estimates for these transitions closely follow the expected 
dynamics, with no significant deviations observed in the results. This 
suggests that the model effectively captures steady-state behavior 
and can be relied upon under such conditions. 

 Transitions T6, T8, T14 and T15 show more dynamic or critical 
behaviors that require special attention. These transitions are 
marked by more significant variations in system state, which may 
indicate the onset of instability or high sensitivity to certain inputs. 
These behaviors need to be closely monitored to avoid potential 
saturation or overload of the system, which could lead to 
performance errors. In particular, transitions T6 and T8 show higher 
volatility, suggesting that these phases require improved control 
mechanisms to maintain system stability. 

 Transition T17 remains inactive throughout the observation 
period. This inactivity may suggest several possible problems, such 
as an unfulfilled condition or a configuration error in the system.  
It is important to investigate the underlying causes of this inactivity 
to ensure that all system states and transitions are correctly 
accounted for, and to prevent potential faults or behaviors not 
accounted for in the model. 

 The T18 transition has a gradual response, which is 
particularly useful for control or accumulation functions. The 
gradual evolution of this transition makes it well suited to processes 
requiring smooth adjustments over time. This feature is essential for 
tasks such as energy accumulation or gradual state changes, where 
abrupt transitions are undesirable. The evolution of T18 also 
illustrates the model's ability to handle more gradual and 
predictable changes in the system. 

 The temporal evolution of transitions from T1 to T18 is shown 
in Figure 2, highlighting the high accuracy of the proposed state model 
and observer. In particular, the observer provides accurate estimates 
of the simulated state, with estimated and simulated values perfectly 
aligned across all transitions. This indicates that the state estimation 
process is highly reliable and that there is no discrepancy between the 
estimated state and the actual state of the system. The accuracy of 
the model and observer is crucial for practical applications requiring 
precise system monitoring and control.
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Fig 2. Evolution in time of simulated and estimated values of transitions T1 to T18. 

 Overall, the analysis confirms that the proposed state 
model, combined with the observer, is a comprehensive and reliable 
tool for estimating system dynamics. The consistent accuracy of 

estimates for all transitions suggests that the model is well suited to 
the monitoring and control of complex hybrid systems. 
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7. Conclusion 
 This research presents an innovative and methodical 
approach to modeling, investigating and controlling microgrids, 
based on the formalization of HPN.  To illustrate precisely the hybrid 
dynamics of microgrids, which combine constant energy flows and 
discrete events, a mathematical model based on algebraic 
inequalities has been developed.  This model offers a structured and 
adaptable representation of the interactions between the various 
dispersed energy sources and the system's operational restrictions. 

 At the same time, a state and input observer has been 
created to evaluate the internal state of the system and reconstruct 
inputs that have not been measured.  This observer is essential for 
monitoring the system's behavior and detecting anomalies quickly, 
thereby helping to enhance the safety and reliability of the 
microgrid. 

 A case study involving a microgrid with four decentralized 
generators (4-DG): a wind turbine, a solar panel, a battery and a diesel 
generator confirmed the effectiveness of the suggested method. 
Simulation have shown that the observer succeeds in faithfully 
reconstructing system states in a variety of operational contexts, with 
virtually zero residual deviations in most situations. This validates the 
accuracy of the model and the estimation method employed. 

 There are a number of interesting avenues to explore in this 
study. In particular, the integration of machine learning techniques 
would enable adaptive, real-time state estimation, capable of 
dynamically adjusting to uncertainties, especially those linked to 
intermittent renewable energies. In addition, the optimization of 
microgrid control strategies, using predictive or intelligent 
algorithms, could significantly enhance the resilience, energy 
efficiency and fault tolerance of tomorrow's smart grids. 

 Thus, this work lays the foundations for a sound 
methodological framework combining formal modeling and 
intelligent supervision, and constitutes a promising tool for the 
design and management of next-generation energy systems. 
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