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ABSTRACT

Net radiation is the difference between downward and upward radiation, considering
both shortwave and longwave radiation. The net radiation controls the water cycle,
plant photosynthesis, the earth’s climate changes, and the energy balance. In this
paper, the Artificial Neural Network (ANN) model is developed for estimating daily net
radiation from meteorological data that are based on maximum air temperature,
minimum air temperature, daily relative humidity, and daily solar radiation. Net
radiation and meteorological data collected for 7 years (2017-2023) from Chiang Mai
meteorological station (CM: 18.77°N, 98.96°E), Ubon Ratchathani meteorological
station (UB: 15.24°N, 105.02°E), Nakhon Pathom meteorological station (NP: 14.01°N,
99.96°E), and Songkhla meteorological station (SK: 7.41°N, 100.62°E) were used to train
and test the model. The discrepancy between the net radiation estimated by the ANN
and the measured net radiation was presented in terms of determination coefficient
(R?), relative root mean square error (RMSE), and relative mean bias error (MBE). The
model showed 0.98, 14.48%, and -2.17%, respectively. The result shows that the
artificial neural network model is an accurate and easy option for estimating surface

net radiation.

1. Introduction

Net radiation is the sum of net shortwave and net longwave
radiation. The source of shortwave radiation is the sun, its spectral
wavelength range of 0.25 to 4.00 micrometers. It includes ultraviolet
radiation, visible light, and infrared radiation. Longwave radiation is
thermal radiation emitted by the Earth's surface and the
atmosphere, its spectral wavelength range between 3.00 and 100.00
micrometers. The difference between downward shortwave and
upward shortwave radiation is net shortwave radiation, while the
difference between downward and upward longwave radiation is
net longwave radiation. So, the net radiation can be calculated with
equations (1-2).

R,=(DS-US)+(DL-UL) (1)
R,=DS(1-a)+(DL-UL) (2)

Where DS and US are the surface downward and upward
shortwave radiation (MJ/m2), DL and UL are the surface downward
and upward longwave radiation (MJ/m2), o is surface albedo
(dimensionless), and R is surface net radiation (MJ/m?).

Net radiation regulates various phenomena on Earth,
especially energy balance and climate change. The positive value of
Rn indicates that more incoming radiation than outgoing radiation
leads to warming of the Earth's surface and the atmosphere. The
negative value of R, indicates that more outgoing radiation than

incoming radiation, leads to cooling of the Earth's surface and the
atmosphere. And the zero net radiation indicates that incoming and
outgoing radiation is balanced, resulting in no net radiation change
in temperature. The sample of global warming research, such as in
2021, Ojo et al. studied the effect of the radiation balance on the
warming event, was evaluated using a cross-correlation technique.
The result shows a decrease in net radiation because of dominant
upward longwave radiation components that determine the
warming effect on the surface of the earth [1]. Besides, increases or
decreases in net radiation affect the dissolution of ice in polar areas.
In the case of hydrological research assessed, the accuracy of
estimating evapotranspiration (ETo) using the FAO-56 Penman-
Monteith (FAO-56-PM) model, with measured and estimated net
radiation. The results indicate that changes in evaporation are
primarily driven by changes in net radiation at the surface [2-3]
therefore, net radiation is crucial. The limited installation of
net radiation measurement instruments, especially in Thailand,
there is a significant gap in the data required for accurate
evapotranspiration estimation.

Net radiation can be measured using a net radiometer,
which consists of two pyranometers for measuring downward and
upward shortwave radiation (DS and US) and two pyrgeometers for
measuring downward and upward longwave radiation (DL and UL).
However, it is expensive, requires annual calibration, and is time-
consuming. Therefore, researchers have developed models to
estimate net radiation in areas where measurement instruments are
not installed. Many theoretical and empirical relations have been
developed over the years. In 2009, Wang and Liang introduced a
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model designed to estimate surface daytime net radiation. This
model relied on a combination of solar radiation measurements and
conventional meteorological data, such as daily minimum
temperature, daily temperature range, and relative humidity, as
essential inputs for its calculations [4]. In 2003, Irmak et al. [5]
developed two alternative equations to reduce the input and
computation intensity of the FAO56-Rn procedures to predict daily
Rn and evaluate the performance of these equations in the humid
regions of the southeast and two arid regions in the United States.
The equation requires daily maximum air temperature (Tmax), daily
minimum air temperature (Tmin), mean daily relative humidity
(RHmean), and solar radiation (Rs), which can be shown in equation
(3). The model results showed a high performance of agreement
with the ground-based measurements.

Rp=- 0.09T nax + 0.203T,na - 0.101RHpean + 0.687R, +3.97  (3)

Where Rs is daily solar radiation (MJ/m32), Tmax is daily
maximum air temperature (°C), Tmin is daily minimum air
temperature (°C), and RHmean is mean daily relative humidity (%).

In 2003, Alados et al. studied net radiation in a semi-arid
area in southeastern Spain, considering the relationship between
net radiation and solar radiation at 5-minute intervals over 38
months. The model using solar radiation as an input variable can
adequately estimate net radiation, and the relationship can be
expressed by equation (4). Similar studies conducted in Thailand will
be discussed in the following section [6].

R, = 0.565R — 14.75 (4)

Where R is solar radiation (W/m2). In addition to
meteorological parameters, Carmona et al. (2015) developed a
method to estimate net radiation from remote sensing data
obtained from Landsat 5 and 8 [7].

In the part of Thailand, Limhoon and Bualert [8] studied in
Phetchaburi Province, Thailand, revealed that net radiation peaked
during the summer, rainy and winter seasons, respectively.
Furthermore, Tohsing et al. [9] developed the model for estimating
net radiation from solar radiation in Thailand's main regions, namely
Chiang Mai, Ubon Ratchathani, Nakhon Pathom, and Songkhla, from
2017 to 2021. The results, expressed in terms root mean square
difference and mean bias difference, show good correspondence
between the model data and the measured data and the relations
can be expressed by equation (5).

R, =0.600R, —0.407_____(CM)
R,=0.503R,+0.957____ (UB)
R,=0.620R,—0.594____ (NP) )
R, =0.595R,—0.090____ (SK)

Where R; is solar radiation (MJ/m2).

However, due to the widespread study of artificial neural
networks and machine learning in the present day. In 2011, Antonio
Ferreira et al. evaluated the performance of artificial neural network
(ANN) models in estimating net radiation (R,) at the surface,
compared to traditional linear models (LM). The ANN models were
trained on meteorological data such as wind speed, wind direction,
surface and air temperature, relative humidity, and soil moisture.
The LM models required additional input in the form of solar
incoming shortwave radiation measurements. Both ANN and LM
models were tested against in-situ measurements. While the LM
models achieved respectable results, the ANN models

outperformed them in some cases. This suggests that ANN models
can provide accurate estimates of net radiation without relying on
solar radiation measurements [10]. In 2014, Jiang et al. studied the
performance of two artificial neural network (ANN) models, general
regression neural Networks (GRNN) and Neuroet package (It
is an implementation of a multi-layer perceptron neural network,
this package not only trains ANN models and makes predictions but
also reverse-engineers them to extract underlying equations,
revealing the significance of input variables.), in estimating global
net all-wave surface radiation (R;,). These models were trained on a
combination of remote sensing data, surface measurements, and
meteorological reanalysis products. The ANN models were tested
against in-situ measurements from 251 global sites between 1991
and 2010. Results showed that both ANN models outperformed
traditional linear models, with GRNN demonstrating superior
performance and stability compare to Neuroet [11]. So, in this
research, the variation of net radiation and estimate net radiation
from meteorological data and solar radiation being during the years
2017-2023 using the multi-layer feed-forward ANN model were
studied at the main stations in Thailand. The ANN model can
recognize and learn intricate patterns within large and complex
datasets, it is highly adaptable and can learn from experience, and
robust to noise and missing data.

2. Materials and methods
2.1 The instruments and net radiation data

The net radiation can be measured by a net radiometer,
which has many models. It consists of two pyranometers for
measuring downward and upward shortwave radiation, two
pyrgeometers for measuring downward and upward longwave
radiation, and one PT-100 temperature sensor for measuring the
instrument’s temperature. In this research, the CNR4 net
radiometer of Kipp&Zonen are used, which is installed in a
meteorological field at an altitude between 1.5 and 2 meters from
the surface. It is shown in Fig. 1.
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Fig. 1 (a) the component of the CNR4 net radiometer (Kipp&Zonen)
and (b) the altitude of instruments between 1.5 and 2 meters.

Four meteorological stations equipped with net radiometers
have been strategically installed across Thailand to capture the
diverse climatic and geographical conditions of the country. Chiang
Mai meteorological station (CM): Located at 18.77°N, 98.96°E in
northern Thailand, this station is nestled amidst a mountainous
landscape characterized by steep slopes, deep valleys, and lush
forests. The region experiences a tropical climate, albeit cooler and
less humid compared to other parts of the country. Ubon
Ratchathani meteorological station (UB): Situated at 15.24°N,
105.02°E in northeastern Thailand, this station is positioned on a
vast plain, a dominant feature of the region. The tropical climate
here is characterized by distinct wet and dry seasons. Nakhon
Pathom meteorological station (NP): Located at 14.01°N, 99.96°E
in central Thailand, this station is situated on a fertile plain.
The region's tropical savanna climate is marked by well-defined wet
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and dry seasons. Songkhla meteorological station (SK): Located at
7.41°N, 100.62°E in southern Thailand, this station is situated in a
diverse region characterized by coastal plains, lagoons, and hilly
areas. The tropical monsoon climate of this region is influenced by
the proximity to the sea. By strategically placing these stations, we
can gain valuable insights into the variations in net radiation across
Thailand's diverse geographical and climatic regions. The field
meteorological had instruments installed, as shown in Fig. 2.

| T O
Chiang Mai (CM)

'ny - : :
(/4 Ubon Ratchathani (UB)

_t';_'f ; _l, ,?

Nakhon Pathom (NP)

Fig. 2 The net radiometer of four stations in Thailand.

From the instrument, a voltage signal from four radiation
sensors and a temperature signal from a temperature sensor were
obtained. Data was recorded every second using a datalogger
(Yokogawa, model FX-1012) and subsequently converted into
radiation intensity measured in watts per square meter. This
allowed us to calculate the values of radiation equations (6-9).

\
DS = C—DS (6)
DS
V,
Us=—> (7)
us
pL= L 4 o7 (8)
DL
V,
UL=—%+oT* (9)

uL

Where DS, US, DL, and UL are downward shortwave
radiation, upward shortwave radiation, downward longwave
radiation, and upward longwave radiation, respectively. V., V,
V,, and V[, are voltage signals from DS, US, DL and UL sensors,
respectively. Cy, Cy, C, and Cj are sensitivity of DS, US, DL,
and UL sensors, respectively, which is obtained from annual
calibration. o are Stefan Boltzmann's constant (5.67 x 108 W-m'Z-K),
and T is temperature from temperature sensor in Kelvin. Then
calculate net radiation in watts per square meter using equation (1).
Filter the measurement data by getting rid of incorrect or impossible

data, including data of instrument failure time. The statistical study
of net radiation during 2017-2023 is shown in Table 1 and Fig. 3.

Table 1 The values of monthly average daily net radiation data.

Values
Stations
Max Min Mean STD
cM 18.09 -0.16 9.98 3.08
UB 18.74 1.42 11.42 2.71
NP 18.47 0.56 10.99 2.91
SK 19.14 0.03 11.18 3.36
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Fig. 3 The graph shows the long-term monthly average net
radiation values of four stations in Thailand.

From Fig. 3, the monthly variation of net radiation in
Thailand peaks in May, as this period experiences relatively high
solar radiation and surface moisture due to the onset of the rainy
season, this results in lower surface reflectivity. Effected by an
increase in downward radiation and a decrease in upward radiation,
ultimately resulting in high net radiation values. Except for SK
Station, which has a different breeding season than other areas, the
SK Station has net radiation values peak in March. After that the net
radiation decreases and then returns to higher values again during
the summer.

2.2 Meteorological data

A recent study by Aweda and Adebayo (2020) estimated net
radiation using meteorological data obtained from a USB wireless
weather station. A wide range of meteorological data was analyzed
using simple empirical methods, yielding satisfactory results [12].
Nowadays, machine learning is widely used in data analysis, such as
the artificial neural network model for estimating the soil
temperature at 5, 10, 20, 50, and 100 cm depths using standard
geographical and meteorological data considering altitude, latitude,
longitude, month, year, monthly solar radiation, monthly sunshine
duration, and monthly mean air temperature. The resulting model
showed good agreement between the ANN-estimated soil
temperature and the measured soil temperature [13]. And Patel et
al. (2022) reviewed various algorithms, including those based on
artificial neural networks (ANNs), such as feed-forward back-
propagation ANN, multi-layer feed-forward ANN, linear regression
with ANN, and Graph Neural Network (GNN), for estimating solar
radiation and solar energy [14]. So, in this research, daily net
radiation from meteorological data in the main region of Thailand
using an artificial neural network model was estimated. We chose
the locations of the stations as follows: Chiang Mai meteorological
station, Ubon Ratchathani meteorological station, Nakhon Pathom
meteorological station, and Songkhla meteorological station.
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The meteorological data collected consists of daily maximum air
temperature, daily minimum air temperature, daily mean relative
humidity, and daily solar radiation because these parameters have
a positive or negative correlation with net radiation and can be
measured at every station. We control the quality of meteorological
data by removing erroneous and impossible data. The statistical
values of meteorological data are shown in Table 2.

Table 2 The statistical values of monthly average daily
meteorological data.

Stations Meteorological parameters .Values

Max Min Mean STD

Maximum temperature (°C) 4220 20.00 33.77 291

s Minimum temperature (°C) 29.00 10.50 23.02 3.07
Y solar radiation (MJ/m?) 27.89 179 17.77 4.45
Relative humidity (%) 94.00 36.00 69.97 10.65
Maximum temperature (°C) 4090 17.80 33.62 2.84

o  Minimumtemperature (°C) 28.70 9.50 22.68 3.08
= solarradiation (MJ/m?) 27.81 227 1891 436
Relative humidity (%) 9700 53.00 75.97 9.06
Maximum temperature (°C) 41.10 20.60 33.73 2.74

o Minimumtemperature (°C) 2920 11.70 2370 2.65
2 solarradiation (MJ/m?) 2765 1.29 1825 4.62
Relative humidity (%) 99.00 53.00 7890 7.02
Maximum temperature (°C) 41.10 2450 32.64 2.29

»  Minimum temperature (°C) 28.40 2190 2539 1.01
“ Solar radiation (MJ/m?) 2832 045 19.09 5.54
Relative humidity (%) 9500 64.00 78.88 5.25

2.3 Methodology

From the data, we obtained meteorological data and net
radiation data for input and validated the model, which is an
artificial neural network model.

Artificial neural networks are mathematical models that
learn and create nonlinear relationships between two datasets,
which can discover intricate patterns [15,16]. It mimics the
functioning of neuron cells, which receive data from the input layer,
process data by active function in a node, and send the data to the
output layer. The structure of a node is shown in Fig. 4, where w,,

w,, .., and w, are the weights at the inputs, and 3 is bias of the

layer. Initialize the weights and biases, random values are typically
assigned. Then, during the forward propagation phase, input data to
the input layer moving to the hidden layers and finally to the output
layer. At each neuron (node), the output is computed using the
formula of summation and passed through an activation function.
Then, calculate the loss by comparing the predicted output with the
actual target values using a loss function, such as Mean Squared
Error. This loss informs the back-propagation process, where
gradients of the loss with respect to the weights and biases are
computed, and the weights and biases are updated using gradient
descent to minimize the loss [17-18]. These steps are repeated for
multiple epochs until satisfactory performance is achieved. These
nodes are arranged in a series of layers that together constitute the
artificial neural network, the structure of the ANN model in this
research, as shown in Fig. 5. The operation flowchart can be
represented as shown in Fig. 6. The ANN model must have data for
training, which accounts for 70% of all data. In this work, we use data
from 2017-2021, and the remaining 30% is used for testing the
model from 2022-2023. Except for the Songkhla meteorological
station, which uses data from 2018-2022 as training data and data

from 2023 as test data, due to the presence of anomalies in the input
data during the 2017 period.

Qutput

Fig. 4 The structure of a node in ANN model.
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Fig. 5 The structure of ANN model in this study.
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Fig. 6 The operation flowchart of the method.
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After that, we choose the model validation measures and
model, which are the coefficient of determination(Rz), the root
mean square error relative to the mean measured values (RMSE) ,
and the mean bias error relative to the mean measured values
(MBE) . We can be found from the scattering plot between the
model result and measurement result and calculate the following

equations (10-12).
N N 2
. [Z R"'mde'r‘ j[anmeas,.j
Z Rn,mode\,\’ o Rn,meas,i [N AN = A

i=1 N

K= S o (10)
i ) [;anode\,ij i , [Zan,meas,iJ
Rn model,i = R =
o N

i=1 i=1

nmeasi
N

N

Z (Rn,model,i - Rn,mea\s,i )2

i=1

(11)
RMSE = - N x100%
ZRn,meas,i
i=1
N
N
Z(Rn,model,i - Rn,meas,i)
i=1
MBE = N x100%, (12)
=) n,meas,i
N
Where R .. is net radiation from ANN model (MJ/m2),

R, meas; IS net radiation from measurement (MJ/m?), and N is total

amount of data. The R? equal to one, and RMSE and MBE equal to
zero indicated that the results of the model and the measurement are
in good agreement.
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Fig. 7 The scatter plot of 4 stations compares the results of the
model and the measurement. (a) Chiang Mai, (b) Ubon
Ratchathani, (c) Nakhon Pathom, and (d) Songkhla.

Fig. 7 shows the comparison plots for various meteorological
stations, showcasing the consistent validation of the model across
locations. At Chiang Mai, the model achieved Rz = 0.98, RMSE =
15.09%, and MBE = -7.22% (Fig. 7a). Ubon Ratchathani also displayed
strong performance with R2=0.98, RMSE = 15.08%, and MBE =
5.53%, (Fig. 7b). Similarly, Nakhon Pathom reported R2=0.98, RMSE
=14.17%, and MBE = -5.04% (Fig. 7c). Lastly, Songkhla exhibited R?2
=0.94, RMSE = 12.44% and MBE = -6.51% (Fig. 7d). Overall, all
stations demonstrated robust model performance with high R?
values (0.98) and low RMSE (14.48%). The performance of models of
each station and combined data can be shown in Table 3.

Table 3. The summary of the statistical values of each station and
combined data.

Stations RMSE (% MBE (% R?
3. Results and discussion (%) (%)
cm 15.09 -7.22 0.98
In this work, we estimate daily net radiation from UB 1508 53 0.98
meteorological data using the ANN model, and the results are shown . - -
in the scatter plot in Fig. 7 and time series plot in Fig. 8-11. NP 14.17 -5.04 0.98
SK 12.44 -6.51 0.94
Combined data 14.48 -2.17 0.98
* Rn,model 4 Rnmeas
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Fig. 8 The time series plot of the comparison between net radiation from model and net radiation from measurement at Chiang Mai.
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Fig. 9 The time series plot of the comparison between net radiation from model and net radiation from measurement at Ubon Ratchathani.
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Fig. 10 The time series plot of the comparison between net radiation from model and net radiation from measurement at Nakhon Pathom.
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Fig. 11 The time series plot of the comparison between net radiation from model and net radiation from measurement at Songkhla.

Figure 8-11 presents a time series comparison of the obtained from this study with those of previous empirical models
model-predicted net radiation with actual measurements at four that utilized similar input variables (equations 3-5). The comparison
meteorological stations: CM, UB, NP, and SK. CM station, the results are presented in Table 4.

model's slight underestimation of net radiation at CM is likely due

to the measurement station's proximity to a road and a white Table 4. Results of comparison between Proposed model (ANN)

against other models.

fence, which can influence reflected shortwave radiation and
Irmak Alados  Tohsing

emitted longwave radiation. UB station, the model's ) Statistical  Proposed
. . . . . . . Stations etal. etal. etal.
overestimation, particularly during winter, might be attributed to values model (Eq.3) (Eq.4) (Eq.5)
insufficient winter data for model training. This limited dataset 9- 9- 9:
. - o . RMSE 15.09 21.98 19.81 19.30
could have led to inaccuracies in the model's winter predictions. NP
station, the model's occasional underestimation at NP could be ™M MBE -7.22 2.40 -4.57 -1.95
R2 0.98 0.95 0.96 0.96

influenced by the higher surface humidity in the agricultural area

of NP, which can impact energy balance processes. SK station, the RMSE 15.08 24.50 19.67 19.70
consistent underestimation at SK is likely due to the highly variable uB MBE -5.53 -2.25 -4.42 -5.62
weather conditions, with frequent transitions from sunny mornings R2 0.988 0.94 0.97 0.96
to rainy evenings. This variability can challenge the model's ability RMSE 14.17 21.82 20.18 18.19
to accurately capture the complex energy balance dynamics. The NP MBE -5.04 -13.40  -13.38 -9.43
gaps in the data for UB and SK stations were caused by various net R2 0.98 0.97 0.98 0.97
radiometer failures, including underground cable damage, battery RMISE 12.44 15.57 16.66 12.32
depletion, and disturbances from animals, given the outdoor sk MBE 6.51 9.56 13.23 737

installation of the instruments.
R2 0.94 0.90 0.99 0.99

Due to the varying structural constraints of ANN models
across different research studies, we have compared the results
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The four models showed strong agreement with the
observed data. Solar radiation, a common input, was identified as
a key variable in net radiation estimation. Tohsing et al. (Eq.5) and
Alados et al. (Eq.4) models, which incorporated varying surface
coefficients, outperformed the others in terms of accuracy and
agreement with measured data, highlighting the importance of
considering surface characteristics in such models. Statistical
analysis indicates that the ANN model provides a better estimation
of net radiation. This is attributed to the ANN's exceptional ability
to analyze large datasets and complex relationships.

4. Conclusion

In this work, we estimate net radiation from meteorological
data using an artificial neural network model. The location of the
station is in the main region of Thailand, namely Chiang Mai
meteorological station, Ubon Ratchathani meteorological station,
Nakhon Pathom meteorological station, and Songkhla
meteorological station, and we recorded data from 2017 to 2023
for training and testing the model. The results are satisfactory for
the comparison, as shown in the time series plot and scatter plot
between the model and the measurement. The time series plot
comparison shows that their validation characteristics are very
consistent. In the scatter plot, we use indicators of the
performance model as shown in terms of RZ, RMSE and MBE which
showed 0.98, 14.48% and -2.17%, respectively. Indicating the
performance of the model is good, when compared to other
studies, the developed model in this research produced superior
results.
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