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ABSTRACT 
 

Net radiation is the difference between downward and upward radiation, considering 
both shortwave and longwave radiation. The net radiation controls the water cycle, 
plant photosynthesis, the earth’s climate changes, and the energy balance. In this 
paper, the Artificial Neural Network (ANN) model is developed for estimating daily net 
radiation from meteorological data that are based on maximum air temperature, 
minimum air temperature, daily relative humidity, and daily solar radiation. Net 
radiation and meteorological data collected for 7 years (2017-2023) from Chiang Mai 
meteorological station (CM: 18.77°N, 98.96°E), Ubon Ratchathani meteorological 
station (UB: 15.24°N, 105.02°E), Nakhon Pathom meteorological station (NP: 14.01°N, 
99.96°E), and Songkhla meteorological station (SK: 7.41°N, 100.62°E) were used to train 
and test the model. The discrepancy between the net radiation estimated by the ANN 
and the measured net radiation was presented in terms of determination coefficient 
(R2), relative root mean square error (RMSE), and relative mean bias error (MBE). The 
model showed 0.98, 14.48%, and -2.17%, respectively. The result shows that the 
artificial neural network model is an accurate and easy option for estimating surface 
net radiation. 

 
 

1. Introduction 

Net radiation   is the sum of net shortwave and net longwave 

radiation. The source of shortwave radiation is the sun, its spectral 

wavelength range of 0.25 to 4.00 micrometers. It includes ultraviolet 

radiation, visible light, and infrared radiation. Longwave radiation is 

thermal radiation emitted by the Earth's surface and the 

atmosphere, its spectral wavelength range between 3.00 and 100.00 

micrometers. The difference between downward shortwave and 

upward shortwave   radiation is net shortwave radiation, while the 

difference between downward and upward   longwave radiation is 

net longwave radiation. So, the net radiation can be calculated with 

equations (1-2). 

 

 Rn=(DS-US)+(DL-UL) (1) 

 Rn=DS(1-α)+(DL-UL) (2) 

 

 Where DS  and US  are the surface downward and upward 

shortwave radiation (MJ/m2), DL and UL  are the surface downward 

and upward longwave radiation (MJ/m2),   is surface albedo 

(dimensionless), and nR  is surface net radiation (MJ/m2).  

 Net radiation regulates various phenomena on Earth, 

especially energy balance and climate change. The positive value of 

Rn indicates that more incoming radiation than outgoing radiation 

leads to warming of the Earth's surface and the atmosphere. The 

negative value of Rn indicates that more outgoing radiation than 

incoming radiation, leads to cooling of the Earth's surface and the 

atmosphere. And the zero net radiation indicates that incoming and 

outgoing radiation is balanced, resulting in no net radiation change 

in temperature. The sample of global warming research, such as in 

2021, Ojo et al. studied the effect of the radiation balance on the 

warming event, was evaluated using a cross-correlation technique. 

The result shows a decrease in net radiation because of dominant 

upward longwave radiation components that determine the 

warming effect on the surface of the earth [1]. Besides, increases or 

decreases in net radiation affect the dissolution of ice in polar areas. 

In the case of hydrological research assessed, the accuracy of 

estimating evapotranspiration (ET0) using the FAO-56 Penman-

Monteith (FAO-56-PM) model, with measured and estimated net 

radiation. The results indicate that changes in evaporation are 

primarily driven by changes in net radiation at the surface [2-3] 
therefore, net radiation is crucial. The limited installation of               

net radiation measurement instruments, especially in Thailand,          

there is a significant gap in the data required for accurate 

evapotranspiration estimation. 

 Net radiation can be measured using a net radiometer, 
which consists of two pyranometers for measuring downward and 
upward shortwave radiation (DS and US) and two pyrgeometers for 
measuring downward and upward longwave radiation (DL and UL). 
However, it is expensive, requires annual calibration, and is time-
consuming. Therefore, researchers have developed models to 
estimate net radiation in areas where measurement instruments are 
not installed. Many theoretical and empirical relations have been 
developed over the years. In 2009, Wang and Liang introduced a 

mailto:rungrat.wattan@gmail.com
https://doi.org/10.69650/rast.2025.259017


Journal of Renewable Energy and Smart Grid Technology, Vol. 20, No. 1, January-June 2025 
  

 

2 

model designed to estimate surface daytime net radiation. This 
model relied on a combination of solar radiation measurements and 
conventional meteorological data, such as daily minimum 
temperature, daily temperature range, and relative humidity, as 
essential inputs for its calculations [4]. In 2003, Irmak et al. [5] 
developed two alternative equations to reduce the input and 
computation intensity of the FAO56-Rn procedures to predict daily 
Rn and evaluate the performance of these equations in the humid 
regions of the southeast and two arid regions in the United States. 
The equation requires daily maximum air temperature (Tmax), daily 
minimum air temperature (Tmin), mean daily relative humidity 
(RHmean), and solar radiation (Rs), which can be shown in equation 
(3). The model results showed a high performance of agreement 
with the ground-based measurements.  
 

Rn= - 0.09Tmax + 0.203Tmax - 0.101RHmean + 0.687Rs + 3.97 (3) 

 

 Where Rs is daily solar radiation (MJ/m2), Tmax is daily 

maximum air temperature (C), Tmin is daily minimum air 

temperature (C), and RHmean is mean daily relative humidity (%). 

In 2003, Alados et al. studied net radiation in a semi-arid 
area in southeastern Spain, considering the relationship between 
net radiation and solar radiation at 5-minute intervals over 38 

months. The model using solar radiation as an input variable can 
adequately estimate net radiation, and the relationship can be 
expressed by equation (4). Similar studies conducted in Thailand will 
be discussed in the following section [6].  

 

Rn = 0.565Rs – 14.75   (4) 
 

 Where Rs is solar radiation (W/m2). In addition to 
meteorological parameters, Carmona et al. (2015) developed a 
method to estimate net radiation from remote sensing data 
obtained from Landsat 5 and 8 [7].  

In the part of Thailand, Limhoon and Bualert [8] studied in 
Phetchaburi Province, Thailand, revealed that net radiation peaked 
during the summer, rainy and winter seasons, respectively. 
Furthermore, Tohsing et al. [9] developed the model for estimating 
net radiation from solar radiation in Thailand's main regions, namely 
Chiang Mai, Ubon Ratchathani, Nakhon Pathom, and Songkhla, from 
2017 to 2021. The results, expressed in terms root mean square 
difference and mean bias difference, show good correspondence 
between the model data and the measured data and the relations 
can be expressed by equation (5).  

 

n s

n s

n s

n s

R 0.600R 0.407_____(CM)

R 0.503R 0.957_____(UB)

R 0.620R 0.594 _____(NP)

R 0.595R 0.090 _____(SK)

= −

= +

= −

= −

 (5) 

 
 Where Rs is solar radiation (MJ/m2). 
 
 However, due to the widespread study of artificial neural 
networks and machine learning in the present day. In 2011, Antonio 
Ferreira et al. evaluated the performance of artificial neural network 
(ANN) models in estimating net radiation (Rn) at the surface, 
compared to traditional linear models (LM). The ANN models were 
trained on meteorological data such as wind speed, wind direction, 
surface and air temperature, relative humidity, and soil moisture. 
The LM models required additional input in the form of solar 
incoming shortwave radiation measurements. Both ANN and LM 
models were tested against in-situ measurements. While the LM 
models achieved respectable results, the ANN models 

outperformed them in some cases. This suggests that ANN models 
can provide accurate estimates of net radiation without relying on 
solar radiation measurements [10].  In 2014, Jiang et al. studied the 
performance of two artificial neural network (ANN) models, general 
regression neural Networks (GRNN) and Neuroet package (It 
is an implementation of a multi-layer perceptron neural network, 
this package not only trains ANN models and makes predictions but 
also reverse-engineers them to extract underlying equations, 
revealing the significance of input variables.), in estimating global 
net all-wave surface radiation (Rn). These models were trained on a 
combination of remote sensing data, surface measurements, and 
meteorological reanalysis products. The ANN models were tested 
against in-situ measurements from 251 global sites between 1991 
and 2010. Results showed that both ANN models outperformed 
traditional linear models, with GRNN demonstrating superior 
performance and stability compare to Neuroet [11]. So, in this 
research, the variation of net radiation and estimate net radiation 
from meteorological data and solar radiation being during the years 
2017-2023 using the multi-layer feed-forward ANN model were 
studied at the main stations in Thailand. The ANN model can 
recognize and learn intricate patterns within large and complex 
datasets, it is highly adaptable and can learn from experience, and 
robust to noise and missing data. 
 

2. Materials and methods 

2.1 The instruments and net radiation data 

The net radiation can be measured by a net radiometer, 

which has many models. It consists of two pyranometers for 

measuring downward and upward shortwave radiation, two 

pyrgeometers for measuring downward and upward longwave 

radiation, and one PT-100 temperature sensor for measuring the 

instrument’s temperature. In this research, the CNR4 net 

radiometer of Kipp&Zonen are used, which is installed in a 

meteorological field at an altitude between 1.5 and 2 meters from 

the surface. It is shown in Fig. 1. 

 

 

Fig. 1 (a) the component of the CNR4 net radiometer (Kipp&Zonen) 
and (b) the altitude of instruments between 1.5 and 2 meters. 
 

Four meteorological stations equipped with net radiometers 

have been strategically installed across Thailand to capture the 

diverse climatic and geographical conditions of the country. Chiang 

Mai meteorological station (CM): Located at 18.77°N, 98.96°E in 

northern Thailand, this station is nestled amidst a mountainous 

landscape characterized by steep slopes, deep valleys, and lush 

forests. The region experiences a tropical climate, albeit cooler and 

less humid compared to other parts of the country. Ubon 

Ratchathani meteorological station (UB): Situated at 15.24°N, 

105.02°E in northeastern Thailand, this station is positioned on a 

vast plain, a dominant feature of the region. The tropical climate 

here is characterized by distinct wet and dry seasons. Nakhon 

Pathom meteorological station (NP): Located at 14.01°N, 99.96°E     

in central Thailand, this station is situated on a fertile plain.                      

The region's tropical savanna climate is marked by well-defined wet 
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and dry seasons. Songkhla meteorological station (SK): Located at 

7.41°N, 100.62°E in southern Thailand, this station is situated in a 

diverse region characterized by coastal plains, lagoons, and hilly 

areas. The tropical monsoon climate of this region is influenced by 

the proximity to the sea. By strategically placing these stations, we 

can gain valuable insights into the variations in net radiation across 

Thailand's diverse geographical and climatic regions. The field 

meteorological had instruments installed, as shown in Fig. 2. 

 

 
Fig. 2 The net radiometer of four stations in Thailand. 

 

From the instrument, a voltage signal from four radiation 

sensors and a temperature signal from a temperature sensor were 

obtained. Data was recorded every second using a datalogger 

(Yokogawa, model FX-1012) and subsequently converted into 

radiation intensity measured in watts per square meter. This 

allowed us to calculate the values of radiation equations (6-9). 

 

= DS

DS

V
DS

C
      (6) 

= US

US

V
US

C
    (7) 

= + 4DL

DL

V
DL T

C
      (8) 

= + 4UL

UL

V
UL T

C
   (9) 

 

  Where DS , US , DL , and UL  are downward shortwave 

radiation, upward shortwave radiation, downward longwave 

radiation, and upward longwave radiation, respectively. DSV , USV , 

DLV  and ULV  are voltage signals from DS , US , DL and UL  sensors, 

respectively. DSC , USC , DLC and USC  are sensitivity of DS , US , DL , 

and UL  sensors, respectively, which is obtained from annual 

calibration. σ are Stefan Boltzmann's constant (5.67 x 10-8 W∙m-2∙K), 

and T is temperature from temperature sensor in Kelvin. Then 

calculate net radiation in watts per square meter using equation (1). 

Filter the measurement data by getting rid of incorrect or impossible 

data, including data of instrument failure time. The statistical study 

of net radiation during 2017-2023 is shown in Table 1 and Fig. 3. 

 

 

 

 

 

Table 1 The values of monthly average daily net radiation data. 

 

Stations 
Values 

Max Min Mean STD 

CM 18.09 -0.16 9.98 3.08 

UB 18.74 1.42 11.42 2.71 

NP 18.47 0.56 10.99 2.91 

SK 19.14 0.03 11.18 3.36 

 

 

Fig. 3 The graph shows the long-term monthly average net  
radiation values of four stations in Thailand. 

From Fig. 3, the monthly variation of net radiation in 

Thailand peaks in May, as this period experiences relatively high 

solar radiation and surface moisture due to the onset of the rainy 

season, this results in lower surface reflectivity. Effected by an 

increase in downward radiation and a decrease in upward radiation, 

ultimately resulting in high net radiation values.  Except for SK 

Station, which has a different breeding season than other areas, the 

SK Station has net radiation values peak in March. After that the net 

radiation decreases and then returns to higher values again during 

the summer.  

2.2 Meteorological data 

A recent study by Aweda and Adebayo (2020) estimated net 

radiation using meteorological data obtained from a USB wireless 

weather station. A wide range of meteorological data was analyzed 

using simple empirical methods, yielding satisfactory results [12]. 

Nowadays, machine learning is widely used in data analysis, such as 

the artificial neural network model for estimating the soil 

temperature at 5, 10, 20, 50, and 100 cm depths using standard 

geographical and meteorological data considering altitude, latitude, 

longitude, month, year, monthly solar radiation, monthly sunshine 

duration, and monthly mean air temperature. The resulting model 

showed good agreement between the ANN-estimated soil 

temperature and the measured soil temperature [13]. And Patel et 

al. (2022) reviewed various algorithms, including those based on 

artificial neural networks (ANNs), such as feed-forward back-

propagation ANN, multi-layer feed-forward ANN, linear regression 

with ANN, and Graph Neural Network (GNN), for estimating solar 

radiation and solar energy [14]. So, in this research, daily net 

radiation from meteorological data in the main region of Thailand 

using an artificial neural network model was estimated. We chose 

the locations of the stations as follows: Chiang Mai meteorological 

station, Ubon Ratchathani meteorological station, Nakhon Pathom 

meteorological station, and Songkhla meteorological station.           
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The meteorological data collected consists of daily maximum air 

temperature, daily minimum air temperature, daily mean relative 

humidity, and daily solar radiation because these parameters have 

a positive or negative correlation with net radiation and can be 

measured at every station. We control the quality of meteorological 

data by removing erroneous and impossible data. The statistical 

values of meteorological data are shown in Table 2. 

Table 2 The statistical values of monthly average daily 
meteorological data. 

 
 

2.3 Methodology 

From the data, we obtained meteorological data and net 

radiation data for input and validated the model, which is an 

artificial neural network model. 

Artificial neural networks are mathematical models that 

learn and create nonlinear relationships between two datasets, 

which can discover intricate patterns [15,16]. It mimics the 

functioning of neuron cells, which receive data from the input layer, 

process data by active function in a node, and send the data to the 

output layer. The structure of a node is shown in Fig. 4, where 1w , 

2w , …, and kw  are the weights at the inputs, and   is bias of the 

layer. Initialize the weights and biases, random values are typically 

assigned. Then, during the forward propagation phase, input data to 

the input layer moving to the hidden layers and finally to the output 

layer. At each neuron (node), the output is computed using the 

formula of summation and passed through an activation function. 

Then, calculate the loss by comparing the predicted output with the 

actual target values using a loss function, such as Mean Squared 

Error. This loss informs the back-propagation process, where 

gradients of the loss with respect to the weights and biases are 

computed, and the weights and biases are updated using gradient 

descent to minimize the loss [17-18]. These steps are repeated for 

multiple epochs until satisfactory performance is achieved. These 

nodes are arranged in a series of layers that together constitute the 

artificial neural network, the structure of the ANN model in this 

research, as shown in Fig. 5. The operation flowchart can be 

represented as shown in Fig. 6. The ANN model must have data for 

training, which accounts for 70% of all data. In this work, we use data 

from 2017-2021, and the remaining 30% is used for testing the 

model from 2022-2023. Except for the Songkhla meteorological 

station, which uses data from 2018-2022 as training data and data 

from 2023 as test data, due to the presence of anomalies in the input 

data during the 2017 period. 

 

Fig. 4 The structure of a node in ANN model. 
 

 

Fig. 5 The structure of ANN model in this study. 

 

 
 

Fig. 6 The operation flowchart of the method. 
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After that, we choose the model validation measures and 

model, which are the coefficient of determination 2(R ) , the root 

mean square error relative to the mean measured values (RMSE) , 

and the mean bias error relative to the mean measured values

(MBE) . We can be found from the scattering plot between the 

model result and measurement result and calculate the following 

equations (10-12). 

 
2

N N

n,model,i n,meas,iN
i 1 i 1

n,model,i n,meas,i
i 1

2

2 2N N

n,model,i n,meas,iN N
2 2i 1 i 1
n,model,i n,meas,i

i 1 i 1

R R

R R
N

R

R R

R R
N N

= =

=

= =

= =

   
   

   • −
 
 
 =

      
      

      − −
   
   
      

 


 
 

 
(10) 

 

 

 

 

 

 

 

 

 

 

 

 

N
2

n,model,i n,meas,i
i 1

N

n,meas,i
i 1

(R R )

NRMSE 100

R

N

=




=

−

= 




 

(11) 
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(12) 

 Where n,model,iR is net radiation from ANN model (MJ/m2), 

n,meas,iR is net radiation from measurement (MJ/m2), and N  is total 

amount of data. The R2 equal to one, and RMSE and MBE equal to 

zero indicated that the results of the model and the measurement are 

in good agreement. 

 
3. Results and discussion 

In this work, we estimate daily net radiation from 
meteorological data using the ANN model, and the results are shown 
in the scatter plot in Fig. 7 and time series plot in Fig. 8-11.   

 

Fig. 7 The scatter plot of 4 stations compares the results of the 

model and the measurement. (a) Chiang Mai, (b) Ubon 

Ratchathani, (c) Nakhon Pathom, and (d) Songkhla. 

 

Fig. 7 shows the comparison plots for various meteorological 

stations, showcasing the consistent validation of the model across 

locations. At Chiang Mai, the model achieved R2 = 0.98, RMSE  = 

15.09%, and MBE = -7.22% (Fig. 7a). Ubon Ratchathani also displayed 

strong performance with R2 = 0.98,  RMSE  = 15.08%, and MBE  = 

5.53%, (Fig. 7b). Similarly, Nakhon Pathom reported R2 = 0.98, RMSE

= 14.17%, and MBE = -5.04% (Fig. 7c). Lastly, Songkhla exhibited R2 

= 0.94, RMSE  = 12.44% and MBE  = -6.51% (Fig. 7d). Overall, all 

stations demonstrated robust model performance with high R² 

values (0.98) and low RMSE (14.48%). The performance of models of 

each station and combined data can be shown in Table 3. 

 

Table 3. The summary of the statistical values of each station and 

combined data. 

 

Stations RMSE (%) MBE (%) R2 

CM 15.09 -7.22 0.98 

UB 15.08 -5.53 0.98 

NP 14.17 -5.04 0.98 

SK 12.44 -6.51 0.94 

Combined data 14.48 -2.17 0.98 

 

 

Fig. 8 The time series plot of the comparison between net radiation from model and net radiation from measurement at Chiang Mai. 
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Fig. 9 The time series plot of the comparison between net radiation from model and net radiation from measurement at Ubon Ratchathani. 
 

 
Fig. 10 The time series plot of the comparison between net radiation from model and net radiation from measurement at Nakhon Pathom. 

 

 
Fig. 11 The time series plot of the comparison between net radiation from model and net radiation from measurement at Songkhla. 

 

Figure 8-11 presents a time series comparison of the 

model-predicted net radiation with actual measurements at four 

meteorological stations: CM, UB, NP, and SK. CM station, the 

model's slight underestimation of net radiation at CM is likely due 

to the measurement station's proximity to a road and a white 

fence, which can influence reflected shortwave radiation and 

emitted longwave radiation. UB station, the model's 

overestimation, particularly during winter, might be attributed to 

insufficient winter data for model training. This limited dataset 

could have led to inaccuracies in the model's winter predictions. NP 

station, the model's occasional underestimation at NP could be 

influenced by the higher surface humidity in the agricultural area 

of NP, which can impact energy balance processes. SK station, the 

consistent underestimation at SK is likely due to the highly variable 

weather conditions, with frequent transitions from sunny mornings 

to rainy evenings. This variability can challenge the model's ability 

to accurately capture the complex energy balance dynamics. The 

gaps in the data for UB and SK stations were caused by various net 

radiometer failures, including underground cable damage, battery 

depletion, and disturbances from animals, given the outdoor 

installation of the instruments.  
Due to the varying structural constraints of ANN models 

across different research studies, we have compared the results  

 
obtained from this study with those of previous empirical models 
that utilized similar input variables (equations 3-5). The comparison 
results are presented in Table 4. 

 
Table 4. Results of comparison between Proposed model (ANN)  

against other models. 

Stations 
Statistical 

values  
Proposed 

model  

Irmak 
et al. 
(Eq.3) 

Alados 
et al. 
(Eq.4) 

Tohsing 
et al. 
(Eq.5) 

CM 

RMSE 15.09 21.98 19.81 19.30 

MBE -7.22 2.40 -4.57 -1.95 

R2 0.98 0.95 0.96 0.96 

UB 

RMSE 15.08 24.50 19.67 19.70 

MBE -5.53 -2.25 -4.42 -5.62 

R2 0.988 0.94 0.97 0.96 

NP 

RMSE 14.17 21.82 20.18 18.19 

MBE -5.04 -13.40 -13.38 -9.43 

R2 0.98 0.97 0.98 0.97 

SK 

RMSE 12.44 15.57 16.66 12.32 

MBE -6.51 -9.56 13.23 -7.37 

R2 0.94 0.90 0.99 0.99 
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The four models showed strong agreement with the 
observed data. Solar radiation, a common input, was identified as 
a key variable in net radiation estimation. Tohsing et al. (Eq.5) and 
Alados et al. (Eq.4) models, which incorporated varying surface 
coefficients, outperformed the others in terms of accuracy and 
agreement with measured data, highlighting the importance of 
considering surface characteristics in such models. Statistical 
analysis indicates that the ANN model provides a better estimation 
of net radiation. This is attributed to the ANN's exceptional ability 
to analyze large datasets and complex relationships. 
 
4. Conclusion 

In this work, we estimate net radiation from meteorological 

data using an artificial neural network model. The location of the 

station is in the main region of Thailand, namely Chiang Mai 

meteorological station, Ubon Ratchathani meteorological station, 

Nakhon Pathom meteorological station, and Songkhla 

meteorological station, and we recorded data from 2017 to 2023 

for training and testing the model. The results are satisfactory for 

the comparison, as shown in the time series plot and scatter plot 

between the model and the measurement. The time series plot 

comparison shows that their validation characteristics are very 

consistent. In the scatter plot, we use indicators of the 

performance model as shown in terms of R2, RMSE and MBE which 

showed 0.98, 14.48% and -2.17%, respectively. Indicating the 

performance of the model is good, when compared to other 

studies, the developed model in this research produced superior 

results. 
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