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ABSTRACT

In the past few years, distributed electricity generation from renewable sources,
or microgrid systems, has been connected to the grid to increase power supply
stability. This responds to government policy regarding commitment to using
100% renewable energy in operations (RE100) project efforts. This results in the
entry of power electronic or non-linear equipment into the electrical system,
making it more sensitive. Moreover, multiple power quality disturbances (PQDs)
consist of a variety of single disturbances. Analysis of complex multi-label
patterns is a challenging task. In this paper, we propose a methodology to
address this challenge by leveraging Discrete Wavelet Transform (DWT) and
Improved Long Short-Term Memory Networks (LSTM). Firstly, multiple PQDs are
synthesized utilizing a mathematical model based on IEEE standards 1159-2019.
Secondly, the obtained PQDs are decomposed into nine feature classes, yielding
detailed (cDs) and approximation (cAs) coefficients through Five-Level DWT
Decomposition. Furthermore, we conducted a comparative analysis of each
component across five different wavelet functions: haarl, db4, biorl.3, coif2,
and sym4. Thirdly, the cDs and cAs coefficients derived from each wavelet type
undergo statistical analysis before being inputted into the LSTM model for
classification of each feature class. Our results highlight that cD5 components
obtained from the db4 wavelet exhibit the highest accuracy rate of 93.86%. This
finding elucidates the significance of selecting appropriate wavelet types and
compositions for the successful classification of multiple PQDs.

1. Introduction
1.1 Background

Presently, power quality inspections are conducted across
various segments of the electrical system, encompassing the
generation, transmission, and distribution systems, all of which
hold significant importance. The proliferation of the modern
energy industry, coupled with the widespread use of electronic
equipment, has emerged as a common catalyst for disruptions
within the system [1]. Furthermore, the integration of renewable
energy sources and distributed generation in Thailand has
introduced new challenges, as these sources often introduce
fluctuations and intermittencies into the power grid [2]. This
alongside the operation of industrial power equipment,
exacerbates the occurrence of Power Quality Disturbances (PQDs).
Without adequate monitoring and preventive measures, these
disturbances can lead to unforeseen events such as equipment
malfunctions, prolonged blackouts affecting widespread regions,
or even pose risks to field mechanics [3]. In this context, the
analysis and classification of PQDs become imperative, as they
provide early warning signs and enable proactive interventions to

mitigate potential risks. It's worth noting that PQ standards, such
as those outlined in IEEE 1159-2019 [4], offer comprehensive
guidelines for measuring electromagnetic phenomena associated
with variations in voltage, current, and frequency resulting from
changes in power supplies and loads. Adherence to these
standards not only ensures the reliability and stability of the power
grid but also facilitates the early detection and characterization of
PQDs, thereby enhancing operational efficiency and minimizing
downtime. Therefore, prioritizing the detection and classification
of PQDs characteristics is paramount for maintaining a resilient and
sustainable electrical infrastructure in Thailand [5].

Power quality encompasses the intricate interplay between
electrical power and the performance of electrical equipment.
When electrical equipment operates reliably without damage or
stress, we deem the electrical power to be of good quality.
Conversely, if equipment malfunctions, proves unreliable, or
suffers damage during regular operation, we infer poor power
quality.

Diving into the intricacies, power quality comprises several
facets including voltage quality, current quality, supply quality, and
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consumption quality [5]. It can be succinctly defined as any
deviation in voltage, current, or frequency that leads to equipment
failure or malfunction. Poor power quality often lurks as the
primary culprit behind perplexing equipment trips, intermittent
shutdowns, sporadic damage or component failures, erratic
process performance, and inexplicable occurrences such as
random lockups and data errors or overheating of power system
components [5]. The spectrum of power quality problems causes a
discernible deterioration in the performance of various sensitive
electronic and electric equipment. An ideal scenario of good power
quality entails several key attributes: Supply voltage staying within
the guaranteed tolerance of its declared value; A waveform
exhibiting a pure sine wave shape within permissible distortion
limits; Voltage balance across all three phases; And continuous
supply, ensuring uninterrupted availability. However, causes of
poor power quality abound: Variations in voltage, magnitude, and
frequency [5]. Frequency variations stem from system dynamics or
harmonics injection. Consequently, the pristine sinusoidal nature
of power system voltage or current waveforms dissipates, replaced
by the presence of harmonics and other noise elements [5].

Fig. 1 (a) Suspension insulators damaged by arc burns, (b) Arrester
explodes from overvoltage, (c) Voltage stress on the bushing, and
(d) Damaged cable caused by flash overs.

PQDs manifest in various forms, each with distinct
characteristics and impacts [6]: Transients, marked by
instantaneous, nanosecond-range spikes in voltage; Interruptions,
occurring when supply voltage or load current drops below 0.1 pu
for a period not exceeding 1 minute; Voltage sags, where the RMS
voltage dips between 10% and 90% of nominal voltage for half a
cycle to a minute; Voltage swells, characterized by an increase in
RMS voltage to 110%-180% of nominal voltage for up to 1 minute;
Waveform distortion, signifying unexpected alterations in current
and voltage waveforms as they traverse through a device. These
PQDs events, when left unchecked, wreak havoc on electrical
systems. For instance [6], voltage sags can disrupt manufacturing
processes, causing equipment downtime and production losses
(Fig.1 (a)). Transients may fry sensitive electronic components,
leading to costly replacements (Fig.1 (b) and (c)). Voltage swells
might damage equipment designed for specific voltage ranges,
rendering them inoperable (Fig.1 (d)). Such disturbances not only
incur financial losses but also compromise safety and reliability,
underscoring the critical importance of mitigating PQD effects [6].

1.2 Literature Review

In the scope of power quality research, various
methodologies have been proposed to detect and classify PQDs.
These methodologies can be broadly categorized into three main
approaches [7]: signal processing-based feature extraction,
artificial intelligence-based classifiers, and optimization techniques
for optimal feature selection.

Signal processing-based methods often utilize techniques
such as wavelet transforms to extract relevant features from
voltage or current signals. For example, Upadhyaya et al.
introduced a novel approach using Second Generation Wavelet
Transform (SGWT) to detect ten different PQ formats [8]. Their
study demonstrated that SGWT outperformed traditional
techniques like Discrete Wavelet Transform (DWT) in terms of both
speed and effectiveness. However, the paper lacked detailed
evaluation of the results and explanation of the detection process,
which limits the reproducibility and understanding of their
findings. Similarly, the study in [9] employed wavelet transform
extraction, including Continuous Wavelet Transform (CWT), DWT,
and Multi-Resolution Analysis (MRA), followed by detection using
Artificial Neural Networks (ANNs) and Support Vector Machines
(SVMs). While the approach showed promise, there was
insufficient information provided on how the PQDs model was
generated or the parameters used in the classification model,
hindering a comprehensive understanding of the methodology.

In other studies, such as [10] and [11], the focus was on
analyzing harmonic components, yet there was a lack of clarity
regarding the source of the data, or the criteria used for
determining the results. Furthermore, Arvez et al. [12] utilized the
Simulink toolbox in MATLAB and DWT with level 2 components,
such as Low-Pass Filters and High-Pass Filters, to extract features
like Root Mean Square (RMS), average, standard deviation, and
approximation coefficients. They then applied for a one-class
Support Vector Machine (OCSVM) for classification, achieving high
accuracy. However, the authors did not provide an explanation of
how data from smart meters was utilized, which is crucial for
understanding the applicability of their approach in real-world
scenarios. Moreover, studies in [13] and [14] employed Stockwell's
Transform (ST) for data extraction, focusing specifically on PQDs
related to wind energy according to IEEE standards. However, the
lack of clarity regarding the classifier and its evaluation
methodology poses limitations to their findings, making it
challenging to assess the robustness and generalizability of their
results.

From the above mentioned, several observations can be
made:

(1) PQDs data generation lacks uniformity, with varying
resolution values derived from mathematical equations
and laboratory data. This inconsistency in data
generation methods can lead to discrepancies in results
and hinder comparison between different studies.

(2) Extraction techniques vary based on their intended
objectives, necessitating a standardized approach. The
lack of standardization makes it difficult to assess the
efficacy and generalizability of different extraction
techniques and hampers the reproducibility of results.

(3) While classifiers play a crucial role in the characterization
process, their effectiveness is contingent upon adequate
evaluation. However, many studies fail to provide
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comprehensive evaluation methodologies, making it
challenging to gauge the reliability and robustness of
their proposed models.

(4) Evaluation methodologies are  essential  for
substantiating the efficacy of proposed methods but are
often overlooked or inadequately described. The
absence of clear evaluation criteria and metrics makes it
difficult to assess the performance of different
approaches.

The present study's primary contributions are outlined below:

(1) Introduction of multiple PQDs generated through
mathematical equations to enable the model to learn
diverse interference patterns. This approach enhances
the model's ability to accurately detect and classify a
wider range of PQDs.

(2) Utilization of DWT to categorize elements into levels,
facilitating focused analysis of essential components. By
categorizing elements into distinct levels, the model can
better isolate and prioritize relevant features, improving
the efficiency and effectiveness of the classification
process.

(3) Implementation of Long Short-Term Memory Networks
(LSTM) to incorporate sequential information, enhancing
accuracy in PQDs classification. By analyzing data
recurring directions, the model can capture temporal
dependencies and patterns of disturbance waveforms.

(4) Adoption of accuracy metrics and confusion matrix for
comprehensive assessment of the model's performance,
ensuring robust evaluation of results.

The remainder of this paper is structured as follows:
Section 2 delineates the theoretical framework and
methodologies, encompassing decomposition using DWT, Five-
Level DWT decomposition, Wavelet Families, and LSTM. Section 3
elucidates the experimental procedures, while Section 4 offers a
succinct overview of the results and subsequent discussion,
including any identified limitations. Finally, Section 5 provides a
summary of the research findings and outlines potential avenues
for future investigations.

2. Theory and Methods

In the endeavor to classify PQDs effectively, it is imperative
to delve into the intricate workings of signal processing techniques,
particularly decomposition using DWT. DWT is a powerful tool for
analyzing non-stationary signals, allowing for the extraction of
valuable features that are crucial for accurate classification.
Moreover, classifiers and evaluation tools are elaborated upon in
detail within this section.

2.1 Decomposition using DWT

DWT serves as the cornerstone of feature extraction in
PQD classification [15]. The process involves breaking down the
input signal into different frequency bands or levels, each
representing a specific scale of detail. This hierarchical
decomposition enables the identification of relevant features at
various resolutions, facilitating the characterization of PQD with
different temporal and spectral characteristics.

DWT decomposes a signal into approximation and detail
coefficients at different resolution levels. The DWT operation can
be expressed as:

(0=, cO+Y d,0) o

where X(?) represents the original signal, ¢, (¢) represents the
approximation coefficients level &, dj (¢) represents the detail
coefficients at level ;. The number of decomposition levels
determines the resolution and frequency bands obtained from the
decomposition.

2.2 Five-Level DWT Decomposition

The input signal is decomposed into approximation and
detail coefficients at a five-resolution level [16]. This
decomposition provides a coarse representation of the signal's
overall trend (approximation coefficient) and its high-frequency
components (detail coefficients) as shown in Fig. 2. In five-level
DWT decomposition, the input signal is decomposed into
approximation (smooth) and detail (detail) coefficients at a single
resolution level ;. The decomposition can be represented as:

x(0) = ¢ () +d,(@) (2)

Here, ¢ (¢) represents the approximation coefficients,
capturing the low-frequency components of the signal, while
d,(t) represents the detail coefficients, highlighting the high-

frequency components.
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Fig. 2 Five-level DWT decomposition.
2.3 Introduction to Wavelet Families

Several wavelet families are commonly employed in PQD
classification, each possessing unique properties and suitability for
different types of signals [17]. Some of the prominent wavelet
families include:

(1) Haar Wavelet:

The Haar wavelet is the simplest wavelet function,
characterized by its step-like waveform [18]. It is particularly
well-suited for detecting sudden changes or discontinuities in
signals, making it an ideal choice for capturing transient PQD
events.

The Haar wavelet is defined by its scaling function ¢(t)

and wavelet function /(¢), given by:

1 0<r<l1
(1) ={ (3)

0 otherwise

The wavelet function l//(t) is defined as follows:
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1 0£t<l,
2
1
y(t)=4-1 5£t<l, (4)
0 otherwise

The Haar wavelet effectively captures sudden changes or
discontinuities in signals due to its step-like waveform.

Daubechies Wavelet:

Daubechies wavelets, also known as db wavelets, are
widely used due to their orthogonality and compact support
properties. They offer excellent time-frequency localization,
making them suitable for analyzing signals with both short and
long-term variations, such as voltage sags and swells [19]. For
example, the Daubechies-4 (db4) wavelet has 4 vanishing
moments and is widely used in signal processing applications.

(2)

(3) Biorthogonal Wavelet:

Biorthogonal wavelets are characterized by their
biorthogonality property, which allows for a more flexible
decomposition of signals compared to orthogonal wavelets. They
are particularly useful for analyzing signals with non-symmetric
features or complex dynamics, such as harmonic distortions [19].
The biorthogonality property allows for a more flexible

decomposition of signals compared to orthogonal wavelets.

Coiflets Wavelet:

Coiflets, or coif wavelets, are designed to provide a
smoother transition between approximation and detail
coefficients, making them suitable for signals with gradual
variations or smooth trends [20]. They offer a balance between
time and frequency localization, making them versatile for
analyzing various types of PQD.

(4)

(5) Symlets Wavelet:

Symlets, or symmlets, are similar to Daubechies wavelets
but offer improved symmetry properties, making them better
suited for analyzing signals with symmetric features or periodic
components [20]. They provide efficient representation of signals
with both smooth and oscillatory characteristics, making them a

popular choice for PQD classification tasks.

The five types of wavelet shape features used in this
experiment are shown in Table 1. Incorporating these wavelet
families into the classification framework allows for the extraction
of discriminative features from PQD signals, enabling accurate and
robust classification of different disturbance events. Moreover,
understanding the working principles, structures, and equations

Table 1 Visualize the wavelets included in this work.

involved in each wavelet family empowers researchers to tailor
their classification approach to the specific characteristics of the
signals under analysis, thereby enhancing the effectiveness and
reliability of the classification system.

. X + | :.
we | =

R e
LY L@
z

-1

Forget Gate  Input Gate Output Gate

Hidden State
Fig. 3 LSTM Architecture used in this paper.
2.4 Long Short-Term Memory (LSTM)

Section Long Short-Term Memory (LSTM) networks have
emerged as powerful tools for sequential data analysis, including
the characterization and classification of PQDs [21]. LSTM belongs
to the family of Recurrent Neural Networks (RNNs), specialized for
handling sequential data with long-range dependencies. Unlike
traditional feedforward neural networks, RNNs have feedback
connections that allow them to process sequences of inputs by
maintaining internal states. LSTM networks address the vanishing
gradient problem encountered in standard RNNs, making them
better suited for capturing long-term dependencies in sequential
data as shown in Fig. 3.

The fundamental unit of an LSTM network is the LSTM cell,
which contains multiple gates responsible for regulating the flow
of information. These gates include:

1. Forget Gate: Controls what information from the previous
cell state should be discarded.

2. Input Gate: Determines what new information should be
added to the cell state.

3. Output Gate: Regulates the information that will be
output from the cell state.

The LSTM cell utilizes these gates to selectively update its
internal state based on the input sequence, allowing it to retain
relevant information over long time intervals while discarding
irrelevant or redundant information.

The computations within an LSTM cell can be described by
the following equations:

-1 ol

as 1 . L

FRE]

i

+

haarl db4

biorl.3

coif2 sym4

Haar Wavelet Daubechies Wavelet

Biorthogonal Wavelet

Coiflets Wavelet Symlets Wavelet

10



Journal of Renewable Energy and Smart Grid Technology, Vol. 19, No. 1, January-June 2024

S, =00, [h_,x]+b,) (5)
i, =0, -[h_,x]+b) (6)
C. = tanh(W, -[h,_,,x, 1+ b,) (7)
C =f-C_ +i-C (8)

o, =oW,[h_,x]+b,) ©)
h, = o, -tanh(C,) (10)

Where:
.,i, and o, are the forget, input, and output gate activations,
respectively.
C represents the candidate cell state.

C. is the updated cell state.

h, is the output of the LSTM cell.

2.5 Evaluating Performance

(1) Accuracy:

Accuracy is a commonly used metric for evaluating the
performance of classification models, including those using LSTM
for PQD classification. It measures the proportion of correctly
classified instances among the total number of instances in the
dataset [22]. Mathematically, accuracy is defined as:

Number of Correctly Classified Instances
Total Number of Instances

x100%

Accuracy = (11)

The context of LSTM-based PQD classification, accuracy
indicates the model's ability to correctly classify different types of
PQDs based on the input features extracted using DWT.

(2) Confusion Matrix:

A confusion matrix is a tabular representation of the actual
and predicted classifications produced by a classification algorithm
[22]. It provides valuable insights into the model's performance by
summarizing the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). For example, these
values are arranged in a 2x2 matrix as follows:

Predicted Negative Predicted Positive
Actual Negative TN FP
Actual Positive FN TP

Each cell in the confusion matrix represents a specific classification
outcome, such as the TP value indicates the number of instances
that is correctly classified (i.e., power quality disturbances).

In addition to the accuracy measure, to ensure a
comprehensive assessment of the model's performance when
applied to real-world scenarios, precision, recall, and F1-score are
also employed to evaluate the model's effectiveness, as presented
in Equations (12)-(15).

TP+TN
Accuracy = (12)
TP+ FP+ FN+TN
Precision = —TP (13)
TP+ FP
Recall = _rr (14)
TP+ FN

11

2TP

Fl—score=————
2TP+ FP+ FN

(15)

3. Experimental detail

The experimental procedure encompasses four primary
phases: data preparation, feature extraction, classification of
PQDs, and model evaluation. These phases are elucidated in Fig. 4.
The subsequent sections will explicate each stage in the following
sequence.

3.1 Preprocessing

In this study, our primary focus lies in the identification of
intricate PQDs patterns, with particular emphasis on multiple
PQDs. These phenomena emerge as a result of the amalgamation
or interaction of multiple patterns, a scenario often encountered
due to the diverse nature of loads and the integration of alternative
energy sources.

Table 2 illustrates the classification of each PQDs class
model, meticulously adhering to the IEEE-1159-2019 standard
guidelines [4]. The classification process is facilitated by an integral
mathematical model implemented through MATLAB, a widely
utilized computational tool in this experimental setup. Within the
confines of this table, individual PQD events (designated as C-1 to
C-9) are delineated based on distinct characteristics such as
morphology [24].
aforementioned mathematical

waveform  magnitude, duration, and
Additionally, leveraging the
framework, we construct graphical representations, as elucidated
in Table 3.

It is imperative to note that the data encapsulated within
each PQD class undergoes a randomization process, employing
specified parameter ranges to ensure robustness and
comprehensiveness in our analysis. As part of our research
methodology, we meticulously generated a dataset comprising
900 instances, each meticulously curated to encompass 100
samples, thus ensuring ample coverage and representation across

various PQD scenarios.

3.2 Feature Extraction

After the
distinctive attributes of each PQDs class were extracted utilizing

completing the data preparation phase,
DWT. For this purpose, we employed a MATLAB application named
'Wavelet Analyzer' [25]. The configuration parameters were set as
follows: the dataset size was fixed at 500 samples, and the Wavelet
function comprised several types including haarl, db4, biorl.3,
coif2, and sym4. Additionally, a constant level value of 5 was
established. During the experimentation, we iteratively adjusted
the loop value for each Wavelet function format and subsequently
recorded the resulting values from the decomposition process (in
Algorithm 1). This decomposition encompassed approximations at
levels 1 to 5 and coefficients of approximations at levels 1 to 5. A
representative signal characteristic is illustrated in Fig. 5.
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Algorithm 1: DWT Extraction

1.
11
2.
21
3.
3.1
4.
4.1
5.
5.1
5.2
5.3
6.
6.1
6.1.2
6.1.3
6.1.4
7.
7.1
8.

Define Function:
| Extract_features(data, wavelet_family, wavelet_level)
Initialize Features List:
| Store the extracted features for all samples in the data.
Add Pre-generated Waveform (Modify as needed):
| Take a pre-generated waveform
Loop Through Data Samples:
| Iterate through each sample in the input data using a for loop
Perform DWT on Each Sample:
Within the loop, perform DWT on the current sample using pywt.dwt function.
Specify the chosen wavelet family based on the input parameter (wavelet_family)
Store the resulting DWT coefficients in a variable named coeffs
Decompose Coefficients Level:
Loop from level 1 to 5 wavelet_level (In each iteration)
Separate the approximation (approx) and detail (detail) coefficients from coeffs.
Update coeffs to hold the detail coefficients in the next level
Append both approx and detail coefficients to the decomposed_coeffs list
Combine Features
| Calculate standard deviation (np.std(sample)) and mean (np.mean(sample))
Return Features:

Algorithm 2: LSTM Classification

1.
11
1.2
2.
2.1
3.
3.1
3.2
3.3
4.
4.1
4.2
4.3
5.
5.1
6.
6.1
6.2
7.
7.1
7.2
7.3
7.4
8.
8.1
9.
9.1
10.
10.1
10.2
11.
12.

Data Loading and Preprocessing
X_data: stores the preprocessed features (DWT_features)
y_data: stores the corresponding labels for the data
Define Number of Folds:
| Define a variable: num_rounds (set 9 classes)
K-Fold Cross-Validation:
Define a KFold object (kf)
Set the number of splits (n_splits) to num_rounds
Set shuffle to randomly shuffle the data before splitting
Iterate Through Folds:
Loop through each fold using a for loop (i, (train_index, test_index)) in kf.split(X)
The loop iterates num_rounds times
Print the current fold number (i+1) and total number of folds (num_rounds)
Split Data into Training and Testing Sets (for each fold):
| Use indexing with train_index and test_index for the current fold.
Reshape Features for LSTM:
Reshape X_train and X_test to a 2D format suitable for 1D LSTM.
The new shape is (number_of_samples, number_of_features, 1)
Build LSTM Model:
Define a Sequential model (model)
Add a LSTM layer with 32 units, ReLU activation, and input shape based on X_train
Add a Dense layer with 128 units and ReLU activation
Add a final Dense layer with num_classes and softmax activation for classification.
Compile the Model:
| Compile with Adam optimizer, sparse_categorical_crossentropy loss function
Train the Model:
| Train the model on X_train and y_train for 50 epochs with a batch size of 32
Evaluate the Model:
Evaluate the model on X_test and y_test
Store the accuracy in a list named accuracies
Print performance metrics
Calculate and print average accuracy

13
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3.3 Classification

Following the feature extraction phase, both cDs and cAs
are obtained for each component, as outlined in Fig. 5 (C-9: Swell
with Oscillatory). Of particular interest are the values of ¢cD5 and

cAS5 (yellow frame), as they exhibit distinct waveforms for each
class of PQDs. Details of the decomposition for the remaining

classes (C-1 to C-8) are presented in the appendix (Table 8). In the

experimental dataset, each wavelet function is utilized as input to

facilitate result comparison. To enhance the efficiency of dataset

partitioning for learning, k-fold cross-validation is implemented

with k set to 9.

For the LSTM model, structured as depicted in Fig. 3, the

following configurations are employed:

e Alayer with 32 units utilizing the Rectified Linear Unit

(ReLU) activation function.

e Input shape: defined in a 1D waveform.

e  Densel: Fully connected layer with 128 units and RelLU

activation function.

e  Dense2: Fully connected output layer with a number of

units equal to the total output classes, employing the

softmax activation function.
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The comprehensive classification process is outlined in
Algorithm 2. The experimentation was conducted on a Windows
11 platform with Jupyter Lab, utilizing an Intel Core i7-12700H 2.9
GHz CPU and 16 GB of RAM. Python served as the primary
programming language, supplemented by libraries including Keras,
Scikit-learn, NumPy, Pandas, and PyWavelets.

3.4 Evaluation

Another crucial aspect of the experiment involves assessing
the accuracy of the model's performance. The evaluation entails
scrutinizing the efficacy of the confusion matrix, which serves as a
potent tool for gauging outcomes and facilitating comparisons
across different classes.

4. Results and Discussion

In the experiment, the dataset obtained through the
synthesis process using the mathematical equations outlined in
Table 2 consisted of 900 instances spanning 9 distinct classes.
Sample signals corresponding to each class are depicted in Table 3.
Subsequently, the data was partitioned into individual classes to
undergo the feature extraction process employing DWT. This
process yielded both cDs and cAs features, with each wavelet type
including haarl, db4, biorl.3, coif2, and sym4. Physical
characteristics exemplifying each wavelet type are presented in
Table 1. The component extraction procedure is outlined in
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functions at level 5 for C-9: Swell with Oscillatory.

15



Journal of Renewable Energy and Smart Grid Technology, Vol. 19, No. 1, January-June 2024

Algorithm 1. By the results of decomposing components, we show
an example of the best (db4) and worst (haar1) wavelet functions
in detail in Fig. 5. The outcomes derived from the decomposition
process were then fed into the optimized LSTM model, as depicted
in Algorithm 2. To delineate the characteristics of each form of
PQDs, the following observations were made:

Firstly, the 1D signal undergoes decomposition using DWT
via both high pass and low pass filters, with the parameter level set
to 5. This results in the generation of Detailed Coefficients (cD1 to
cD5) and Approximation Coefficients (cAl to cA5), constituting a
single waveform data. Consequently, each component can be
segregated into 10 distinct sets of features, implying a total of
900x10=9000 sets of decomposed data per wavelet type.
Therefore, in the experiment, we opt to utilize a variety of wavelet
types, totaling 5. This leads to a cumulative count of
9000x5=45,000 sets of data employed in the analysis. cAs
represent the coarsest scale of the signal. They capture the overall
trends or low-frequency components of PQDs. These coefficients
provide a compressed representation of the original signal by

Table 4 Comparison of individual cDs coefficients and wavelet types.

summarizing its general characteristics. Suitable for capturing
large-scale patterns or trends in PQDs. Since they contain low-
frequency information, they are useful for capturing global
features of the signal, such as the overall shape or general trends.
cDs represent the differences or high-frequency components
between successive approximation levels. They capture the finer
details or high-frequency components of the signal that are
associated with specific levels of detail or resolution in PQDs.
Suitable for capturing local variations or fine-scale features in the
data. They provide information about abrupt changes or edges in
PQDs, which can be useful for detecting sharp transitions or
localized patterns.

Secondly, from the decomposed dataset, both cDs and cAs
obtained from five distinct wavelet types were subjected to
preliminary characterization using statistical data analysis.
Specifically, we chose to utilize the mean (avg) and standard
deviation (sd) to conduct a comparative analysis for each class. The
outcomes of this analysis are presented in Table 4 for cDs and Table
5 for cAs.

c D harrl db4 bior1l.3 coif2 sym4
) ¢ avg sd avg sd avg sd avg sd avg sd
cd1  -1.30E-17 7.05E-01 1.04E-14 -1.98E-05 -9.31E-18 6.29E-02 1.02E-13 1.48E-06 1.02E-13 1.48E-06
cD2 1.30E-16 6.99E-01 3.88E-05 6.94E-04 1.28E-04 -6.34E-02 1.84E-05 5.31E-05 1.84E-05 5.31E-05
1 cD3 9.16E-04 6.77E-01 4.40E-04 4.69E-03 3.98E-05 -6.47E-02 8.52E-05 -1.48E-03 8.52E-05 -1.48E-03
cDb4 9.16E-04 5.96E-01 3.91E-04 -7.40E-03 2.94E-04 -6.13E-02 -7.01E-04 2.25E-02 -7.01E-04 2.25E-02
cD5 8.46E-03 3.34E-01 1.31E-02 7.73E-03 5.37E-03 7.10E-02 -8.97E-04 -2.91E-03 -8.97E-04 -2.91E-03
cD1 8.13E-17 3.00E-01 2.44E-14 -7.61E-03 9.01E-17 3.94E-02 3.06E-14 3.21E-04 2.29E-15 9.63E-04
cD2 -4.49E-18 2.86E-01 6.31E-06 5.74E-03 1.88E-04 -3.65E-02 3.53E-05 4.09E-03 2.50E-04 2.06E-02
2 cD3 1.20E-03 2.49E-01 3.97E-04 7.07E-05 -1.75E-04 -1.29E-02 -7.84E-05 -9.44E-04 -1.18E-04 2.99E-03
cD4 1.20E-03 2.21E-01 3.23E-04 3.72E-03 -3.65E-05 -7.67E-03 -7.71E-04 1.06E-02 -9.96E-04 6.47E-03
cD5 2.96E-03 1.28E-01 6.57E-03 -1.14E-02 8.48E-04 -9.17E-03 -4.54E-04 1.34E-02 -1.69E-03 7.48E-03
cD1  -2.22E-17 6.19E-01 1.89E-14 -1.42E-02 5.28E-17 1.04E-01 4.75E-14 1.21E-03 2.05E-15 3.64E-03
cD2 7.44E-17 6.05E-01 1.45E-05 1.29E-02 1.59E-04 -9.76E-02 2.84E-05 9.09E-03 2.15E-04 4.59E-02
3 cD3 1.04E-03 5.69E-01 3.83E-04 -2.57E-04 -1.06E-04 -7.77E-02 -2.92E-05 -2.41E-03 -9.48E-05 2.24E-03
cD4 1.04E-03 5.00E-01 3.17E-04 -4.11E-03 5.48E-05 -3.20E-02 -7.02E-04 1.19E-02 -9.06E-04 2.96E-02
cD5 4.24E-03 2.83E-01 7.86E-03 3.22E-03 2.00E-03 1.60E-02 -5.46E-04 -2.67E-04 -2.09E-03 1.86E-03
cD1 8.42E-17 3.14E-01 1.89E-14 -5.59E-03 1.73E-17 5.20E-03 4.75E-14 3.56E-05 1.99E-15 1.07E-04
cD2  -3.60E-18 3.07E-01 1.45E-05 6.43E-04 1.59E-04 -4.88E-03 2.84E-05 4.54E-04 2.15E-04 2.29E-03
4 cD3 1.04E-03 2.86E-01 3.83E-04 -8.47E-04 -1.06E-04 -2.29E-03 -2.92E-05 -4.36E-04 -9.48E-05 6.91E-04
cD4 1.04E-03 2.54E-01 3.17E-04 1.84E-03 5.48E-05 -1.70E-03 -7.02E-04 2.36E-03 -9.06E-04 4.37E-03
cD5 4.24E-03 1.49E-01 7.87E-03 3.63E-04 2.00E-03 2.08E-03 -5.49E-04 -1.15E-04 -2.09E-03 -2.73E-03
cD1 2.40E-11 1.44E+00 -7.31E-07 -5.12E-02 2.40E-11 2.92E-01 2.86E-06 4.87E-03 2.56E-06 1.73E-02
cD2 2.40E-11 1.42E+00 1.34E-04 -2.43E-03 4.23E-04 -2.37E-01 6.40E-05 1.43E-02 4.17E-04 1.29E-01
5 cD3 2.56E-03 1.36E+00 1.62E-03 -2.60E-03 5.60E-05 -1.28E-01 6.45E-04 -1.80E-02 -1.74E-04 -7.07E-04
cD4 2.56E-03 1.20E+00 1.32E-03 1.52E-02 5.44E-04 3.26E-02 -2.18E-03 5.63E-02 -3.15E-03 3.50E-02
cD5 1.37E-02 6.94E-01 2.26E-02 -2.71E-02 5.50E-03 1.85E-01 -3.77E-03 -2.12E-02 -8.40E-03 -6.28E-03
cD1 1.20E-11 1.12E+00 -3.13E-07 -8.42E-05 1.20E-11 6.32E-02 1.23E-06 -4.97E-05 1.10E-06 5.26E-05
cD2 1.20E-11 1.11E+00 7.79E-05 3.67E-04 2.66E-04 -5.64E-02 4.02E-05 -5.34E-04 3.77E-04 -3.68E-04
6 cD3 1.76E-03 1.07E+00 1.09E-03 5.86E-03 2.12E-04 -5.49E-02 4.72E-04 -4.43E-03 -6.23E-05 1.31E-03
cD4 1.76E-03 9.47E-01 9.45E-04 8.93E-03 7.22E-04 4.02E-03 -1.48E-03 4.24E-02 -2.19E-03 4.21E-02
cD5 1.61E-02 5.46E-01 2.49E-02 -4.45E-03 9.77E-03 3.21E-02 -2.31E-03 1.43E-02 -7.91E-03 1.33E-02
cD1 2.40E-11 1.80E+00 -3.13E-07 -1.04E-04 2.40E-11 1.20E-01 1.23E-06 -4.82E-05 1.10E-06 5.57E-05
cD2 2.40E-11 1.78E+00 7.79E-05 4.66E-04 2.66E-04 -1.31E-01 4.02E-05 -2.15E-04 3.77E-04 -3.68E-04
7 cD3 1.76E-03 1.73E+00 1.09E-03 2.36E-03 2.12E-04 -1.84E-01 4.72E-04 -6.16E-03 -6.23E-05 1.67E-03
cb4 1.76E-03 1.52E+00 9.45E-04 -1.16E-02 7.22E-04 -1.02E-01 -1.48E-03 -1.11E-02 -2.19E-03 4.53E-02
cD5 1.61E-02 8.59E-01 2.49E-02 1.64E-03 9.77E-03 9.84E-02 -2.31E-03 -1.58E-02 -7.91E-03 -6.91E-03
cD1  -6.45E-07 5.09E-01 -6.45E-07 -1.98E-05 -6.45E-07 1.54E-02 -6.45E-07 1.48E-06 -6.45E-07 3.09E-06
cD2 -6.45E-07 5.05E-01 3.82E-05 6.94E-04 1.27E-04 -2.67E-02 1.78E-05 -2.52E-04 1.85E-04 2.12E-04
8 cD3 9.15E-04 4.89E-01 4.39E-04 2.45E-03 3.91E-05 -1.18E-02 8.46E-05 -3.02E-04 -5.15E-05 8.05E-04
cD4 9.15E-04 4.31E-01 3.91E-04 5.03E-03 2.93E-04 -1.17E-02 -7.01E-04 1.94E-02 -9.14E-04 1.55E-02
cD5 8.46E-03 2.48E-01 1.31E-02 -1.38E-02 5.37E-03 -1.98E-02 -9.01E-04 1.43E-02 -3.60E-03 8.35E-03
cD1 1.61E-06 1.03E+00 1.61E-06 -1.98E-05 1.61E-06 6.29E-02 1.61E-06 1.48E-06 1.61E-06 3.09E-06
cD2 1.61E-06 1.02E+00 4.05E-05 -7.34E-04 1.29E-04 -6.34E-02 2.00E-05 2.55E-04 1.87E-04 -5.30E-05
9 cD3 9.18E-04 9.84E-01 4.42E-04 7.47E-03 4.14E-05 -1.14E-01 8.68E-05 -1.48E-03 -4.93E-05 8.05E-04
cD4 9.18E-04 8.66E-01 3.93E-04 -1.77E-02 2.96E-04 -6.13E-02 -6.99E-04 1.92E-02 -9.12E-04 4.48E-02
cD5 8.46E-03 4.87E-01 1.31E-02 4.98E-03 5.37E-03 2.21E-02 -8.93E-04 -5.48E-04 -3.60E-03 7.88E-03
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Table 5 Comparison of individual cAs coefficients and wavelet types.

c A harrl db4 bior1l.3 coif2 sym4
) ¢ avg sd avg sd avg sd avg sd avg sd
cAl -0.0074 0.7121 -0.0074 0.7134 -0.0075 0.7149 -0.0074 0.7134 -0.0074 0.7134
cA2 -0.0072 0.7059 -0.0072 0.7136 -0.0076 0.7202 -0.0073 0.7136 -0.0073 0.7136
1 cA3 -0.0070 0.6839 -0.0080 0.7125 -0.0119 0.7326 -0.0087 0.7121 -0.0087 0.7121
cA4 -0.0029 0.5859 -0.0068 0.6845 -0.0007 0.7139 -0.0125 0.6830 -0.0125 0.6830
cA5 0.0079 0.3269 0.0080 0.2558 0.0169 0.2706 -0.0063 0.2573 -0.0063 0.2573
cAl 0.0179 0.2983 0.0180 0.3025 0.0178 0.3049 0.0179 0.3025 0.0179 0.3025
cA2 0.0194 0.2848 0.0190 0.2953 0.0176 0.2979 0.0189 0.2955 0.0185 0.2948
2 cA3 0.0202 0.2439 0.0192 0.2609 0.0193 0.2716 0.0194 0.2628 0.0204 0.2599
cA4 0.0189 0.2086 0.0187 0.2492 0.0201 0.2621 0.0178 0.2510 0.0178 0.2489
cA5 0.0245 0.1195 0.0231 0.1001 0.0235 0.1147 0.0176 0.1070 0.0160 0.1027
cAl -0.0366 0.6243 -0.0365 0.6282 -0.0369 0.6310 -0.0366 0.6282 -0.0366 0.6282
cA2 -0.0336 0.6094 -0.0350 0.6223 -0.0376 0.6290 -0.0351 0.6226 -0.0357 0.6225
3 cA3 -0.0306 0.5858 -0.0340 0.5943 -0.0373 0.6155 -0.0345 0.5961 -0.0328 0.5981
cA4 -0.0231 0.5046 -0.0304 0.5745 -0.0240 0.6028 -0.0348 0.5745 -0.0361 0.5753
cA5 -0.0125 0.2737 -0.0157 0.2116 -0.0065 0.2152 -0.0242 0.2270 -0.0256 0.2260
cAl 0.0326 0.3126 0.0326 0.3146 0.0326 0.3159 0.0326 0.3146 0.0326 0.3146
cA2 0.0331 0.3063 0.0333 0.3122 0.0326 0.3144 0.0332 0.3122 0.0329 0.3118
4 cA3 0.0328 0.2808 0.0329 0.2993 0.0329 0.3093 0.0330 0.3004 0.0338 0.2985
cA4 0.0294 0.2395 0.0311 0.2843 0.0317 0.2978 0.0301 0.2848 0.0303 0.2846
cA5 0.0342 0.1379 0.0339 0.1137 0.0332 0.1355 0.0270 0.1263 0.0250 0.1218
cAl -0.0203 1.4496 -0.0201 1.4551 -0.0206 1.4589 -0.0203 1.4551 -0.0203 1.4550
cA2 -0.0174 1.4272 -0.0180 1.4436 -0.0208 1.4590 -0.0182 1.4436 -0.0190 1.4439
5 cA3 -0.0144 1.3787 -0.0202 1.4315 -0.0274 1.4741 -0.0211 1.4320 -0.0170 1.4352
cA4 -0.0094 1.1868 -0.0164 1.3756 -0.0044 1.4396 -0.0288 1.3713 -0.0320 1.3721
cA5 0.0155 0.6759 0.0136 0.5364 0.0316 0.5809 -0.0170 0.5146 -0.0219 0.5028
cAl 0.0495 1.1312 0.0495 1.1334 0.0496 1.1357 0.0495 1.1334 0.0495 1.1334
cA2 0.0488 1.1207 0.0499 1.1338 0.0500 1.1444 0.0498 1.1337 0.0498 1.1337
6 cA3 0.0470 1.0841 0.0478 1.1304 0.0425 1.1600 0.0466 1.1293 0.0492 1.1327
cA4 0.0427 0.9263 0.0450 1.0762 0.0509 1.1218 0.0358 1.0738 0.0350 1.0812
cA5 0.0610 0.5393 0.0621 0.4317 0.0706 0.4841 0.0339 0.4187 0.0279 0.4017
cAl -0.0805 1.8126 -0.0805 1.8161 -0.0807 1.8197 -0.0805 1.8161 -0.0805 1.8161
cA2 -0.0792 1.7970 -0.0802 1.8164 -0.0813 1.8333 -0.0802 1.8163 -0.0803 1.8163
7 cA3 -0.0771 1.7423 -0.0820 1.8139 -0.0924 1.8666 -0.0835 1.8133 -0.0807 1.8156
cA4d -0.0598 1.5020 -0.0744 1.7525 -0.0562 1.8313 -0.0898 1.7445 -0.0948 1.7443
cA5 -0.0327 0.8261 -0.0332 0.6397 -0.0049 0.6679 -0.0645 0.6575 -0.0694 0.6518
cAl 0.0447 0.5110 0.0445 0.5111 0.0447 0.5121 0.0445 0.5111 0.0445 0.5111
cA2 0.0440 0.5060 0.0447 0.5113 0.0450 0.5160 0.0447 0.5112 0.0446 0.5112
8 cA3 0.0429 0.4890 0.0439 0.5097 0.0420 0.5230 0.0433 0.5093 0.0443 0.5107
cA4 0.0382 0.4150 0.0409 0.4824 0.0421 0.5022 0.0377 0.4809 0.0381 0.4862
cA5 0.0454 0.2375 0.0460 0.1878 0.0471 0.2198 0.0330 0.1975 0.0300 0.1908
cAl -0.0595 1.0398 -0.0591 1.0390 -0.0594 1.0412 -0.0591 1.0390 -0.0591 1.0390
cA2 -0.0583 1.0301 -0.0589 1.0391 -0.0599 1.0488 -0.0590 1.0390 -0.0590 1.0390
9 cA3 -0.0573 0.9975 -0.0597 1.0379 -0.0657 1.0680 -0.0605 1.0378 -0.0594 1.0385
cAd4 -0.0440 0.8593 -0.0544 1.0037 -0.0433 1.0481 -0.0625 0.9993 -0.0656 0.9988
cA5 -0.0295 0.4703 -0.0299 0.3661 -0.0130 0.3743 -0.0454 0.3889 -0.0475 0.3876

Table 6 Compare accuracy results for each coefficient and wavelet type.

Type. haarl db4 biorl.3 coif2 sym4

Coff. Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

cD1 0.9058  0.0942 0.9148 0.0852 0.8931 0.1069  0.8933  0.1067 0.9039  0.0961
cD2 0.9271  0.0729 0.9202 0.0798 09161 0.0839 0.8873 0.1127 0.9098  0.0902
cD3 0.9349 0.0651  0.9230 0.0770 0.8981  0.1019 0.9069 0.0931  0.9259  0.0941
cD4 0.9239 0.0761 0.9311 0.0689 0.9041 0.0959 0.9118 0.0882  0.9278  0.0922
cD5 0.9367 0.0633 0.9386 0.0614 0.9371 0.0629 0.9363 0.0637 0.9384 0.0616

cAl 0.8630 0.1370 0.8702  0.1298 0.8798  0.1202 0.8774 0.1226  0.8558  0.1442
cA2 0.8678  0.1322  0.8438 0.1563 0.8678  0.1322 0.8678 0.1322  0.8534  0.1466
cA3 0.8582  0.1418 0.8702  0.1298 0.8654 0.1346 0.8726  0.1274 0.8630  0.1370
cAd 0.8654  0.1346 0.8678 0.1322 0.8606  0.1394 0.8630 0.1370 0.8678  0.1322
cA5 0.8702 0.1298 0.8558 0.1442 0.8678 0.1322 0.8486 0.1514 0.8510  0.1490
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Fig. 6 The db4 wavelet features with cD5 and cAS5 via LSTM.
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Table 7 Compare results for precision, recall, and F1-score.
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Type. haarl db4 biorl.3 coif2 sym4

Coff. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1.
cD1 0.8021 0.8564 0.8431 0.8713 0.8510 0.8663 0.8597 0.9181 0.8532 1.0618 0.8373 0.7229 0.8528 0.8458 0.8602
cD2 0.8928 0.8799 0.8441 0.8324 0.8647 0.8401 0.6088 0.8919 0.8440 0.8371 0.8892 0.8798 0.8505 0.8319 0.8880
cD3 0.8647 0.8551 0.8441 0.8978 0.8637 0.8618 0.6343 0.8481 0.9042 0.7757 0.8245 0.8152 0.8458 0.8620 0.8926
cb4 0.8531 0.8505 0.8445 0.8515 0.8706 0.8988 0.6435 0.8528 0.9157 0.7360 0.8451 0.8086 0.8273 0.8759 0.8935
cD5 0.8722 0.9496 0.8422 0.9209 0.9096 0.9382 0.9412 0.8690 0.9134 0.8352 0.8343 0.8076 0.9204 0.8458 0.9181
cAl 0.8726  0.8207 0.7500 0.8549 0.8863 0.8568 0.6481 0.8343 0.8986 0.8960 0.8709 0.7639 0.8481 0.8690 0.8389
cA2 0.8447 0.7247 0.7578 0.8875 0.8892 0.8246 0.8204 0.8273 0.8296 0.8533 0.7000 0.7858 0.7736 0.8273 0.7389
cA3 0.8455 0.9065 0.8588 0.8333 0.7765 0.8614 0.8435 0.8181 0.8366 0.8254 0.8980 0.7710 0.8343 0.8296 0.8597
cAd 0.7574 0.7049 0.7500 0.8573 0.7873 0.8729 0.8458 0.8597 0.8903 0.8025 0.7294 0.8669 0.8389 0.8713 0.8343
cA5 0.8448 0.8866 0.8725 0.8540 0.8922 0.8971 0.8250 0.8343 0.8273 0.8856 0.7304 0.8524 0.7505 0.7551 0.7528

Note: Precision (pre.), Recall (rec), F1-score (F1)

It is noteworthy that the precise interpretation of mean or
standard deviation values derived from representative data
within each class remains ambiguous. Notably, cD1 and cD2
exhibit markedly low values as they pass through a high pass filter,
allowing only high frequencies to traverse. However, with an
increase in the level to cD3, cD4, and cD5, both average and
standard deviation values witnessed an escalation. Upon
comparing wavelet types for each class, discernible disparities in
average and standard deviation values were observed.
Nonetheless, upon closer inspection, certain similarities persisted
across classes, such as the resemblance between cD5 values for
classes C6 and C7, as well as C8 and C9, particularly in terms of
average values for db4. Regarding cAs, characterized by the low
pass filter coefficient that permits only low frequencies to pass
through, the resultant values are generally higher than those of
cD. Notably, cAl, cA2, and cA3 exhibit similar characteristics or
comparable average and standard deviation values, while
similarities are also evident between cA4 and cA5 across classes
and various wavelet types. For instance, similarities were
identified in c¢D5 values for classes C6 and C8 using the coif2
wavelet type. Therefore, while the analysis of data using statistical
calculations aids in feature extraction, it is essential to
acknowledge the inherent limitations in clarity and specificity.

Thirdly, the data pertaining to each component, ranging
from c¢D1 to ¢D5 and cAl to cAS5, of every wavelet type were
inputted into the LSTM model for classification purposes. The
outcomes of this classification process are presented in Table 6.
Notably, variations in accuracy and loss were observed across
different levels of cDs and cAs, with cD4 and cD5 exhibiting the
highest accuracy, particularly when employing the db4 wavelet
type. However, upon closer examination of each wavelet type, it
was noted that db4 and sym4 demonstrated similar physical
characteristics, resulting in the separated components at level 5
being comparable. During the experiment, it was concluded that
both small waves are conducive for utilization in the
decomposition analysis of PQDs when juxtaposed with other
wavelets. Furthermore, graphical representations comparing the
training and testing of each cDs and cAs were plotted, as depicted
in Fig. 6 (a1) and (a2). An exemplary db4 wavelet of cD5 and cA5
is showcased, wherein both feature sets exhibited different
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average accuracy. However, a discernible discrepancy was
observed in the data set's distribution, with c¢D5 displaying a
relatively larger shift, suggesting the presence of similarities in
form among certain elements within each class, indicative of
disturbance moments or events. The accuracy and loss graphs,
illustrated in Fig. 6 (bl) and (b2), respectively, revealed
contrasting trends for both ¢D5 and cAS feature sets, with results
converging close to zero. Furthermore, Box Plots were employed
to analyze maximum median and minimum values, aiding in
decision-making regarding the suitability of c¢D5 and cA5 for
application as shown in Fig. 5 (c1) and (c2). Moreover, the results
for each class were plotted to compare the true labels and the
predicted labels, as depicted in Fig. 5 (d1) and (d2), utilizing a
confusion matrix with gradients based on accuracy. It was
observed that for cD5, the model most accurately predicted C-4
(Interruption with Harmonics) at 97%, while the least accurate
prediction was for C-7 (Flicker with Swell) at 75%. Conversely, for
cA5, the model most accurately predicted C-2 (Sag with
Harmonics) at 92%, while the greatest discrepancy was observed
for C-3 (Swell with Harmonics), predicted correctly only 73% of
the time. Notably, the model exhibited numerous prediction
errors in classes C-3 and C-7, both of which encompass swell, a
feature exhibiting similarity with other classes such as flicker and
oscillatory, and crucially, exhibiting fluctuations corresponding to
load usage behavior.

In addition to the accuracy metric, we also employed the
primary metrics used in the performance matrix to evaluate the
classification performance for PQDs scenarios. The detailed
results are presented in Table 7. Data from all nine classes were
averaged to calculate the performance metrics for each wavelet
type. Precision was used to measure the correctly classified PQDs
instances, Recall measured the proportion of true positive
instances, and F1-score measured the harmonic mean between
precision and recall. While the overall results exhibited some
dispersion due to variations in the occurrence of TP events, a
crucial variable, we consistently observed that cD5 (cD5:
precision=92.09%, Recall=90.96%, F1-score 93.82%) and cA5 (cA5:
precision=85.40%, Recall=89.22%, F1-score=89.71%) for db4
maintained superior performance.
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5. Conclusion

In this study, we synthesized multiple PQDs through the
implementation of 900 sets encompassing 9 distinct classes of
equations. These PQDs subsequently
subjected to decomposition using DWT configured to level 5.

mathematical were
Subsequently, the characteristics of each wavelet type: haarl,
db4, biorl.3, coif2, and sym4, were compared and analyzed
utilizing statistical features before being fed into LSTM model to
classify the characteristics of each class. The experimental results
demonstrate our ability to synthesize and adjust parameters to
generate multiple PQDs exhibiting diverse values in accordance
with the |EEE standard 1159-2019. Notably, the DWT, set to level
5, facilitated decomposition into detailed coefficients (cD1 to cD5)
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Table 8 Differentiate the decomposition at level 5, each wavelet and class (Cont.).
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