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ABSTRACT 

In the past few years, distributed electricity generation from renewable sources, 
or microgrid systems, has been connected to the grid to increase power supply 
stability. This responds to government policy regarding commitment to using 
100% renewable energy in operations (RE100) project efforts. This results in the 
entry of power electronic or non-linear equipment into the electrical system, 
making it more sensitive. Moreover, multiple power quality disturbances (PQDs) 
consist of a variety of single disturbances. Analysis of complex multi-label 
patterns is a challenging task. In this paper, we propose a methodology to 
address this challenge by leveraging Discrete Wavelet Transform (DWT) and 
Improved Long Short-Term Memory Networks (LSTM). Firstly, multiple PQDs are 
synthesized utilizing a mathematical model based on IEEE standards 1159-2019. 
Secondly, the obtained PQDs are decomposed into nine feature classes, yielding 
detailed (cDs) and approximation (cAs) coefficients through Five-Level DWT 
Decomposition. Furthermore, we conducted a comparative analysis of each 
component across five different wavelet functions: haar1, db4, bior1.3, coif2, 
and sym4. Thirdly, the cDs and cAs coefficients derived from each wavelet type 
undergo statistical analysis before being inputted into the LSTM model for 
classification of each feature class. Our results highlight that cD5 components 
obtained from the db4 wavelet exhibit the highest accuracy rate of 93.86%. This 
finding elucidates the significance of selecting appropriate wavelet types and 
compositions for the successful classification of multiple PQDs. 

1. Introduction

1.1 Background 

Presently, power quality inspections are conducted across 

various segments of the electrical system, encompassing the 

generation, transmission, and distribution systems, all of which 

hold significant importance. The proliferation of the modern 

energy industry, coupled with the widespread use of electronic 

equipment, has emerged as a common catalyst for disruptions 

within the system [1]. Furthermore, the integration of renewable 

energy sources and distributed generation in Thailand has 

introduced new challenges, as these sources often introduce 

fluctuations and intermittencies into the power grid [2]. This 

alongside the operation of industrial power equipment, 

exacerbates the occurrence of Power Quality Disturbances (PQDs). 

Without adequate monitoring and preventive measures, these 

disturbances can lead to unforeseen events such as equipment 

malfunctions, prolonged blackouts affecting widespread regions, 

or even pose risks to field mechanics [3]. In this context, the 

analysis and classification of PQDs become imperative, as they 

provide early warning signs and enable proactive interventions to 

mitigate potential risks. It's worth noting that PQ standards, such 

as those outlined in IEEE 1159-2019 [4], offer comprehensive 

guidelines for measuring electromagnetic phenomena associated 

with variations in voltage, current, and frequency resulting from 

changes in power supplies and loads. Adherence to these 

standards not only ensures the reliability and stability of the power 

grid but also facilitates the early detection and characterization of 

PQDs, thereby enhancing operational efficiency and minimizing 

downtime. Therefore, prioritizing the detection and classification 

of PQDs characteristics is paramount for maintaining a resilient and 

sustainable electrical infrastructure in Thailand [5]. 

Power quality encompasses the intricate interplay between 

electrical power and the performance of electrical equipment. 

When electrical equipment operates reliably without damage or 

stress, we deem the electrical power to be of good quality. 

Conversely, if equipment malfunctions, proves unreliable, or 

suffers damage during regular operation, we infer poor power 

quality. 

Diving into the intricacies, power quality comprises several 

facets including voltage quality, current quality, supply quality, and 
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consumption quality [5]. It can be succinctly defined as any 

deviation in voltage, current, or frequency that leads to equipment 

failure or malfunction. Poor power quality often lurks as the 

primary culprit behind perplexing equipment trips, intermittent 

shutdowns, sporadic damage or component failures, erratic 

process performance, and inexplicable occurrences such as 

random lockups and data errors or overheating of power system 

components [5]. The spectrum of power quality problems causes a 

discernible deterioration in the performance of various sensitive 

electronic and electric equipment. An ideal scenario of good power 

quality entails several key attributes: Supply voltage staying within 

the guaranteed tolerance of its declared value; A waveform 

exhibiting a pure sine wave shape within permissible distortion 

limits; Voltage balance across all three phases; And continuous 

supply, ensuring uninterrupted availability. However, causes of 

poor power quality abound: Variations in voltage, magnitude, and 

frequency [5]. Frequency variations stem from system dynamics or 

harmonics injection. Consequently, the pristine sinusoidal nature 

of power system voltage or current waveforms dissipates, replaced 

by the presence of harmonics and other noise elements [5]. 

Fig. 1 (a) Suspension insulators damaged by arc burns, (b) Arrester 

explodes from overvoltage, (c) Voltage stress on the bushing, and 

(d) Damaged cable caused by flash overs. 

PQDs manifest in various forms, each with distinct 

characteristics and impacts [6]: Transients, marked by 

instantaneous, nanosecond-range spikes in voltage; Interruptions, 

occurring when supply voltage or load current drops below 0.1 pu 

for a period not exceeding 1 minute; Voltage sags, where the RMS 

voltage dips between 10% and 90% of nominal voltage for half a 

cycle to a minute; Voltage swells, characterized by an increase in 

RMS voltage to 110%-180% of nominal voltage for up to 1 minute; 

Waveform distortion, signifying unexpected alterations in current 

and voltage waveforms as they traverse through a device. These 

PQDs events, when left unchecked, wreak havoc on electrical 

systems. For instance [6], voltage sags can disrupt manufacturing 

processes, causing equipment downtime and production losses 

(Fig.1 (a)). Transients may fry sensitive electronic components, 

leading to costly replacements (Fig.1 (b) and (c)). Voltage swells 

might damage equipment designed for specific voltage ranges, 

rendering them inoperable (Fig.1 (d)). Such disturbances not only 

incur financial losses but also compromise safety and reliability, 

underscoring the critical importance of mitigating PQD effects [6]. 

1.2 Literature Review 

In the scope of power quality research, various 

methodologies have been proposed to detect and classify PQDs. 

These methodologies can be broadly categorized into three main 

approaches [7]: signal processing-based feature extraction, 

artificial intelligence-based classifiers, and optimization techniques 

for optimal feature selection. 

Signal processing-based methods often utilize techniques 

such as wavelet transforms to extract relevant features from 

voltage or current signals. For example, Upadhyaya et al. 

introduced a novel approach using Second Generation Wavelet 

Transform (SGWT) to detect ten different PQ formats [8]. Their 

study demonstrated that SGWT outperformed traditional 

techniques like Discrete Wavelet Transform (DWT) in terms of both 

speed and effectiveness. However, the paper lacked detailed 

evaluation of the results and explanation of the detection process, 

which limits the reproducibility and understanding of their 

findings. Similarly, the study in [9] employed wavelet transform 

extraction, including Continuous Wavelet Transform (CWT), DWT, 

and Multi-Resolution Analysis (MRA), followed by detection using 

Artificial Neural Networks (ANNs) and Support Vector Machines 

(SVMs). While the approach showed promise, there was 

insufficient information provided on how the PQDs model was 

generated or the parameters used in the classification model, 

hindering a comprehensive understanding of the methodology.  

In other studies, such as [10] and [11], the focus was on 

analyzing harmonic components, yet there was a lack of clarity 

regarding the source of the data, or the criteria used for 

determining the results. Furthermore, Arvez et al. [12] utilized the 

Simulink toolbox in MATLAB and DWT with level 2 components, 

such as Low-Pass Filters and High-Pass Filters, to extract features 

like Root Mean Square (RMS), average, standard deviation, and 

approximation coefficients. They then applied for a one-class 

Support Vector Machine (OCSVM) for classification, achieving high 

accuracy. However, the authors did not provide an explanation of 

how data from smart meters was utilized, which is crucial for 

understanding the applicability of their approach in real-world 

scenarios. Moreover, studies in [13] and [14] employed Stockwell's 

Transform (ST) for data extraction, focusing specifically on PQDs 

related to wind energy according to IEEE standards. However, the 

lack of clarity regarding the classifier and its evaluation 

methodology poses limitations to their findings, making it 

challenging to assess the robustness and generalizability of their 

results. 

From the above mentioned, several observations can be 

made: 

(1) PQDs data generation lacks uniformity, with varying 

resolution values derived from mathematical equations 

and laboratory data. This inconsistency in data 

generation methods can lead to discrepancies in results 

and hinder comparison between different studies. 

(2) Extraction techniques vary based on their intended 

objectives, necessitating a standardized approach. The 

lack of standardization makes it difficult to assess the 

efficacy and generalizability of different extraction 

techniques and hampers the reproducibility of results. 

(3) While classifiers play a crucial role in the characterization 

process, their effectiveness is contingent upon adequate 

evaluation. However, many studies fail to provide 
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comprehensive evaluation methodologies, making it 

challenging to gauge the reliability and robustness of 

their proposed models. 

(4) Evaluation methodologies are essential for 

substantiating the efficacy of proposed methods but are 

often overlooked or inadequately described. The 

absence of clear evaluation criteria and metrics makes it 

difficult to assess the performance of different 

approaches. 

The present study's primary contributions are outlined below: 

(1) Introduction of multiple PQDs generated through 

mathematical equations to enable the model to learn 

diverse interference patterns. This approach enhances 

the model's ability to accurately detect and classify a 

wider range of PQDs. 

(2) Utilization of DWT to categorize elements into levels, 

facilitating focused analysis of essential components. By 

categorizing elements into distinct levels, the model can 

better isolate and prioritize relevant features, improving 

the efficiency and effectiveness of the classification 

process. 

(3) Implementation of Long Short-Term Memory Networks 

(LSTM) to incorporate sequential information, enhancing 

accuracy in PQDs classification. By analyzing data 

recurring directions, the model can capture temporal 

dependencies and patterns of disturbance waveforms. 

(4) Adoption of accuracy metrics and confusion matrix for 

comprehensive assessment of the model's performance, 

ensuring robust evaluation of results. 

The remainder of this paper is structured as follows: 

Section 2 delineates the theoretical framework and 

methodologies, encompassing decomposition using DWT, Five-

Level DWT decomposition, Wavelet Families, and LSTM. Section 3 

elucidates the experimental procedures, while Section 4 offers a 

succinct overview of the results and subsequent discussion, 

including any identified limitations. Finally, Section 5 provides a 

summary of the research findings and outlines potential avenues 

for future investigations. 

2. Theory and Methods

In the endeavor to classify PQDs effectively, it is imperative 

to delve into the intricate workings of signal processing techniques, 

particularly decomposition using DWT. DWT is a powerful tool for 

analyzing non-stationary signals, allowing for the extraction of 

valuable features that are crucial for accurate classification. 

Moreover, classifiers and evaluation tools are elaborated upon in 

detail within this section. 

2.1 Decomposition using DWT 

DWT serves as the cornerstone of feature extraction in 

PQD classification [15]. The process involves breaking down the 

input signal into different frequency bands or levels, each 

representing a specific scale of detail. This hierarchical 

decomposition enables the identification of relevant features at 

various resolutions, facilitating the characterization of PQD with 

different temporal and spectral characteristics. 

DWT decomposes a signal into approximation and detail 

coefficients at different resolution levels. The DWT operation can 

be expressed as: 

( ) ( ) ( )k jk j
x t c t d t= +   (1) 

where ( )x t  represents the original signal, ( )kc t  represents the 

approximation coefficients level k , ( )jd t  represents the detail 

coefficients at level j . The number of decomposition levels 

determines the resolution and frequency bands obtained from the 
decomposition. 

2.2 Five-Level DWT Decomposition 

The input signal is decomposed into approximation and 

detail coefficients at a five-resolution level [16]. This 

decomposition provides a coarse representation of the signal's 

overall trend (approximation coefficient) and its high-frequency 

components (detail coefficients) as shown in Fig. 2. In five-level 

DWT decomposition, the input signal is decomposed into 

approximation (smooth) and detail (detail) coefficients at a single 

resolution level j . The decomposition can be represented as: 

1 1( ) ( ) ( )x t c t d t= +  (2) 

Here, 1( )c t  represents the approximation coefficients, 

capturing the low-frequency components of the signal, while 

1( )d t  represents the detail coefficients, highlighting the high-

frequency components. 

Fig. 2 Five-level DWT decomposition. 

2.3 Introduction to Wavelet Families 

Several wavelet families are commonly employed in PQD 

classification, each possessing unique properties and suitability for 

different types of signals [17]. Some of the prominent wavelet 

families include: 

(1) Haar Wavelet: 
The Haar wavelet is the simplest wavelet function, 

characterized by its step-like waveform [18]. It is particularly 

well-suited for detecting sudden changes or discontinuities in 

signals, making it an ideal choice for capturing transient PQD 

events. 

The Haar wavelet is defined by its scaling function ( )t

and wavelet function ( )t , given by: 

1 0 1
( )

0

t
t

otherwise


 
= 


(3) 

The wavelet function ( )t is defined as follows:
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1
1 0 ,

2

1
( ) 1 1,

2

0

t

t t

otherwise




 




= −  





 (4) 

The Haar wavelet effectively captures sudden changes or 

discontinuities in signals due to its step-like waveform. 

(2) Daubechies Wavelet: 
Daubechies wavelets, also known as db wavelets, are 

widely used due to their orthogonality and compact support 

properties. They offer excellent time-frequency localization, 

making them suitable for analyzing signals with both short and 

long-term variations, such as voltage sags and swells [19]. For 

example, the Daubechies-4 (db4) wavelet has 4 vanishing 

moments and is widely used in signal processing applications. 

(3) Biorthogonal Wavelet: 
Biorthogonal wavelets are characterized by their 

biorthogonality property, which allows for a more flexible 

decomposition of signals compared to orthogonal wavelets. They 

are particularly useful for analyzing signals with non-symmetric 

features or complex dynamics, such as harmonic distortions [19]. 

The biorthogonality property allows for a more flexible 

decomposition of signals compared to orthogonal wavelets. 

(4) Coiflets Wavelet: 
Coiflets, or coif wavelets, are designed to provide a 

smoother transition between approximation and detail 

coefficients, making them suitable for signals with gradual 

variations or smooth trends [20]. They offer a balance between 

time and frequency localization, making them versatile for 

analyzing various types of PQD. 

(5) Symlets Wavelet: 
Symlets, or symmlets, are similar to Daubechies wavelets 

but offer improved symmetry properties, making them better 

suited for analyzing signals with symmetric features or periodic 

components [20]. They provide efficient representation of signals 

with both smooth and oscillatory characteristics, making them a 

popular choice for PQD classification tasks. 

The five types of wavelet shape features used in this 

experiment are shown in Table 1. Incorporating these wavelet 

families into the classification framework allows for the extraction 

of discriminative features from PQD signals, enabling accurate and 

robust classification of different disturbance events. Moreover, 

understanding the working principles, structures, and equations 

involved in each wavelet family empowers researchers to tailor 

their classification approach to the specific characteristics of the 

signals under analysis, thereby enhancing the effectiveness and 

reliability of the classification system. 

Fig. 3 LSTM Architecture used in this paper. 

2.4 Long Short-Term Memory (LSTM) 

Section Long Short-Term Memory (LSTM) networks have 

emerged as powerful tools for sequential data analysis, including 

the characterization and classification of PQDs [21]. LSTM belongs 

to the family of Recurrent Neural Networks (RNNs), specialized for 

handling sequential data with long-range dependencies. Unlike 

traditional feedforward neural networks, RNNs have feedback 

connections that allow them to process sequences of inputs by 

maintaining internal states. LSTM networks address the vanishing 

gradient problem encountered in standard RNNs, making them 

better suited for capturing long-term dependencies in sequential 

data as shown in Fig. 3. 

The fundamental unit of an LSTM network is the LSTM cell, 

which contains multiple gates responsible for regulating the flow 

of information. These gates include: 

1. Forget Gate: Controls what information from the previous 

cell state should be discarded. 

2. Input Gate: Determines what new information should be

added to the cell state. 

3. Output Gate: Regulates the information that will be

output from the cell state. 

The LSTM cell utilizes these gates to selectively update its 

internal state based on the input sequence, allowing it to retain 

relevant information over long time intervals while discarding 

irrelevant or redundant information. 

The computations within an LSTM cell can be described by 

the following equations:

Table 1 Visualize the wavelets included in this work. 

haar1 db4 bior1.3 coif2 sym4 

Haar Wavelet Daubechies Wavelet Biorthogonal Wavelet Coiflets Wavelet Symlets Wavelet 
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1( [ , ] )t f t t ff W h x b −=  + (5) 

1( [ , ] )t i t t ii W h x b −=  +  (6) 

1tanh( [ , ] )t C t t CC W h x b−=  + (7) 

1 tt t t tC f C i C−=  +  (8) 

1( [ , ] )t o t t oo W h x b −=  +  (9) 

tanh( )t t th o C=   (10) 

Where: 

,t tf i  and to are the forget, input, and output gate activations,

respectively. 

  tC represents the candidate cell state. 

  tC is the updated cell state. 

  th is the output of the LSTM cell. 

2.5 Evaluating Performance 

(1) Accuracy: 
Accuracy is a commonly used metric for evaluating the 

performance of classification models, including those using LSTM 

for PQD classification. It measures the proportion of correctly 

classified instances among the total number of instances in the 

dataset [22]. Mathematically, accuracy is defined as: 

Number of Correctly Classified Instances
Accuracy= 100%

Total Number of Instances
  (11) 

The context of LSTM-based PQD classification, accuracy 

indicates the model's ability to correctly classify different types of 

PQDs based on the input features extracted using DWT. 

(2) Confusion Matrix: 
A confusion matrix is a tabular representation of the actual 

and predicted classifications produced by a classification algorithm 

[22]. It provides valuable insights into the model's performance by 

summarizing the number of true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN). For example, these 

values are arranged in a 2x2 matrix as follows: 

Predicted Negative Predicted Positive 
Actual Negative TN FP 
Actual Positive FN TP 

Each cell in the confusion matrix represents a specific classification 

outcome, such as the TP value indicates the number of instances 

that is correctly classified (i.e., power quality disturbances). 

In addition to the accuracy measure, to ensure a 

comprehensive assessment of the model's performance when 

applied to real-world scenarios, precision, recall, and F1-score are 

also employed to evaluate the model's effectiveness, as presented 

in Equations (12)-(15). 

Accuracy
TP TN

TP FP FN TN

+
=

+ + +
(12) 

TP
Precision

TP FP
=

+
(13) 

TP
Recall

TP FN
=

+
(14) 

2
1

2

TP
F score

TP FP FN
− =

+ +
(15) 

3. Experimental detail

The experimental procedure encompasses four primary 

phases: data preparation, feature extraction, classification of 

PQDs, and model evaluation. These phases are elucidated in Fig. 4. 

The subsequent sections will explicate each stage in the following 

sequence. 

3.1 Preprocessing 

In this study, our primary focus lies in the identification of 

intricate PQDs patterns, with particular emphasis on multiple 

PQDs. These phenomena emerge as a result of the amalgamation 

or interaction of multiple patterns, a scenario often encountered 

due to the diverse nature of loads and the integration of alternative 

energy sources. 

Table 2 illustrates the classification of each PQDs class 

model, meticulously adhering to the IEEE-1159-2019 standard 

guidelines [4]. The classification process is facilitated by an integral 

mathematical model implemented through MATLAB, a widely 

utilized computational tool in this experimental setup. Within the 

confines of this table, individual PQD events (designated as C-1 to 

C-9) are delineated based on distinct characteristics such as 

waveform magnitude, duration, and morphology [24]. 

Additionally, leveraging the aforementioned mathematical 

framework, we construct graphical representations, as elucidated 

in Table 3. 

It is imperative to note that the data encapsulated within 

each PQD class undergoes a randomization process, employing 

specified parameter ranges to ensure robustness and 

comprehensiveness in our analysis. As part of our research 

methodology, we meticulously generated a dataset comprising 

900 instances, each meticulously curated to encompass 100 

samples, thus ensuring ample coverage and representation across 

various PQD scenarios. 

3.2 Feature Extraction 

After completing the data preparation phase, the 

distinctive attributes of each PQDs class were extracted utilizing 

DWT. For this purpose, we employed a MATLAB application named 

'Wavelet Analyzer' [25]. The configuration parameters were set as 

follows: the dataset size was fixed at 500 samples, and the Wavelet 

function comprised several types including haar1, db4, bior1.3, 

coif2, and sym4. Additionally, a constant level value of 5 was 

established. During the experimentation, we iteratively adjusted 

the loop value for each Wavelet function format and subsequently 

recorded the resulting values from the decomposition process (in 

Algorithm 1). This decomposition encompassed approximations at 

levels 1 to 5 and coefficients of approximations at levels 1 to 5. A 

representative signal characteristic is illustrated in Fig. 5. 
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Fig. 4 Overview of the proposed methods. 

Table 2 Categories of Multiple PQDs. 

Class PQD Event Mathematical Model Parameter setting 

C-1 Pure Sinusoidal ( ) sin( )x t A t= 0.9 1.1A   

C-2 Sag with Harmonics 
1 2

1 3 5 7

( ) [ (1 ( ( ) ( )))sin( )]

[ sin( ) sin(3 ) sin(5 ) sin(7 )]

x t A u t t u t t t

x a t a t a t a t

 

   

= − − − −

+ +

2 1

3 5 7 1

0.1 0.8, ( ) 9

0.05 , , 0.15, 1

T t t T

   

   − 

  =

C-3 Swell with Harmonics 
1 2

1 3 5 7

( ) [ (1 ( ( ) ( )))sin( )]

[ sin( ) sin(3 ) sin(5 ) sin(7 )]

x t A u t t u t t t

x a t a t a t a t

 

   

= + − − −

+ +

2 1

3 5 7 1

0.1 0.9, ( ) 9

0.05 , , 0.15, 1

T t t T

   

   − 

  =

C-4 
Interruption with 

Harmonics 
1 2

1 3 5 7

( ) [ (1 ( ( ) ( )))sin( )]

[ sin( ) sin(3 ) sin(5 ) sin(7 )]

x t A u t t u t t t

x a t a t a t a t

 

   

= − − − −

+ +

2 1

3 5

0.9 1, 9 ,

0.05 0.15,0.05 0.15

T t t T

 

   − 

   
 

C-5 
Flicker with 
Harmonics 

1

3 5 7

( ) [1 sin( )] [ sin( )

sin(3 ) sin(5 ) sin(7 )]

x t t a t

a t a t a t

  

  

= +  +

+ +
3 5 7 1

0.1 0.2,5 20

0.05 , , 0.15, 1

 

   

   

  =

C-6 Flicker with Sag 1 2( ) [1 sin( )] [1 ( ( ) ( ))]sin( )x t t u t t u t t t   = +  − − − −
2 1

0.1 0.2,5 20

0.1 0.8, ( ) 9T t t T

 



   

   − 

C-7 Flicker with Swell 1 2( ) [1 sin( )] [1 ( ( ) ( ))]sin( )x t t u t t u t t t   = +  + − − −
2 1

0.1 0.2,5 20

0.1 0.9, ( ) 9T t t T

 



   

   − 

C-8 Sag with Oscillatory 

1 2

1
1 2

( ) [ (1 ( ( ) ( )))sin( )]

exp( )( ( ) ( ))t

x t A u t t u t t t

t t
a u t t u t t

 



= − − − −

−
+ − − − −

2 10.1 0.8,0.5 ( ) 9

0.1 4,8 30t

T t t T

ms ms



 

   − 

   

C-9 Swell with Oscillatory 

1 2

1
1 2

( ) [ (1 ( ( ) ( )))sin( )]

exp( )( ( ) ( ))t

x t A u t t u t t t

t t
a u t t u t t

 



= + − − −

−
+ − − − −

2 10.1 0.8,0.5 ( ) 9

0.1 4,8 30t

T t t T

ms ms



 

   − 

   

Where: Fundamental frequency ( )f =50Hz, 2 f = , Sampling frequency ( ) 3.2sf kHz= , Time duration of each event ( ) 0.6secT = , 

parameters such as ,   control the variations, amplitudes of harmonic components 3 5 7, ,    an exponential variation controlled by  , 
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Algorithm 1: DWT Extraction 

1. Define Function: 
1.1 Extract_features(data, wavelet_family, wavelet_level) 
2. Initialize Features List: 
2.1 Store the extracted features for all samples in the data. 
3. Add Pre-generated Waveform (Modify as needed): 
3.1 Take a pre-generated waveform 
4. Loop Through Data Samples: 
4.1 Iterate through each sample in the input data using a for loop 
5. Perform DWT on Each Sample: 
5.1 Within the loop, perform DWT on the current sample using pywt.dwt function. 
5.2 Specify the chosen wavelet family based on the input parameter (wavelet_family) 
5.3 Store the resulting DWT coefficients in a variable named coeffs 
6. Decompose Coefficients Level: 
6.1 Loop from level 1 to 5 wavelet_level (In each iteration) 
6.1.2 Separate the approximation (approx) and detail (detail) coefficients from coeffs. 
6.1.3 Update coeffs to hold the detail coefficients in the next level 
6.1.4 Append both approx and detail coefficients to the decomposed_coeffs list 
7. Combine Features 
7.1 Calculate standard deviation (np.std(sample)) and mean (np.mean(sample)) 
8. Return Features: 

Algorithm 2: LSTM Classification 

1. Data Loading and Preprocessing 
1.1 X_data: stores the preprocessed features (DWT_features) 
1.2 y_data: stores the corresponding labels for the data 
2. Define Number of Folds: 
2.1 Define a variable: num_rounds (set 9 classes) 
3. K-Fold Cross-Validation: 
3.1 Define a KFold object (kf) 
3.2 Set the number of splits (n_splits) to num_rounds 
3.3 Set shuffle to randomly shuffle the data before splitting 
4. Iterate Through Folds: 
4.1 Loop through each fold using a for loop (i, (train_index, test_index)) in kf.split(X) 
4.2 The loop iterates num_rounds times 
4.3 Print the current fold number (i+1) and total number of folds (num_rounds) 
5. Split Data into Training and Testing Sets (for each fold): 
5.1 Use indexing with train_index and test_index for the current fold. 
6. Reshape Features for LSTM: 
6.1 Reshape X_train and X_test to a 2D format suitable for 1D LSTM. 
6.2 The new shape is (number_of_samples, number_of_features, 1) 
7. Build LSTM Model: 
7.1 Define a Sequential model (model) 
7.2 Add a LSTM layer with 32 units, ReLU activation, and input shape based on X_train 
7.3 Add a Dense layer with 128 units and ReLU activation 
7.4 Add a final Dense layer with num_classes and softmax activation for classification. 
8. Compile the Model: 
8.1 Compile with Adam optimizer, sparse_categorical_crossentropy loss function 
9. Train the Model: 
9.1 Train the model on X_train and y_train for 50 epochs with a batch size of 32 
10. Evaluate the Model: 
10.1 Evaluate the model on X_test and y_test 
10.2 Store the accuracy in a list named accuracies 
11. Print performance metrics 
12. Calculate and print average accuracy 
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Table 3 Multiple PQDs waveforms. 

C-1: Pure Sine C-2: Sag with Harmonics C-3: Swell with Harmonics 

C-4: Interruption with Harmonics C-5: Flicker with Harmonics C-6: Flicker with Sag 

C-7: Flicker with Swell C-8: Sag with Oscillatory C-9: Swell with Oscillatory 

3.3 Classification 

Following the feature extraction phase, both cDs and cAs 

are obtained for each component, as outlined in Fig. 5 (C-9: Swell 

with Oscillatory). Of particular interest are the values of cD5 and 

cA5 (yellow frame), as they exhibit distinct waveforms for each 

class of PQDs. Details of the decomposition for the remaining 

classes (C-1 to C-8) are presented in the appendix (Table 8). In the 

experimental dataset, each wavelet function is utilized as input to 

facilitate result comparison. To enhance the efficiency of dataset 

partitioning for learning, k-fold cross-validation is implemented 

with k set to 9. 

For the LSTM model, structured as depicted in Fig. 3, the 

following configurations are employed: 

• A layer with 32 units utilizing the Rectified Linear Unit

(ReLU) activation function.

• Input shape: defined in a 1D waveform.

• Dense1: Fully connected layer with 128 units and ReLU

activation function.

• Dense2: Fully connected output layer with a number of

units equal to the total output classes, employing the 

softmax activation function.

The comprehensive classification process is outlined in 

Algorithm 2. The experimentation was conducted on a Windows 

11 platform with Jupyter Lab, utilizing an Intel Core i7-12700H 2.9 

GHz CPU and 16 GB of RAM. Python served as the primary 

programming language, supplemented by libraries including Keras, 

Scikit-learn, NumPy, Pandas, and PyWavelets. 

3.4 Evaluation 

Another crucial aspect of the experiment involves assessing 

the accuracy of the model's performance. The evaluation entails 

scrutinizing the efficacy of the confusion matrix, which serves as a 

potent tool for gauging outcomes and facilitating comparisons 

across different classes. 

4. Results and Discussion

In the experiment, the dataset obtained through the 

synthesis process using the mathematical equations outlined in 

Table 2 consisted of 900 instances spanning 9 distinct classes. 

Sample signals corresponding to each class are depicted in Table 3. 

Subsequently, the data was partitioned into individual classes to 

undergo the feature extraction process employing DWT. This 

process yielded both cDs and cAs features, with each wavelet type 

including haar1, db4, bior1.3, coif2, and sym4. Physical 

characteristics exemplifying each wavelet type are presented in 

Table 1. The component extraction procedure is outlined in  
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(d ) 

Fig. 5 (a)-(b) best (db4) and (c)-(d) worst (haar1) wavelet 
functions at level 5 for C-9: Swell with Oscillatory.

(a) (c) 

(b) 
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Algorithm 1. By the results of decomposing components, we show

an example of the best (db4) and worst (haar1) wavelet functions

in detail in Fig. 5. The outcomes derived from the decomposition 

process were then fed into the optimized LSTM model, as depicted 

in Algorithm 2. To delineate the characteristics of each form of 

PQDs, the following observations were made: 

Firstly, the 1D signal undergoes decomposition using DWT 

via both high pass and low pass filters, with the parameter level set 

to 5. This results in the generation of Detailed Coefficients (cD1 to 

cD5) and Approximation Coefficients (cA1 to cA5), constituting a 

single waveform data. Consequently, each component can be 

segregated into 10 distinct sets of features, implying a total of 

900x10=9000 sets of decomposed data per wavelet type. 

Therefore, in the experiment, we opt to utilize a variety of wavelet 

types, totaling 5. This leads to a cumulative count of 

9000x5=45,000 sets of data employed in the analysis. cAs 

represent the coarsest scale of the signal. They capture the overall 

trends or low-frequency components of PQDs. These coefficients 

provide a compressed representation of the original signal by 

summarizing its general characteristics. Suitable for capturing 

large-scale patterns or trends in PQDs. Since they contain low-

frequency information, they are useful for capturing global 

features of the signal, such as the overall shape or general trends. 

cDs represent the differences or high-frequency components 

between successive approximation levels. They capture the finer 

details or high-frequency components of the signal that are 

associated with specific levels of detail or resolution in PQDs. 

Suitable for capturing local variations or fine-scale features in the 

data. They provide information about abrupt changes or edges in 

PQDs, which can be useful for detecting sharp transitions or 

localized patterns. 

Secondly, from the decomposed dataset, both cDs and cAs 

obtained from five distinct wavelet types were subjected to 

preliminary characterization using statistical data analysis. 

Specifically, we chose to utilize the mean (avg) and standard 

deviation (sd) to conduct a comparative analysis for each class. The 

outcomes of this analysis are presented in Table 4 for cDs and Table 

5 for cAs.  

Table 4 Comparison of individual cDs coefficients and wavelet types. 

C. cD 
harr1 db4 bior1.3 coif2 sym4 

avg sd avg sd avg sd avg sd avg sd 

1 

cD1 -1.30E-17 7.05E-01 1.04E-14 -1.98E-05 -9.31E-18 6.29E-02 1.02E-13 1.48E-06 1.02E-13 1.48E-06 
cD2 1.30E-16 6.99E-01 3.88E-05 6.94E-04 1.28E-04 -6.34E-02 1.84E-05 5.31E-05 1.84E-05 5.31E-05 
cD3 9.16E-04 6.77E-01 4.40E-04 4.69E-03 3.98E-05 -6.47E-02 8.52E-05 -1.48E-03 8.52E-05 -1.48E-03 
cD4 9.16E-04 5.96E-01 3.91E-04 -7.40E-03 2.94E-04 -6.13E-02 -7.01E-04 2.25E-02 -7.01E-04 2.25E-02 
cD5 8.46E-03 3.34E-01 1.31E-02 7.73E-03 5.37E-03 7.10E-02 -8.97E-04 -2.91E-03 -8.97E-04 -2.91E-03 

2 

cD1 8.13E-17 3.00E-01 2.44E-14 -7.61E-03 9.01E-17 3.94E-02 3.06E-14 3.21E-04 2.29E-15 9.63E-04 
cD2 -4.49E-18 2.86E-01 6.31E-06 5.74E-03 1.88E-04 -3.65E-02 3.53E-05 4.09E-03 2.50E-04 2.06E-02 
cD3 1.20E-03 2.49E-01 3.97E-04 7.07E-05 -1.75E-04 -1.29E-02 -7.84E-05 -9.44E-04 -1.18E-04 2.99E-03 
cD4 1.20E-03 2.21E-01 3.23E-04 3.72E-03 -3.65E-05 -7.67E-03 -7.71E-04 1.06E-02 -9.96E-04 6.47E-03 
cD5 2.96E-03 1.28E-01 6.57E-03 -1.14E-02 8.48E-04 -9.17E-03 -4.54E-04 1.34E-02 -1.69E-03 7.48E-03 

3 

cD1 -2.22E-17 6.19E-01 1.89E-14 -1.42E-02 5.28E-17 1.04E-01 4.75E-14 1.21E-03 2.05E-15 3.64E-03 
cD2 7.44E-17 6.05E-01 1.45E-05 1.29E-02 1.59E-04 -9.76E-02 2.84E-05 9.09E-03 2.15E-04 4.59E-02 
cD3 1.04E-03 5.69E-01 3.83E-04 -2.57E-04 -1.06E-04 -7.77E-02 -2.92E-05 -2.41E-03 -9.48E-05 2.24E-03 
cD4 1.04E-03 5.00E-01 3.17E-04 -4.11E-03 5.48E-05 -3.20E-02 -7.02E-04 1.19E-02 -9.06E-04 2.96E-02 
cD5 4.24E-03 2.83E-01 7.86E-03 3.22E-03 2.00E-03 1.60E-02 -5.46E-04 -2.67E-04 -2.09E-03 1.86E-03 

4 

cD1 8.42E-17 3.14E-01 1.89E-14 -5.59E-03 1.73E-17 5.20E-03 4.75E-14 3.56E-05 1.99E-15 1.07E-04 
cD2 -3.60E-18 3.07E-01 1.45E-05 6.43E-04 1.59E-04 -4.88E-03 2.84E-05 4.54E-04 2.15E-04 2.29E-03 
cD3 1.04E-03 2.86E-01 3.83E-04 -8.47E-04 -1.06E-04 -2.29E-03 -2.92E-05 -4.36E-04 -9.48E-05 6.91E-04 
cD4 1.04E-03 2.54E-01 3.17E-04 1.84E-03 5.48E-05 -1.70E-03 -7.02E-04 2.36E-03 -9.06E-04 4.37E-03 
cD5 4.24E-03 1.49E-01 7.87E-03 3.63E-04 2.00E-03 2.08E-03 -5.49E-04 -1.15E-04 -2.09E-03 -2.73E-03 

5 

cD1 2.40E-11 1.44E+00 -7.31E-07 -5.12E-02 2.40E-11 2.92E-01 2.86E-06 4.87E-03 2.56E-06 1.73E-02 
cD2 2.40E-11 1.42E+00 1.34E-04 -2.43E-03 4.23E-04 -2.37E-01 6.40E-05 1.43E-02 4.17E-04 1.29E-01 
cD3 2.56E-03 1.36E+00 1.62E-03 -2.60E-03 5.60E-05 -1.28E-01 6.45E-04 -1.80E-02 -1.74E-04 -7.07E-04 
cD4 2.56E-03 1.20E+00 1.32E-03 1.52E-02 5.44E-04 3.26E-02 -2.18E-03 5.63E-02 -3.15E-03 3.50E-02 
cD5 1.37E-02 6.94E-01 2.26E-02 -2.71E-02 5.50E-03 1.85E-01 -3.77E-03 -2.12E-02 -8.40E-03 -6.28E-03 

6 

cD1 1.20E-11 1.12E+00 -3.13E-07 -8.42E-05 1.20E-11 6.32E-02 1.23E-06 -4.97E-05 1.10E-06 5.26E-05 
cD2 1.20E-11 1.11E+00 7.79E-05 3.67E-04 2.66E-04 -5.64E-02 4.02E-05 -5.34E-04 3.77E-04 -3.68E-04 
cD3 1.76E-03 1.07E+00 1.09E-03 5.86E-03 2.12E-04 -5.49E-02 4.72E-04 -4.43E-03 -6.23E-05 1.31E-03 
cD4 1.76E-03 9.47E-01 9.45E-04 8.93E-03 7.22E-04 4.02E-03 -1.48E-03 4.24E-02 -2.19E-03 4.21E-02 
cD5 1.61E-02 5.46E-01 2.49E-02 -4.45E-03 9.77E-03 3.21E-02 -2.31E-03 1.43E-02 -7.91E-03 1.33E-02 

7 

cD1 2.40E-11 1.80E+00 -3.13E-07 -1.04E-04 2.40E-11 1.20E-01 1.23E-06 -4.82E-05 1.10E-06 5.57E-05 
cD2 2.40E-11 1.78E+00 7.79E-05 4.66E-04 2.66E-04 -1.31E-01 4.02E-05 -2.15E-04 3.77E-04 -3.68E-04 
cD3 1.76E-03 1.73E+00 1.09E-03 2.36E-03 2.12E-04 -1.84E-01 4.72E-04 -6.16E-03 -6.23E-05 1.67E-03 
cD4 1.76E-03 1.52E+00 9.45E-04 -1.16E-02 7.22E-04 -1.02E-01 -1.48E-03 -1.11E-02 -2.19E-03 4.53E-02 
cD5 1.61E-02 8.59E-01 2.49E-02 1.64E-03 9.77E-03 9.84E-02 -2.31E-03 -1.58E-02 -7.91E-03 -6.91E-03 

8 

cD1 -6.45E-07 5.09E-01 -6.45E-07 -1.98E-05 -6.45E-07 1.54E-02 -6.45E-07 1.48E-06 -6.45E-07 3.09E-06 
cD2 -6.45E-07 5.05E-01 3.82E-05 6.94E-04 1.27E-04 -2.67E-02 1.78E-05 -2.52E-04 1.85E-04 2.12E-04 
cD3 9.15E-04 4.89E-01 4.39E-04 2.45E-03 3.91E-05 -1.18E-02 8.46E-05 -3.02E-04 -5.15E-05 8.05E-04 
cD4 9.15E-04 4.31E-01 3.91E-04 5.03E-03 2.93E-04 -1.17E-02 -7.01E-04 1.94E-02 -9.14E-04 1.55E-02 
cD5 8.46E-03 2.48E-01 1.31E-02 -1.38E-02 5.37E-03 -1.98E-02 -9.01E-04 1.43E-02 -3.60E-03 8.35E-03 

9 

cD1 1.61E-06 1.03E+00 1.61E-06 -1.98E-05 1.61E-06 6.29E-02 1.61E-06 1.48E-06 1.61E-06 3.09E-06 
cD2 1.61E-06 1.02E+00 4.05E-05 -7.34E-04 1.29E-04 -6.34E-02 2.00E-05 2.55E-04 1.87E-04 -5.30E-05 
cD3 9.18E-04 9.84E-01 4.42E-04 7.47E-03 4.14E-05 -1.14E-01 8.68E-05 -1.48E-03 -4.93E-05 8.05E-04 
cD4 9.18E-04 8.66E-01 3.93E-04 -1.77E-02 2.96E-04 -6.13E-02 -6.99E-04 1.92E-02 -9.12E-04 4.48E-02 
cD5 8.46E-03 4.87E-01 1.31E-02 4.98E-03 5.37E-03 2.21E-02 -8.93E-04 -5.48E-04 -3.60E-03 7.88E-03 
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Table 5 Comparison of individual cAs coefficients and wavelet types. 

Table 6 Compare accuracy results for each coefficient and wavelet type. 

Type. haar1 db4 bior1.3 coif2 sym4 

Coff. Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss 

cD1 0.9058 0.0942 0.9148 0.0852 0.8931 0.1069 0.8933 0.1067 0.9039 0.0961 

cD2 0.9271 0.0729 0.9202 0.0798 0.9161 0.0839 0.8873 0.1127 0.9098 0.0902 

cD3 0.9349 0.0651 0.9230 0.0770 0.8981 0.1019 0.9069 0.0931 0.9259 0.0941 

cD4 0.9239 0.0761 0.9311 0.0689 0.9041 0.0959 0.9118 0.0882 0.9278 0.0922 

cD5 0.9367 0.0633 0.9386 0.0614 0.9371 0.0629 0.9363 0.0637 0.9384 0.0616 

cA1 0.8630 0.1370 0.8702 0.1298 0.8798 0.1202 0.8774 0.1226 0.8558 0.1442 

cA2 0.8678 0.1322 0.8438 0.1563 0.8678 0.1322 0.8678 0.1322 0.8534 0.1466 

cA3 0.8582 0.1418 0.8702 0.1298 0.8654 0.1346 0.8726 0.1274 0.8630 0.1370 

cA4 0.8654 0.1346 0.8678 0.1322 0.8606 0.1394 0.8630 0.1370 0.8678 0.1322 

cA5 0.8702 0.1298 0.8558 0.1442 0.8678 0.1322 0.8486 0.1514 0.8510 0.1490 

C. cA 
harr1 db4 bior1.3 coif2 sym4 

avg sd avg sd avg sd avg sd avg sd 

1 

cA1 -0.0074 0.7121 -0.0074 0.7134 -0.0075 0.7149 -0.0074 0.7134 -0.0074 0.7134 
cA2 -0.0072 0.7059 -0.0072 0.7136 -0.0076 0.7202 -0.0073 0.7136 -0.0073 0.7136 
cA3 -0.0070 0.6839 -0.0080 0.7125 -0.0119 0.7326 -0.0087 0.7121 -0.0087 0.7121 
cA4 -0.0029 0.5859 -0.0068 0.6845 -0.0007 0.7139 -0.0125 0.6830 -0.0125 0.6830 
cA5 0.0079 0.3269 0.0080 0.2558 0.0169 0.2706 -0.0063 0.2573 -0.0063 0.2573 

2 

cA1 0.0179 0.2983 0.0180 0.3025 0.0178 0.3049 0.0179 0.3025 0.0179 0.3025 
cA2 0.0194 0.2848 0.0190 0.2953 0.0176 0.2979 0.0189 0.2955 0.0185 0.2948 
cA3 0.0202 0.2439 0.0192 0.2609 0.0193 0.2716 0.0194 0.2628 0.0204 0.2599 
cA4 0.0189 0.2086 0.0187 0.2492 0.0201 0.2621 0.0178 0.2510 0.0178 0.2489 
cA5 0.0245 0.1195 0.0231 0.1001 0.0235 0.1147 0.0176 0.1070 0.0160 0.1027 

3 

cA1 -0.0366 0.6243 -0.0365 0.6282 -0.0369 0.6310 -0.0366 0.6282 -0.0366 0.6282 
cA2 -0.0336 0.6094 -0.0350 0.6223 -0.0376 0.6290 -0.0351 0.6226 -0.0357 0.6225 
cA3 -0.0306 0.5858 -0.0340 0.5943 -0.0373 0.6155 -0.0345 0.5961 -0.0328 0.5981 
cA4 -0.0231 0.5046 -0.0304 0.5745 -0.0240 0.6028 -0.0348 0.5745 -0.0361 0.5753 
cA5 -0.0125 0.2737 -0.0157 0.2116 -0.0065 0.2152 -0.0242 0.2270 -0.0256 0.2260 

4 

cA1 0.0326 0.3126 0.0326 0.3146 0.0326 0.3159 0.0326 0.3146 0.0326 0.3146 
cA2 0.0331 0.3063 0.0333 0.3122 0.0326 0.3144 0.0332 0.3122 0.0329 0.3118 
cA3 0.0328 0.2808 0.0329 0.2993 0.0329 0.3093 0.0330 0.3004 0.0338 0.2985 
cA4 0.0294 0.2395 0.0311 0.2843 0.0317 0.2978 0.0301 0.2848 0.0303 0.2846 
cA5 0.0342 0.1379 0.0339 0.1137 0.0332 0.1355 0.0270 0.1263 0.0250 0.1218 

5 

cA1 -0.0203 1.4496 -0.0201 1.4551 -0.0206 1.4589 -0.0203 1.4551 -0.0203 1.4550 
cA2 -0.0174 1.4272 -0.0180 1.4436 -0.0208 1.4590 -0.0182 1.4436 -0.0190 1.4439 
cA3 -0.0144 1.3787 -0.0202 1.4315 -0.0274 1.4741 -0.0211 1.4320 -0.0170 1.4352 
cA4 -0.0094 1.1868 -0.0164 1.3756 -0.0044 1.4396 -0.0288 1.3713 -0.0320 1.3721 
cA5 0.0155 0.6759 0.0136 0.5364 0.0316 0.5809 -0.0170 0.5146 -0.0219 0.5028 

6 

cA1 0.0495 1.1312 0.0495 1.1334 0.0496 1.1357 0.0495 1.1334 0.0495 1.1334 
cA2 0.0488 1.1207 0.0499 1.1338 0.0500 1.1444 0.0498 1.1337 0.0498 1.1337 
cA3 0.0470 1.0841 0.0478 1.1304 0.0425 1.1600 0.0466 1.1293 0.0492 1.1327 
cA4 0.0427 0.9263 0.0450 1.0762 0.0509 1.1218 0.0358 1.0738 0.0350 1.0812 
cA5 0.0610 0.5393 0.0621 0.4317 0.0706 0.4841 0.0339 0.4187 0.0279 0.4017 

7 

cA1 -0.0805 1.8126 -0.0805 1.8161 -0.0807 1.8197 -0.0805 1.8161 -0.0805 1.8161 
cA2 -0.0792 1.7970 -0.0802 1.8164 -0.0813 1.8333 -0.0802 1.8163 -0.0803 1.8163 
cA3 -0.0771 1.7423 -0.0820 1.8139 -0.0924 1.8666 -0.0835 1.8133 -0.0807 1.8156 
cA4 -0.0598 1.5020 -0.0744 1.7525 -0.0562 1.8313 -0.0898 1.7445 -0.0948 1.7443 
cA5 -0.0327 0.8261 -0.0332 0.6397 -0.0049 0.6679 -0.0645 0.6575 -0.0694 0.6518 

8 

cA1 0.0447 0.5110 0.0445 0.5111 0.0447 0.5121 0.0445 0.5111 0.0445 0.5111 
cA2 0.0440 0.5060 0.0447 0.5113 0.0450 0.5160 0.0447 0.5112 0.0446 0.5112 
cA3 0.0429 0.4890 0.0439 0.5097 0.0420 0.5230 0.0433 0.5093 0.0443 0.5107 
cA4 0.0382 0.4150 0.0409 0.4824 0.0421 0.5022 0.0377 0.4809 0.0381 0.4862 
cA5 0.0454 0.2375 0.0460 0.1878 0.0471 0.2198 0.0330 0.1975 0.0300 0.1908 

9 

cA1 -0.0595 1.0398 -0.0591 1.0390 -0.0594 1.0412 -0.0591 1.0390 -0.0591 1.0390 
cA2 -0.0583 1.0301 -0.0589 1.0391 -0.0599 1.0488 -0.0590 1.0390 -0.0590 1.0390 
cA3 -0.0573 0.9975 -0.0597 1.0379 -0.0657 1.0680 -0.0605 1.0378 -0.0594 1.0385 
cA4 -0.0440 0.8593 -0.0544 1.0037 -0.0433 1.0481 -0.0625 0.9993 -0.0656 0.9988 
cA5 -0.0295 0.4703 -0.0299 0.3661 -0.0130 0.3743 -0.0454 0.3889 -0.0475 0.3876 
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Fig. 6 The db4 wavelet features with cD5 and cA5 via LSTM.

ACC = 85.58% ACC = 93.86% 

Loss = 14.42% 
Loss = 6.14% 

Maximum = 93.10% 

Median = 86.53% 

Minimum = 77.98% 

Maximum = 95.16% 

Median = 80.04% 

Minimum = 75.91% 
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Table 7 Compare results for precision, recall, and F1-score. 

Type. haar1 db4 bior1.3 coif2 sym4 

Coff. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. 

cD1 0.8021 0.8564 0.8431 0.8713 0.8510 0.8663 0.8597 0.9181 0.8532 1.0618 0.8373 0.7229 0.8528 0.8458 0.8602 

cD2 0.8928 0.8799 0.8441 0.8324 0.8647 0.8401 0.6088 0.8919 0.8440 0.8371 0.8892 0.8798 0.8505 0.8319 0.8880 

cD3 0.8647 0.8551 0.8441 0.8978 0.8637 0.8618 0.6343 0.8481 0.9042 0.7757 0.8245 0.8152 0.8458 0.8620 0.8926 

cD4 0.8531 0.8505 0.8445 0.8515 0.8706 0.8988 0.6435 0.8528 0.9157 0.7360 0.8451 0.8086 0.8273 0.8759 0.8935 

cD5 0.8722 0.9496 0.8422 0.9209 0.9096 0.9382 0.9412 0.8690 0.9134 0.8352 0.8343 0.8076 0.9204 0.8458 0.9181 

cA1 0.8726 0.8207 0.7500 0.8549 0.8863 0.8568 0.6481 0.8343 0.8986 0.8960 0.8709 0.7639 0.8481 0.8690 0.8389 

cA2 0.8447 0.7247 0.7578 0.8875 0.8892 0.8246 0.8204 0.8273 0.8296 0.8533 0.7000 0.7858 0.7736 0.8273 0.7389 

cA3 0.8455 0.9065 0.8588 0.8333 0.7765 0.8614 0.8435 0.8181 0.8366 0.8254 0.8980 0.7710 0.8343 0.8296 0.8597 

cA4 0.7574 0.7049 0.7500 0.8573 0.7873 0.8729 0.8458 0.8597 0.8903 0.8025 0.7294 0.8669 0.8389 0.8713 0.8343 

cA5 0.8448 0.8866 0.8725 0.8540 0.8922 0.8971 0.8250 0.8343 0.8273 0.8856 0.7304 0.8524 0.7505 0.7551 0.7528 

Note: Precision (pre.), Recall (rec), F1-score (F1) 

It is noteworthy that the precise interpretation of mean or 

standard deviation values derived from representative data 

within each class remains ambiguous. Notably, cD1 and cD2 

exhibit markedly low values as they pass through a high pass filter, 

allowing only high frequencies to traverse. However, with an 

increase in the level to cD3, cD4, and cD5, both average and 

standard deviation values witnessed an escalation. Upon 

comparing wavelet types for each class, discernible disparities in 

average and standard deviation values were observed. 

Nonetheless, upon closer inspection, certain similarities persisted 

across classes, such as the resemblance between cD5 values for 

classes C6 and C7, as well as C8 and C9, particularly in terms of 

average values for db4. Regarding cAs, characterized by the low 

pass filter coefficient that permits only low frequencies to pass 

through, the resultant values are generally higher than those of 

cD. Notably, cA1, cA2, and cA3 exhibit similar characteristics or 

comparable average and standard deviation values, while 

similarities are also evident between cA4 and cA5 across classes 

and various wavelet types. For instance, similarities were 

identified in cD5 values for classes C6 and C8 using the coif2 

wavelet type. Therefore, while the analysis of data using statistical 

calculations aids in feature extraction, it is essential to 

acknowledge the inherent limitations in clarity and specificity. 

Thirdly, the data pertaining to each component, ranging 

from cD1 to cD5 and cA1 to cA5, of every wavelet type were 

inputted into the LSTM model for classification purposes. The 

outcomes of this classification process are presented in Table 6. 

Notably, variations in accuracy and loss were observed across 

different levels of cDs and cAs, with cD4 and cD5 exhibiting the 

highest accuracy, particularly when employing the db4 wavelet 

type. However, upon closer examination of each wavelet type, it 

was noted that db4 and sym4 demonstrated similar physical 

characteristics, resulting in the separated components at level 5 

being comparable. During the experiment, it was concluded that 

both small waves are conducive for utilization in the 

decomposition analysis of PQDs when juxtaposed with other 

wavelets. Furthermore, graphical representations comparing the 

training and testing of each cDs and cAs were plotted, as depicted 

in Fig. 6 (a1) and (a2). An exemplary db4 wavelet of cD5 and cA5 

is showcased, wherein both feature sets exhibited different  

average accuracy. However, a discernible discrepancy was 

observed in the data set's distribution, with cD5 displaying a 

relatively larger shift, suggesting the presence of similarities in 

form among certain elements within each class, indicative of 

disturbance moments or events. The accuracy and loss graphs, 

illustrated in Fig. 6 (b1) and (b2), respectively, revealed 

contrasting trends for both cD5 and cA5 feature sets, with results 

converging close to zero. Furthermore, Box Plots were employed 

to analyze maximum median and minimum values, aiding in 

decision-making regarding the suitability of cD5 and cA5 for 

application as shown in Fig. 5 (c1) and (c2). Moreover, the results 

for each class were plotted to compare the true labels and the 

predicted labels, as depicted in Fig. 5 (d1) and (d2), utilizing a 

confusion matrix with gradients based on accuracy. It was 

observed that for cD5, the model most accurately predicted C-4 

(Interruption with Harmonics) at 97%, while the least accurate 

prediction was for C-7 (Flicker with Swell) at 75%. Conversely, for 

cA5, the model most accurately predicted C-2 (Sag with 

Harmonics) at 92%, while the greatest discrepancy was observed 

for C-3 (Swell with Harmonics), predicted correctly only 73% of 

the time. Notably, the model exhibited numerous prediction 

errors in classes C-3 and C-7, both of which encompass swell, a 

feature exhibiting similarity with other classes such as flicker and 

oscillatory, and crucially, exhibiting fluctuations corresponding to 

load usage behavior. 

In addition to the accuracy metric, we also employed the 

primary metrics used in the performance matrix to evaluate the 

classification performance for PQDs scenarios. The detailed 

results are presented in Table 7. Data from all nine classes were 

averaged to calculate the performance metrics for each wavelet 

type. Precision was used to measure the correctly classified PQDs 

instances, Recall measured the proportion of true positive 

instances, and F1-score measured the harmonic mean between 

precision and recall. While the overall results exhibited some 

dispersion due to variations in the occurrence of TP events, a 

crucial variable, we consistently observed that cD5 (cD5: 

precision=92.09%, Recall=90.96%, F1-score 93.82%) and cA5 (cA5: 

precision=85.40%, Recall=89.22%, F1-score=89.71%) for db4 

maintained superior performance. 
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5. Conclusion

In this study, we synthesized multiple PQDs through the 

implementation of 900 sets encompassing 9 distinct classes of 

mathematical equations. These PQDs were subsequently 

subjected to decomposition using DWT configured to level 5. 

Subsequently, the characteristics of each wavelet type: haar1, 

db4, bior1.3, coif2, and sym4, were compared and analyzed 

utilizing statistical features before being fed into LSTM model to 

classify the characteristics of each class. The experimental results 

demonstrate our ability to synthesize and adjust parameters to 

generate multiple PQDs exhibiting diverse values in accordance 

with the IEEE standard 1159-2019. Notably, the DWT, set to level 

5, facilitated decomposition into detailed coefficients (cD1 to cD5) 

and approximation coefficients (cA1 to cA5), with cD5 and cA5 

derived from the db4 wavelet proving to be suitable components 

for input into the LSTM model. Throughout the process of 

characterizing PQDs, we employed k-fold cross-validation (with 

k=9) to partition and shuffle each dataset within the training 

model for learning and result evaluation. The utilization of db4 

wavelets for cD5 and cA5 yielded a different accuracy rate of 

93.86% and 85.58%, respectively. However, it is pertinent to 

acknowledge certain limitations encountered during the 

experiment, including the simplicity of the techniques employed 

and the utilization of specific synthesized data, resulting in a less-

than-optimal accuracy rate. Addressing these limitations will be 

imperative for future research endeavors in this domain. 
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Table 8 Differentiate the decomposition at level 5, each wavelet and class. 

C. haar1 db4 bior1.3 coif2 sym4 
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Table 8 Differentiate the decomposition at level 5, each wavelet and class (Cont.). 

C. haar1 db4 bior1.3 coif2 sym4 
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