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Abstract 

 This paper presents a new approach to solving the unit commitment problem using Evolutionary 

Programming Algorithm (EPA) in smart grid environment. The objective of this paper is to find the 

generation scheduling such that the total operating cost can be minimized, when subjected to a variety 

of constraints. This also means that it is desirable to find the optimal generating unit commitment in the 

power system for the next H hours. This paper proposes distributed sources which includes electric 

vehicles and distributed generation. EPA, which happens to be a Global Optimisation technique for 

solving Unit Commitment Problem, operates on a system, which is designed to encode each unit’s 

operating schedule with regard to its minimum up/down time.  In this, the unit commitment schedule is 

coded as a string of symbols. An initial population of parent solutions is generated at random. Here, 

each schedule is formed by committing all the units according to their initial status (“flat start”). Here 

the parents are obtained from a pre-defined set of solution’s i.e. each and every solution is adjusted to 

meet the requirements. Then, a random recommitment is carried out with respect to the unit’s minimum 

down times. The Neyveli Thermal Power Station (NTPS) Unit - II in India demonstrates the 

effectiveness of the proposed approach; extensive studies have also been performed for different power 

systems consists of IEEE 10, 26, 34 generating units. Numerical results are shown comparing the cost 

solutions and computation time obtained by using the EPA and other conventional methods like 

Dynamic Programming, Legrangian Relaxation and Simulated Annealing and Tabu Search in reaching 

proper unit commitment. 

Keywords:   
Unit Commitment, Evolutionary Programming, Simulated Annealing, Legrangian Relaxation, 

Dynamic Programming 

1. Introduction  

 Power Stations and electricity generating companies and power systems has the problem of deciding 

how best to meet the varying demand for electricity, which has a daily and weekly cycle. The short-term 

optimisation problem is how to schedule generation to minimize the total fuel cost or to maximize the 

total profit over a study period of typically a day, subject to a large number of constraints that must be 

satisfied. The daily load pattern for a given system may exhibit large differences between minimum and 

maximum demand. Therefore, enough reliable power generation to meet the peak load demand must 

therefore be synchronized prior to the actual occurrence of the load. Thus it is clear that it is not proper 

and economical to run all the units available all the time. Since the load varies continuously with time, 

the optimum condition of units may alter during any period. Therefore, the problem of determining the 

units of a plant that should operate for a given load is the problem of unit commitment. For total number 

of units of higher order, the problems associated with unit commitment have generally been difficult to 

solve because of uncertainty of particular aspects of the problem. For instance, the availability of fuel in 

precise, load forecast variable costs affected by the loading of generator units and the losses caused by 

reactive flows are some of the unpredictable issues. There are other problems of inconsistency that affect 
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the overall economic operation of the electric power station. In order to reach a feasible solution for Unit 

Commitment Problem (UCP), different considerations must be considered. 

 Research endeavours, therefore, have been focused on; efficient, near-optimal UC algorithms, which 

can be applied to large-scale, power systems and have reasonable storage and computation time 

requirements. A survey of existing literature [1-33] on the problem reveals that various numerical 

optimisation techniques have been employed to approach the complicated unit commitment problem. 

More specifically, these are the Dynamic Programming method (DP), the Mixed Integer Programming 

method (MIP), the Lagrangian relaxation method (LR), the Branch and Bound method (BB), the Expert 

system (ES), the Fuzzy Theorem method (FT), the Hop Field method (H), the Simulated Annealing 

method (SA), the Tabu Search (TS), the Genetic Algorithm (GA), the Artificial Neural Network (ANN), 

the Cuckoo Optimization Algorithm (COA) and so on. The major limitations of the numerical techniques 

are the problem dimensions, large computational time and complexity in programming.  

 The DP method [1-2,13] is flexible but the disadvantage is the “curse of dimensionality”, which 

results it may leads to more mathematical complexity and increase in computation time if the constraints 

are taken in to consideration. The MIP methods [3-4] for solving the unit commitment problems fail 

when the number of units increases because they require a large memory and suffer from great 

computational delay. The LR approach [5-8] to solve the short-term UC Problems was found that it 

provides faster solution but it will fail to obtain solution feasibility and solution quality problems and 

becomes complex if the number of units increased. The BB method [9] employs a linear function to 

represent fuel cost and start-up cost and obtains a lower and upper bounds. The difficulty of this method 

is the exponential growth in the execution time for systems of a practical size. An ES algorithm [10,13] 

rectifies the complexity in calculations and saving in computation time. But it will face the problem if 

the new schedule is differing from schedule in database. In the FT method [11, 13, 24] using fuzzy set 

solves the forecasted load schedules error but it will also suffer from complexity. The H neural network 

technique [12] considers more constraints but it may suffer from numerical convergence due to its 

training process. SA [14-17,23-24] is a powerful, general-purpose stochastic optimisation technique, 

which can theoretically converge asymptotically to a global optimum solution with probability one. But 

it will take much time to reach the near-global minimum. The TS [18-20, 23] is an iterative improvement 

procedure that starts from some initial feasible solution and attempts to determine a better solution in the 

manner of a greatest – decent algorithm. However, TS is characterized by an ability to escape local optima 

by using a short-term memory of recent solutions.  

 GA [13,21-24] is a general-purpose stochastic and parallel search method based on the mechanics 

of natural selection and natural genetics. It is a search method to have potential of obtaining near-global 

minimum. And it has the capability to obtain the accurate results within short time and the constraints 

are included easily. The ANN [12] has the advantages of giving good solution quality and rapid 

convergence. And this method can accommodate more complicated unit-wise constraints and are claimed 

for numerical convergence and solution quality problems. The solution processing in each method is very 

unique. The EP [25-26] has the advantages of good convergent property and a significant speedup over 

traditional GA’s and can obtain high quality solutions. The “Curse of dimensionality” is surmounted, and 

the computational burden is almost linear with the problem scale. Electric Vehicle (EV) and its impact 

on the cost and emission of power system are studied on basis of UC model in [28–30]. The significance 

and feasibility of DR and its role in supply-demand schedule are examined in [31–32]. Economical 

operation of distributed generation (DG) and chance-constrained schedule of active network with DG are 

researched [33]. 

 From the literature review, it has been observed that there exists a need for evolving simple and 

effective methods, for obtaining an optimal solution for the UCP. Hence, in this paper, an attempt has 

been made to EPA for meeting these requirements of the UCP, which eliminates the above-mentioned 

drawbacks. EPA seems to be promising and is still evolving. EPA has the great advantage of good 

convergent property and, hence, the computation time is considerably reduced. EPA is capable of 

determining the global or near global solution. It is based on the basic genetic operation of human 
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chromosomes. It operates with the stochastic mechanics, which combine offspring creation based on 

the performance of current trail solutions and competition and selection based on the successive 

generations, form a considerably robust scheme for large-scale real-valued combinational optimisation. 

In this proposed work, the parents are obtained from a pre-defined set of solution’s i.e. each and every 

solution is adjusted to meet the requirements. And the selection process is done using Evolutionary 

Strategy [25-26]. The application on the NTPS and IEEE systems consists of 10, 26, 34 generating 

units’ shows that we can find the optimal solution effectively and these results are compared with the 

conventional methods. 

2. Problem Formulation 

2.1. Smart Grid Environment  

 With the progress of smart grid, DR become more active. They may play an increasingly essential 

part in power system operation. In this paper, EV and DG are considered in the UC model.  

 1) EV: Smart grid is a perfect platform for the collaborations between the system operators and 

EVs.  With the associated techniques getting settled, it is feasible for EV to sold electricity back to the 

grid. There is fictional to be an aggregator to link between the system operator and a great number of 

EV owners [28-30]. If an EV is indolent for a certain period, its owner can sign a contract with the 

system operator for commitment via the load aggregator. The sum of EV can be preserved as a special 

unit. Considering there is an increasing peripheral cost to involve more EV proprietors, the cost function 

of EV is expected to be a quadratic function 

 

EVeTC(EVek) = a1 + b1EVek + c1EVek
2 

 

(1) 

 

where: 

EVeTC = EV export total cost 

EVek = EV export at time k 

a1, b1EVek, c1EVek = cost coefficients of EV export at time k 

 

Firstly, in case of emergent use of EV’s owners, a lower limit of SoC is considered (2). Secondly, 

for the sake of safe operation of the gird, an upper limit on total output of EVs at each hour should be 

stipulated (4). Thirdly, now that EV may not be connected to the grid all the 24 h, it is sensible to set a 

time range limit when EV is available for the system operator (5). Fourthly, the available capacity of 

EVe at each hour has an upper limit, respectively. 
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EVek≤EVek,max (6) 

 

where: 

SoC = state of charge of EV 

SoCk,t = state of charge of EV t at time k 

SoCmin = minimum limit of SoC at each hour 

Co,k = initial charging state of EV at time k 

EVek,t = EV export t at time k 

EVemax = maximum limit of EV export capacity 

EVek,max = maximum available EV export capacity at time k 

 

 2) DG: When more DG’s are connected to the grid, then both importing and exporting power from 

and to the DG’s should be taken into consideration in the UC model. Here the power can be sold to grid 

is DGe and the power purchased from the grid is DGi. The cost function of the DG is expected to be a 

quadratic equation 

2

111)( kkk DGecDGebaDGeDG ++=  (7) 

 

where: 

DGek = DG export at time k 

a1, b1DGek, c1DGek = cost coefficients of DG 

 

Firstly, DG’s output is subject to natural resource and weather condition, so an upper limit on 

available DG at each hour is considered. Secondly, DG tends to be intermittent and volatile, an upper 

limit on its penetration rate should be set to ensure a reliable operation of the power system 

 

DGek≤DGek,max 

 

(8) 
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where: 

 

 

2.2. UC Model  

The objective is to find the generation scheduling such that the total operating cost can be 

minimized, when subjected to a variety of constraints [27]. In the UCP under consideration, an 

interesting solution would be minimizing the total operating cost of the generating units with several 

constraints being satisfied. The major component of the operating cost, for thermal and nuclear units, is 

the power production cost of the committed units and this is given in a quadratic form in (10).     

DGek,max = maximum available DG export capacity at time k 

ηk = penetration rate of DG at time t 

ηmax = max penetration rate of DG at time t 

Pi,k = output of unit i at time k 

Ii,k = on/off status of unit I at time k 
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where: 

 

The startup cost depends upon the down time of the unit, which can vary from a maximum value, 

when the unit i is started from cold state, to a much smaller value, if the unit i has been turned off 

recently. The startup cost calculation depends upon the treatment method for the thermal unit during 

down time periods. The start-up cost Sit, is a function of the down time of unit i as given in (11). 

 

where: 

 

 

 

The overall objective function of the UCP is given in (12). 
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where: 

 
2.3. Constraints  

Depending on the nature of the power system under study, the UCP is subject to many constraints, 

the main being the load balance constraints and the spinning reserve constraints. The other constraints 

include the thermal constraints, fuel constraints, security constraints etc. [27] 

1) Load Balance Constraints 

The real power generated must be sufficient enough to meet the load demand and must satisfy 

the following factors given in (13). 

 


=

+−−−=
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kkkktitit PLDGeDGiEVePDUP
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 (13) 

 

where: 

 
 

Ai, Bi, Ci = the cost function parameters of unit i (Rs./MW2hr, Rs./MWhr, Rs/hr) 

Fit(Pit ) = production cost of unit i at a time t (Rs/hr) 

Pit = output power from unit i at time t (MW) 

Sit  =  Soi[1-Di exp ( -Toff
i  / Tdowni)]  +  Ei Rs (11) 

Soi = unit i cold start – up cost (Rs) 

Di, Ei = start – up cost coefficients for unit i 

Uit = unit i status at hour t =1(if unit is ON) =0 (if unit is OFF) 

Vit = unit i start up / shut down status at hour t =1 if the unit is started at hour t and 0 otherwise 

FT = total operating cost over the schedule horizon (Rs/Hr) 

Sit = start up cost of unit i at hour t (Rs) 

PDt = system peak demand at hour t (MW) 

N = number of available generating units 

U (0,1) = the uniform distribution with parameters 0 and 1 

UD (a,b) = the discrete uniform distribution with parameters a and b 
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2) Spinning Reserve Constraints 

 The spinning reserve is the total amount of real power generation available from all 

synchronized units minus the present load plus the losses.  The   reserve   is   considered   to   be a pre 

specified amount or a given percentage of the forecasted peak demand.  It must be sufficient enough to 

meet the loss of the most heavily loaded unit in the system. This has to satisfy the equation given in 

(14). 


=
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where: 

 
3) Thermal Constraints 

The temperature and pressure of the thermal units vary very gradually and the units must be 

synchronized before they are brought online. A time period of even 1 hour is considered as the minimum 

down time of the units. There are certain factors, which govern the thermal constraints, like minimum 

up time, minimum down time and crew constraints. 

a) Minimum up time:  

 If the units have already been shut down, there will be a minimum time before they can be 

restarted and the constraint is given in (15). 

 

Toni  ≥  Tup
i
 (15) 

 

where: 

 

b) Minimum down time: 

If all the units are running already, they cannot be shut down simultaneously and the 

constraint is given in (16). 

 

 

where: 

 

 
4) Must Run Units 

Generally in a power system, some of the units are given a must run status in order to provide 

voltage support for the network. 

The entire problem formulation for solving the UC using EP in Smart Grid environment is 

formulated as block diagram and is shown in Fig. 1. 

 

Pmaxi = Maximum generation limit of unit i 

Rt = spinning reserve at time t (MW) 

T = scheduled time horizon (24 hr) 

Toni = duration for which unit i is continuously ON (Hr) 

Tupi = unit i minimum up time (Hr) 

Toff
i
  ≥  Tdowni (16) 

Tdowni = unit i minimum down time (Hr) 

Toffi = duration for which unit i is continuously OFF (Hr) 
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Fig. 1 Block diagram of UC using EP in smart grid environment. 

3. Evolutionary Programming 

3.1. Introduction 

EP is a mutation-based evolutionary algorithm applied to discrete search spaces. David Fogel (Fogel 

1988) extended the initial work of his father Larry Fogel (Fogel, 1962) for applications involving real-

parameter optimization problems. Real-parameter EP is similar in principle to evolution strategy (ES), in 

that normally distributed mutations are performed in both algorithms. Both algorithms encode mutation 

strength (or variance of the normal distribution) for each decision variable and a self-adapting rule is used 

to update the mutation strengths. Several variants of EP have been suggested (Fogel, 1992).  

3.2. Evolutionary Strategies                      

For the case of Evolutionary strategies D. B. Fogel remarks “evolution can be categorized by 

several levels of hierarchy: the gene, the chromosome, the individual, the species, and the ecosystem.”  

Thus, while Genetic Algorithms stress models of genetic operators, Evolutionary Strategies emphasize 

mutational transformation that maintains behavioral linkage between each parent and its offspring at the 

level of the individual. Evolutionary Strategies are a joint development of Bienert, Rechenberg, and 

Schwefel. The first applications were experimental and addressed some optimization problems in 

hydrodynamics.  

3.3. EP General Algorithm 

Evolutionary programming [25-26] is conducted as a sequence of operations and is given below. 

The schematic diagram of the EP algorithm is shown in Fig. 2. 
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Fig. 2 Flowchart of Evolutionary Programming Algorithm 

 

 

Algorithm 1 EP General Algorithm 

1. The initial population is determined by setting si = Si ~ U(ak, bk)k  i =1,…,m, where Si is a random 

vector, si is the outcome of the random vector, U(ak, bk)k denotes a uniform distribution ranging 

over [ak, bk] in each of k dimensions, and m is the number of parents. 

2. Each si, i=1,…,m, is assigned a fitness score (s i) = G (F (si), vi), where F maps si →R and denotes 

the true fitness of si, vi, represents random alteration in the instantiation of si, random variation 

imposed on the evaluation of F(si), or satisfies another relation si, and G (F (si), vi) describes the 

fitness score to be assigned.  In general, the functions F and G can be as complex as required.  For 

example, F may be a function not only of a particular si, but also of other members of the population, 

conditioned on a particular si. 

3. Each si, i =1,…,m, is altered and assigned to si + m such that   

si + m= si,j + N (0, βj (s i) + zj), j =1,…,k 

N (0, βj (s i) + zj) represents a Gaussian random variable with mean µ and variance σ2, βj is a 

constant of proportionality to scale (s i), and zj represents an offset to guarantee a minimum amount 

of variance, 

4. Each si + m, i=1,…,m, is assigned a fitness score 

 (s i+m) = G (F (si+m), vi+m) 
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5. For each si, i=1,…,2m, a value wi is assigned according to  

            c 

 wi     =     wt
* 

                 t = 1 

1,    if  (s i) ≤(s i); 

  wt
*   =      

                          0,    otherwise; 

Where ρ = [2mu1 +1], ρ ≠ i, [x] denotes the greatest integer less than or equal to x, c is the number 

of competitions, and u1~U (0,1). 

6. The solutions si, I = 1…2m, are ranked in descending order of their corresponding value Wi [with 

preference to their actual scores (s i) if there are more than m solutions attaining a value of c].  The 

first m solutions are transcribed along with their corresponding values (s i) to be the basis of the 

next generation. 

7. The process proceeds to step 3, unless the available execution time is exhausted or an acceptable 

solution has been discovered.  

 

3.4. Evolutionary Programming for UCP 

Algorithm 2 EP for UCP 

1. Initialize the parent vector p = [p1, p2, … pn], i = 1,2,…Np such that each element in the vector is 

determined by pj ~ random (pjmin, pjmax), j = 1,2,…N, with one generator as dependent generator. 

2. Calculate the overall objective function if the UCP is given in equation (12) using the trail vector pi 

and find the minimum of FTi. 

3. Create the offspring trail solution pi
’ using the following steps. 

 (a) Calculate the standard deviation  

           )))(min(/( minmax jjTiTij PPFFj −=   

 (b) Add a Gaussian random variable N (0, j
2) to all the state variable of pi, to get pi

’. 

4. Select the first Np individuals from the total 2Np individuals of both pi & pi
’ using the following steps 

for next iteration. 

(a) Evaluate r = (2Np random (0,1) + 1) 

(b) Evaluate each trail vector by Wpi=sum (Wx), Where x  = 1,2,…Np, i = 1,2,…2Np such that Wx = 1 

if FTij / (FTij+FTir) < random (0,1), otherwise, Wx = 0. 

5. Sort the Wpi in descending order and the first Np individuals will survive and are transcribed along 

with their elements to form the basis of the next generation. 

6. The above procedure is repeated from step (2) until a maximum number of generations Nm is 

reached. 

7. Selection process is done using Evolutionary strategy. 

 

 

4. Numerical Results 

A NTPS in India with seven generating units from I to VII, each with a capacity of 210MW, has 

been considered as a case study. A time period of 24 hours is considered; the unit commitment problem 

is solved for these seven units and also compared with IEEE 10, 26, and 34 generating unit power 

systems. The required inputs for solving the UCP are briefed here. The total number of generating units, 

the maximum real power generation of each unit and the generation system operation data of each unit 

are tabulated for a day, respectively, as shown in Table 1 and Table 2 for NTPS. The cost coefficients 

of DR is shown in Table 3. EV and DG are set at units V and VII respectively, since the load demands 

at these units are quite high compared with other units.  
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Table 1 Daily Generation of Seven Units in MW. 
 

Hour Pmax I II III IV V VI VII 

1 840 60 80 100 101 149 150 200 

2 757 60 0 100 100 147 150 200 

3 775 60 0 100 115 150 150 200 

4 773 60 0 100 113 150 150 200 

5 770 60 0 100 110 150 150 200 

6 778 60 0 100 118 150 150 200 

7 757 60 0 100 100 147 150 200 

8 778 60 0 100 118 150 150 200 

9 770 60 0 100 110 150 150 200 

10 764 60 0 100 104 150 150 200 

11 598 60 0 99 97 142 0 200 

12 595 60 0 100 96 139 0 200 

13 545 0 0 100 99 146 0 200 

14 538 0 0 99 97 142 0 200 

15 535 0 0 100 96 139 0 200 

16 466 0 0 0 116 150 0 200 

17 449 0 0 0 101 148 0 200 

18 439 0 0 0 97 142 0 200 

19 466 0 0 0 116 150 0 200 

20 463 0 0 0 113 150 0 200 

21 460 0 0 0 110 150 0 200 

22 434 0 0 0 95 139 0 200 

23 530 60 0 0 120 150 0 200 

24 840 60 80 100 101 149 150 200 

 
 

Some other parameters in our model are assumed as follows. The lower limit of SoC is 25%. The 

average of SoC before dispatching is 75%. The average battery capacity of EVs is 34 kWh. The quantity 

of EVs that can conduct EVe is 8500. In order to facilitate management, this paper assumes that the 

system operator will only sign contract of EVe if the EVs are available in the evening. Accordingly, the 

available periods of all the EVs are the same in this paper, assumed 20–24 o’clock. The available capacity 

of EVe at these hours is 24, 23, 22, 21, and 20 MW, respectively. The maximum bearing capacity of the 

grid for EVe is assumed to be 24 MW at each hour. The upper limit of demand curtailment response is 

7% of total load demand in this hour, and the upper limit within a day is 320 MWh. Now that solar power 

may be the main DG source, the available DG is set higher during the day. Specifically, it is 40 MW 

between 7 o’clock and 17 o’clock and 20 MW during the other time, among which two-thirds are used 

by consumers themselves and one-third would be sold to the grid. The upper limit of DG penetration rate 

is 6%.  This paper considers four scenarios as shown in Table 4.  
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Table 2 Generation System Operation Data. 

 

Unit 

 

 

Pmin 
(MW) 

 

Pmax 
(MW) 

 

Running Cost 

 

Start-up cost 

Ci 

(Rs) 

BI 

(Rs/MWh) 

Ai 

(Rs/MWh2) 

Soi 

(Rs) 

Di 

(Rs) 

Ei 

(Rs) 

1 15 60 750 70 0.255 4250 29.5 10 

2 20 80 1250 75 0.198 5050 29.5 10 

3 30 100 2000 70 0.198 5700 28.5 10 

4 25 120 1600 70 0.191 4700 32.5 9 

5 50 150 1450 75 0.106 5650 32 9 

6 50 150 4950 65 0.0675 14100 37.5 4.5 

7 75 200 4100 60 0.074 11350 32 5.5 

 

Table 3 Cost Coefficients of DR. 

DR 

Running Cost 

Ci 

(Rs) 

Bi 

(Rs/ MWh) 

Ai 

(Rs/ MWh2) 

EVe 750 70 0.255 

DGb 1250 75 0.198 

 

Table 4 Operation Settings. 

 Operation Settings 

Operation 1 EV Not Connected, DG Not Connected 

Operation 2 EV Connected, DG Not Connected 

Operation 3 EV Not Connected, DG Connected 

Operation 4 EV Connected, DG Connected 

 
 

Table 5 Comparisons of cost and CPU time for NTPS, 10, 26, 34 unit systems. 

System Methods Total Cost (p.u.) 

 

CPU Time (Sec) 

 

7 – Unit Utility System 

DP 

LR 

SA 

TS 

EP 

1.00000 

0.96481 

0.95000 

0.95239 

0.94120 

605 

578 

570 

575 

546 
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System Methods Total Cost (p.u.) 

 

CPU Time (Sec) 

 

10 – Unit IEEE System 

DP [1] 

LR [6] 

SA [17] 

TS [18] 

EP 

1.00000 

0.94123 

0.93210 

0.93435 

0.92336 

325 

279 

285 

290 

254 

26 – Unit IEEE System 

DP [1] 

LR [6] 

SA [17] 

TS [18] 

EP 

1.00000 

0.95968 

0.94570 

0.94750 

0.93680 

509 

495 

489 

494 

478 

34 – Unit IEEE System 

DP [1] 

LR [6] 

SA [17] 

TS [18] 

EP 

1.00000 

0.99910 

0.98015 

0.98291 

0.97210 

1452 

1368 

1370 

1376 

1362 

  
 The status of unit i at time t and the start-up / shut - down status obtained are the necessary solution 
for SA, TS, EPA, DP, LR methods for NTPS. The comparison of the total costs and Central Processing 
unit (CPU) time is shown in Table 5 for NTPS, 10, 26, and 34 generating unit power systems. Fig. 3 
represents the total production cost obtained by each parent for 25 iterations in EPA. Similarly, for 50 
and 100 iterations are obtained. Fig. 4 gives the plot of EPA average performance from 1000 runs. The 
Fig. 5 gives the plot of No. of iteration versus the time taken to complete those iterations and the 
maximum production cost obtained under each iteration.  

 

 

Fig. 3 Total production cost for 25 iterations. 
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Fig. 4 EPA average performance from 1000 runs. 

 

 

Fig. 5 No. of iterations vs time taken & max. production cost. 

 
From these results, the EPA had lesser total cost and took lesser CPU time in all the power systems 

considered including NTPS. As we indicated in the paper, the EPA has also proved to be an efficient tool 
for solving the important economic dispatch problem for units with “non-smooth” fuel cost functions as 
referred in [26]. Such functions may be included in the proposed EPA search for practical problem 
solving. There is no obvious limitation on the size of the problem that must be addressed, for its data 
structure is such that the search space is reduced to a minimum; no “relaxation of constraints” is required; 
instead, populations of feasible solutions are produced at each generation and throughout the evolution 
process. The main advantages of the proposed algorithm are speed. 

The proposed EPA approach was compared to the related methods in the references indented to 

serve this purpose, such as the DP, LR with a zoom feature, the SA, and the TS algorithms. Further EPA 

can start with any initial solution and improves on it to find optimal solution with a high probability. By 

means of stochastically searching multiple points at one time and considering trail solutions of 

successive generations, the EPA approach avoids entrapping in local optimum solutions. In comparison 

with the results produced by the referenced techniques, the EPA obviously displays a satisfactory 

performance with respect to the quality of its evolved solutions and to its computational requirements.  
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5. Conclusions 

This paper presents an EPA to solve the unit commitment problem in smart grid environment. In 

this method, the essential processes simulated in the procedure are mutation, competition, and selection.  

The mutation rate is computed as a function of the ratio of the total cost by the schedule of interest to 

the cost of the best schedule in the current population. Competition and selection are applied to select 

from among the parents and the offspring, the best solutions to form the basis of the subsequent 

generation. In comparison with the results produced by the referenced techniques (DP, LR and SA & 

TS), the EPA obviously displays a satisfactory performance.  There is no obvious limitation on the size 

of the problem that must be addressed, for its data structure is such that the search space is reduced to a 

minimum; No relaxation of constraints is required; instead, populations of feasible solutions are 

produced at each generation and throughout the evolution process; Multiple near optimal solutions to 

the problem involving multiple constraints and conflicting objectives can be obtained in a reasonable 

time with the use of heuristics. 
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