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Abstract

This paper presents a new approach to solving the unit commitment problem using Evolutionary
Programming Algorithm (EPA) in smart grid environment. The objective of this paper is to find the
generation scheduling such that the total operating cost can be minimized, when subjected to a variety
of constraints. This also means that it is desirable to find the optimal generating unit commitment in the
power system for the next H hours. This paper proposes distributed sources which includes electric
vehicles and distributed generation. EPA, which happens to be a Global Optimisation technique for
solving Unit Commitment Problem, operates on a system, which is designed to encode each unit’s
operating schedule with regard to its minimum up/down time. In this, the unit commitment schedule is
coded as a string of symbols. An initial population of parent solutions is generated at random. Here,
each schedule is formed by committing all the units according to their initial status (“flat start”). Here
the parents are obtained from a pre-defined set of solution’s i.e. each and every solution is adjusted to
meet the requirements. Then, a random recommitment is carried out with respect to the unit’s minimum
down times. The Neyveli Thermal Power Station (NTPS) Unit - II in India demonstrates the
effectiveness of the proposed approach; extensive studies have also been performed for different power
systems consists of IEEE 10, 26, 34 generating units. Numerical results are shown comparing the cost
solutions and computation time obtained by using the EPA and other conventional methods like
Dynamic Programming, Legrangian Relaxation and Simulated Annealing and Tabu Search in reaching
proper unit commitment.
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1. Introduction

Power Stations and electricity generating companies and power systems has the problem of deciding
how best to meet the varying demand for electricity, which has a daily and weekly cycle. The short-term
optimisation problem is how to schedule generation to minimize the total fuel cost or to maximize the
total profit over a study period of typically a day, subject to a large number of constraints that must be
satisfied. The daily load pattern for a given system may exhibit large differences between minimum and
maximum demand. Therefore, enough reliable power generation to meet the peak load demand must
therefore be synchronized prior to the actual occurrence of the load. Thus it is clear that it is not proper
and economical to run all the units available all the time. Since the load varies continuously with time,
the optimum condition of units may alter during any period. Therefore, the problem of determining the
units of a plant that should operate for a given load is the problem of unit commitment. For total number
of units of higher order, the problems associated with unit commitment have generally been difficult to
solve because of uncertainty of particular aspects of the problem. For instance, the availability of fuel in
precise, load forecast variable costs affected by the loading of generator units and the losses caused by
reactive flows are some of the unpredictable issues. There are other problems of inconsistency that affect
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the overall economic operation of the electric power station. In order to reach a feasible solution for Unit
Commitment Problem (UCP), different considerations must be considered.

Research endeavours, therefore, have been focused on; efficient, near-optimal UC algorithms, which
can be applied to large-scale, power systems and have reasonable storage and computation time
requirements. A survey of existing literature [1-33] on the problem reveals that various numerical
optimisation techniques have been employed to approach the complicated unit commitment problem.
More specifically, these are the Dynamic Programming method (DP), the Mixed Integer Programming
method (MIP), the Lagrangian relaxation method (LR), the Branch and Bound method (BB), the Expert
system (ES), the Fuzzy Theorem method (FT), the Hop Field method (H), the Simulated Annealing
method (SA), the Tabu Search (TS), the Genetic Algorithm (GA), the Artificial Neural Network (ANN),
the Cuckoo Optimization Algorithm (COA) and so on. The major limitations of the numerical techniques
are the problem dimensions, large computational time and complexity in programming.

The DP method [1-2,13] is flexible but the disadvantage is the “curse of dimensionality”, which
results it may leads to more mathematical complexity and increase in computation time if the constraints
are taken in to consideration. The MIP methods [3-4] for solving the unit commitment problems fail
when the number of units increases because they require a large memory and suffer from great
computational delay. The LR approach [5-8] to solve the short-term UC Problems was found that it
provides faster solution but it will fail to obtain solution feasibility and solution quality problems and
becomes complex if the number of units increased. The BB method [9] employs a linear function to
represent fuel cost and start-up cost and obtains a lower and upper bounds. The difficulty of this method
is the exponential growth in the execution time for systems of a practical size. An ES algorithm [10,13]
rectifies the complexity in calculations and saving in computation time. But it will face the problem if
the new schedule is differing from schedule in database. In the FT method [11, 13, 24] using fuzzy set
solves the forecasted load schedules error but it will also suffer from complexity. The H neural network
technique [12] considers more constraints but it may suffer from numerical convergence due to its
training process. SA [14-17,23-24] is a powerful, general-purpose stochastic optimisation technique,
which can theoretically converge asymptotically to a global optimum solution with probability one. But
it will take much time to reach the near-global minimum. The TS [18-20, 23] is an iterative improvement
procedure that starts from some initial feasible solution and attempts to determine a better solution in the
manner of a greatest — decent algorithm. However, TS is characterized by an ability to escape local optima
by using a short-term memory of recent solutions.

GA [13,21-24] is a general-purpose stochastic and parallel search method based on the mechanics
of natural selection and natural genetics. It is a search method to have potential of obtaining near-global
minimum. And it has the capability to obtain the accurate results within short time and the constraints
are included easily. The ANN [12] has the advantages of giving good solution quality and rapid
convergence. And this method can accommodate more complicated unit-wise constraints and are claimed
for numerical convergence and solution quality problems. The solution processing in each method is very
unique. The EP [25-26] has the advantages of good convergent property and a significant speedup over
traditional GA’s and can obtain high quality solutions. The “Curse of dimensionality” is surmounted, and
the computational burden is almost linear with the problem scale. Electric Vehicle (EV) and its impact
on the cost and emission of power system are studied on basis of UC model in [28-30]. The significance
and feasibility of DR and its role in supply-demand schedule are examined in [31-32]. Economical
operation of distributed generation (DG) and chance-constrained schedule of active network with DG are
researched [33].

From the literature review, it has been observed that there exists a need for evolving simple and
effective methods, for obtaining an optimal solution for the UCP. Hence, in this paper, an attempt has
been made to EPA for meeting these requirements of the UCP, which eliminates the above-mentioned
drawbacks. EPA seems to be promising and is still evolving. EPA has the great advantage of good
convergent property and, hence, the computation time is considerably reduced. EPA is capable of
determining the global or near global solution. It is based on the basic genetic operation of human
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chromosomes. It operates with the stochastic mechanics, which combine offspring creation based on
the performance of current trail solutions and competition and selection based on the successive
generations, form a considerably robust scheme for large-scale real-valued combinational optimisation.
In this proposed work, the parents are obtained from a pre-defined set of solution’s i.e. each and every
solution is adjusted to meet the requirements. And the selection process is done using Evolutionary
Strategy [25-26]. The application on the NTPS and IEEE systems consists of 10, 26, 34 generating
units’ shows that we can find the optimal solution effectively and these results are compared with the
conventional methods.

2. Problem Formulation

2.1. Smart Grid Environment
With the progress of smart grid, DR become more active. They may play an increasingly essential
part in power system operation. In this paper, EV and DG are considered in the UC model.

1) EV: Smart grid is a perfect platform for the collaborations between the system operators and
EVs. With the associated techniques getting settled, it is feasible for EV to sold electricity back to the
grid. There is fictional to be an aggregator to link between the system operator and a great number of
EV owners [28-30]. If an EV is indolent for a certain period, its owner can sign a contract with the
system operator for commitment via the load aggregator. The sum of EV can be preserved as a special
unit. Considering there is an increasing peripheral cost to involve more EV proprietors, the cost function
of EV is expected to be a quadratic function

EVeTC(EVe,) =a; + b;EVe, + c,EVe,’ (1)
where:

EVeTC = EV export total cost

EVey = EV export at time k

ai, biEVey, ciEVer = cost coefficients of EV export at time &

Firstly, in case of emergent use of EV’s owners, a lower limit of SoC is considered (2). Secondly,
for the sake of safe operation of the gird, an upper limit on total output of EVs at each hour should be
stipulated (4). Thirdly, now that EV may not be connected to the grid all the 24 h, it is sensible to set a
time range limit when EV is available for the system operator (5). Fourthly, the available capacity of
EVe at each hour has an upper limit, respectively.

SoCy >S0C,i @)
k k
C,.+ > EVi,—> EVe,, \
SOth — x=1 x=1 ( )
) Ck
EVe,= E EVey <EVe,,. 4)
t=1
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EVek,t = Oak ¢ [klakz] (5)
EVe,<EVey ax (6)
where:

SoC = state of charge of EV

SoCr, = state of charge of EV ¢ at time £

S0Coin = minimum limit of SoC at each hour

Cox = initial charging state of EV at time &

EVer, = EV export ¢ at time k&

EVenax = maximum limit of EV export capacity

EVermax = maximum available EV export capacity at time k&

2) DG: When more DG’s are connected to the grid, then both importing and exporting power from
and to the DG’s should be taken into consideration in the UC model. Here the power can be sold to grid
is DGe and the power purchased from the grid is DGi. The cost function of the DG is expected to be a
quadratic equation

DG(DGe,) = a, + b,DGe, +c,DGe,’ (7)
where:

DGey = DG export at time k

aj, biDGey, c;DGey = cost coefficients of DG

Firstly, DG’s output is subject to natural resource and weather condition, so an upper limit on
available DG at each hour is considered. Secondly, DG tends to be intermittent and volatile, an upper
limit on its penetration rate should be set to ensure a reliable operation of the power system

D GekSD Gek,max (8)
DGek <
= < 9
T SN (P, ;) +EVe,+DGey, Tmax ©)
where:
DGermex = maximum available DG export capacity at time k&
Nk = penetration rate of DG at time #
Himax = max penetration rate of DG at time ¢
P = output of unit 7 at time &k
Lk = on/off status of unit / at time k
2.2. UC Model

The objective is to find the generation scheduling such that the total operating cost can be
minimized, when subjected to a variety of constraints [27]. In the UCP under consideration, an
interesting solution would be minimizing the total operating cost of the generating units with several
constraints being satisfied. The major component of the operating cost, for thermal and nuclear units, is
the power production cost of the committed units and this is given in a quadratic form in (10).
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F,(P)=AP%+BP,+C, Rs/hr (10)
where:

A;, Bi, C; = the cost function parameters of unit i (Rs./MW?hr, Rs./MWhr, Rs/hr)

Fiu(Pi) = production cost of unit 7 at a time ¢ (Rs/hr)

Py output power from unit i at time ¢ (MW)

The startup cost depends upon the down time of the unit, which can vary from a maximum value,
when the unit { is started from cold state, to a much smaller value, if the unit i has been turned off
recently. The startup cost calculation depends upon the treatment method for the thermal unit during
down time periods. The start-up cost Sy, is a function of the down time of unit i as given in (11).

Sit = So;i[1-D;exp (-Toff; / Tdown;)] + E; Rs (11)
where:

So; = unit  cold start — up cost (Rs)

D, E; = start—up cost coefficients for unit i

The overall objective function of the UCP is given in (12).

I N 24

Fp =Y Y UF,(P)U, + SV )1+) [EVe(EVe,) + DG(DGe,)] Rs/ Hr (12)
t=1 i=1 k=1

where:

Uy = uniti status at hour # =1(if unit is ON) =0 (if unit is OFF)

Vi~ = uniti start up / shut down status at hour ¢ =1 if the unit is started at hour ¢ and 0 otherwise

Fr = total operating cost over the schedule horizon (Rs/Hr)

Si = start up cost of unit i at hour t (Rs)

2.3. Constraints

Depending on the nature of the power system under study, the UCP is subject to many constraints,
the main being the load balance constraints and the spinning reserve constraints. The other constraints
include the thermal constraints, fuel constraints, security constraints etc. [27]

1) Load Balance Constraints
The real power generated must be sufficient enough to meet the load demand and must satisfy
the following factors given in (13).

N
Y PU, = PD, - EVe, - DGi, - DGe, + PL, (13)
i=1
where:
PD; = system peak demand at hour £ (MW)
N = number of available generating units
U (0,1) = the uniform distribution with parameters 0 and 1

UD (a,b) the discrete uniform distribution with parameters a and b
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2) Spinning Reserve Constraints
The spinning reserve is the total amount of real power generation available from all
synchronized units minus the present load plus the losses. The reserve is considered to be a pre
specified amount or a given percentage of the forecasted peak demand. It must be sufficient enough to
meet the loss of the most heavily loaded unit in the system. This has to satisfy the equation given in
(14).

N

> Pmax, U, >(PD,+R)1<t<T (14)
i=1

where:

Pmax; = Maximum generation limit of unit

R, = spinning reserve at time ¢t (MW)

T = scheduled time horizon (24 hr)

3) Thermal Constraints
The temperature and pressure of the thermal units vary very gradually and the units must be
synchronized before they are brought online. A time period of even 1 hour is considered as the minimum
down time of the units. There are certain factors, which govern the thermal constraints, like minimum
up time, minimum down time and crew constraints.

a) Minimum up time:
If the units have already been shut down, there will be a minimum time before they can be
restarted and the constraint is given in (15).

Ton; = Tup, (15)
where:

Ton,; = duration for which unit 7 is continuously ON (Hr)

Tup; = unit { minimum up time (Hr)

b) Minimum down time:

If all the units are running already, they cannot be shut down simultaneously and the
constraint is given in (16).

Toff, > Tdown; (16)

where:
Tdown;

Toffi

unit # minimum down time (Hr)
duration for which unit i is continuously OFF (Hr)

4) Must Run Units
Generally in a power system, some of the units are given a must run status in order to provide
voltage support for the network.
The entire problem formulation for solving the UC using EP in Smart Grid environment is
formulated as block diagram and is shown in Fig. 1.
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EP for solving UCP in SG

Distributed Generation

Natural
resource
and
weather
condition

Intermittent
and volatile

Fig. 1 Block diagram of UC using EP in smart grid environment.
3. Evolutionary Programming

3.1. Introduction

EP is a mutation-based evolutionary algorithm applied to discrete search spaces. David Fogel (Fogel
1988) extended the initial work of his father Larry Fogel (Fogel, 1962) for applications involving real-
parameter optimization problems. Real-parameter EP is similar in principle to evolution strategy (ES), in
that normally distributed mutations are performed in both algorithms. Both algorithms encode mutation
strength (or variance of the normal distribution) for each decision variable and a self-adapting rule is used
to update the mutation strengths. Several variants of EP have been suggested (Fogel, 1992).

3.2. Evolutionary Strategies

For the case of Evolutionary strategies D. B. Fogel remarks “evolution can be categorized by
several levels of hierarchy: the gene, the chromosome, the individual, the species, and the ecosystem.”
Thus, while Genetic Algorithms stress models of genetic operators, Evolutionary Strategies emphasize
mutational transformation that maintains behavioral linkage between each parent and its offspring at the
level of the individual. Evolutionary Strategies are a joint development of Bienert, Rechenberg, and
Schwefel. The first applications were experimental and addressed some optimization problems in
hydrodynamics.

3.3. EP General Algorithm

Evolutionary programming [25-26] is conducted as a sequence of operations and is given below.
The schematic diagram of the EP algorithm is shown in Fig. 2.
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Fig. 2 Flowchart of Evolutionary Programming Algorithm

Algorithm 1 EP General Algorithm

1.

The initial population is determined by setting s; = Si ~ U(ax, bx)* i =1,...,m, where S; is a random
vector, s; is the outcome of the random vector, U(ax, b)* denotes a uniform distribution ranging
over [ax, bx] in each of k dimensions, and m is the number of parents.

Each s;, i=1,...,m, is assigned a fitness score 9(s ;) = G (F (si), vi), where F maps s; —>R and denotes
the true fitness of s;, v;, represents random alteration in the instantiation of s;, random variation
imposed on the evaluation of F(s;), or satisfies another relation s;, and G (¥ (si), vi) describes the
fitness score to be assigned. In general, the functions F and G can be as complex as required. For
example, F may be a function not only of a particular s;, but also of other members of the population,
conditioned on a particular s;.

Each si, i=1,...,m, is altered and assigned to s; + m such that

Si+m=Sij + N (0, Bj 9(s5) + z),j=1,....k

N (0, Bj 9(s i) + z) represents a Gaussian random variable with mean p and variance o2, B;is a
constant of proportionality to scale 9(s i), and zj represents an offset to guarantee a minimum amount
of variance,

Each si +m, i=1,...,m, is assigned a fitness score

3(s itm) = G (F (Sizm), Vitm)
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5.

For each si, i=1,...,2m, a value wi is assigned according to

1, if 9(si) <9(si);

0, otherwise;
Where p = [2mu; +1], p #1, [x] denotes the greatest integer less than or equal to x, ¢ is the number
of competitions, and ul~U (0,1).
The solutions s;, / = 1...2m, are ranked in descending order of their corresponding value W;[with
preference to their actual scores 9(s ;) if there are more than m solutions attaining a value of ¢]. The
first m solutions are transcribed along with their corresponding values (s i) to be the basis of the
next generation.
The process proceeds to step 3, unless the available execution time is exhausted or an acceptable
solution has been discovered.

3.4. Evolutionary Programming for UCP

Algorithm 2 EP for UCP

1.

Initialize the parent vector p = [py, p2, ... pal, i = 1,2,...N, such that each element in the vector is
determined by p; ~ random (pjmin, Pjmax), j = 1,2,...N, with one generator as dependent generator.
Calculate the overall objective function if the UCP is given in equation (12) using the trail vector p;
and find the minimum of Fr.
Create the offspring trail solution p; using the following steps.
(a) Calculate the standard deviation

0 = Py I min(Fr))(P e = P )
(b) Add a Gaussian random variable N (0, ;) to all the state variable of p;, to get p; .
Select the first N, individuals from the total 2N, individuals of both p; & p;” using the following steps
for next iteration.
(a)Evaluate » = (2N, random (0,1) + 1)
(b)Evaluate each trail vector by W,=sum (W,), Where x =1,2,...N,,i=1,2,...2N, such that W, =1
if Fry/ (FriitFriy) <random (0,1), otherwise, W,= 0.
Sort the W,; in descending order and the first N, individuals will survive and are transcribed along
with their elements to form the basis of the next generation.
The above procedure is repeated from step (2) until a maximum number of generations N, is
reached.
Selection process is done using Evolutionary strategy.

4. Numerical Results

A NTPS in India with seven generating units from I to VII, each with a capacity of 210MW, has

been considered as a case study. A time period of 24 hours is considered; the unit commitment problem
is solved for these seven units and also compared with IEEE 10, 26, and 34 generating unit power
systems. The required inputs for solving the UCP are briefed here. The total number of generating units,
the maximum real power generation of each unit and the generation system operation data of each unit
are tabulated for a day, respectively, as shown in Table 1 and Table 2 for NTPS. The cost coefficients
of DR is shown in Table 3. EV and DG are set at units V and VII respectively, since the load demands
at these units are quite high compared with other units.
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Table 1 Daily Generation of Seven Units in MW.

Hour Pmax I II 11 v A% VI vl
1 840 60 80 100 101 149 150 200
2 757 60 0 100 100 147 150 200
3 775 60 0 100 115 150 150 200
4 773 60 0 100 113 150 150 200
5 770 60 0 100 110 150 150 200
6 778 60 0 100 118 150 150 200
7 757 60 0 100 100 147 150 200
8 778 60 0 100 118 150 150 200
9 770 60 0 100 110 150 150 200
10 764 60 0 100 104 150 150 200
11 598 60 0 99 97 142 0 200
12 595 60 0 100 96 139 0 200
13 545 0 0 100 99 146 0 200
14 538 0 0 99 97 142 0 200
15 535 0 0 100 96 139 0 200
16 466 0 0 0 116 150 0 200
17 449 0 0 0 101 148 0 200
18 439 0 0 0 97 142 0 200
19 466 0 0 0 116 150 0 200
20 463 0 0 0 113 150 0 200
21 460 0 0 0 110 150 0 200
22 434 0 0 0 95 139 0 200
23 530 60 0 0 120 150 0 200
24 840 60 80 100 101 149 150 200

Some other parameters in our model are assumed as follows. The lower limit of SoC is 25%. The
average of SoC before dispatching is 75%. The average battery capacity of EVs is 34 kWh. The quantity
of EVs that can conduct EVe is 8500. In order to facilitate management, this paper assumes that the
system operator will only sign contract of EVe if the EVs are available in the evening. Accordingly, the
available periods of all the EVs are the same in this paper, assumed 20-24 o’clock. The available capacity
of EVe at these hours is 24, 23, 22, 21, and 20 MW, respectively. The maximum bearing capacity of the
grid for EVe is assumed to be 24 MW at each hour. The upper limit of demand curtailment response is
7% of total load demand in this hour, and the upper limit within a day is 320 MWh. Now that solar power
may be the main DG source, the available DG is set higher during the day. Specifically, it is 40 MW
between 7 o’clock and 17 o’clock and 20 MW during the other time, among which two-thirds are used
by consumers themselves and one-third would be sold to the grid. The upper limit of DG penetration rate

is 6%. This paper considers four scenarios as shown in Table 4.
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Table 2 Generation System Operation Data.

Unit Prin Pax Running Cost Start-up cost
ni
(MW) (MW) G B Ai Soi D; E;
(Rs) (Rs/MWh) (Rs/MWh?) (Rs) (Rs) (Rs)
1 15 60 750 70 0.255 4250 29.5 10
2 20 80 1250 75 0.198 5050 29.5 10
3 30 100 2000 70 0.198 5700 28.5 10
4 25 120 1600 70 0.191 4700 325 9
5 50 150 1450 75 0.106 5650 32 9
6 50 150 4950 65 0.0675 14100 37.5 4.5
7 75 200 4100 60 0.074 11350 32 5.5
Table 3 Cost Coefficients of DR.
Running Cost
DR Ci Bi Ai
(Rs) (Rs/ MWh) (Rs/ MWh2)
EVe 750 70 0.255
DGb 1250 75 0.198
Table 4 Operation Settings.
Operation Settings
Operation 1 EV Not Connected, DG Not Connected
Operation 2 EV Connected, DG Not Connected
Operation 3 EV Not Connected, DG Connected
Operation 4 EV Connected, DG Connected
Table 5 Comparisons of cost and CPU time for NTPS, 10, 26, 34 unit systems.
System Methods Total Cost (p.u.) CPU Time (Sec)
DP 1.00000 605
LR 0.96481 578
7 — Unit Utility System SA 0.95000 570
TS 0.95239 575
EP 0.94120 546
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System Methods Total Cost (p.u.) CPU Time (Sec)

DP [1] 1.00000 325

LR [6] 0.94123 279

10 — Unit IEEE System SA [17] 0.93210 285
TS [18] 0.93435 290

EP 0.92336 254

DP [1] 1.00000 509

LR [6] 0.95968 495

26 — Unit IEEE System SA[17] 0.94570 489
TS [18] 0.94750 494

EP 0.93680 478

DP [1] 1.00000 1452

LR [6] 0.99910 1368

34 — Unit IEEE System SA[17] 0.98015 1370
TS [18] 0.98291 1376

EP 0.97210 1362

The status of unit i at time t and the start-up / shut - down status obtained are the necessary solution
for SA, TS, EPA, DP, LR methods for NTPS. The comparison of the total costs and Central Processing
unit (CPU) time is shown in Table 5 for NTPS, 10, 26, and 34 generating unit power systems. Fig. 3
represents the total production cost obtained by each parent for 25 iterations in EPA. Similarly, for 50
and 100 iterations are obtained. Fig. 4 gives the plot of EPA average performance from 1000 runs. The
Fig. 5 gives the plot of No. of iteration versus the time taken to complete those iterations and the

maximum production cost obtained under each iteration.

Evolutionary Programming Algorithm
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Fig. 3 Total production cost for 25 iterations.
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From these results, the EPA had lesser total cost and took lesser CPU time in all the power systems
considered including NTPS. As we indicated in the paper, the EPA has also proved to be an efficient tool
for solving the important economic dispatch problem for units with “non-smooth” fuel cost functions as
referred in [26]. Such functions may be included in the proposed EPA search for practical problem
solving. There is no obvious limitation on the size of the problem that must be addressed, for its data
structure is such that the search space is reduced to a minimum; no “relaxation of constraints” is required;
instead, populations of feasible solutions are produced at each generation and throughout the evolution
process. The main advantages of the proposed algorithm are speed.

The proposed EPA approach was compared to the related methods in the references indented to
serve this purpose, such as the DP, LR with a zoom feature, the SA, and the TS algorithms. Further EPA
can start with any initial solution and improves on it to find optimal solution with a high probability. By
means of stochastically searching multiple points at one time and considering trail solutions of
successive generations, the EPA approach avoids entrapping in local optimum solutions. In comparison
with the results produced by the referenced techniques, the EPA obviously displays a satisfactory
performance with respect to the quality of its evolved solutions and to its computational requirements.
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5. Conclusions

This paper presents an EPA to solve the unit commitment problem in smart grid environment. In
this method, the essential processes simulated in the procedure are mutation, competition, and selection.
The mutation rate is computed as a function of the ratio of the total cost by the schedule of interest to
the cost of the best schedule in the current population. Competition and selection are applied to select
from among the parents and the offspring, the best solutions to form the basis of the subsequent
generation. In comparison with the results produced by the referenced techniques (DP, LR and SA &
TS), the EPA obviously displays a satisfactory performance. There is no obvious limitation on the size
of the problem that must be addressed, for its data structure is such that the search space is reduced to a
minimum; No relaxation of constraints is required; instead, populations of feasible solutions are
produced at each generation and throughout the evolution process; Multiple near optimal solutions to
the problem involving multiple constraints and conflicting objectives can be obtained in a reasonable
time with the use of heuristics.
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