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ABSTRACT

Automatic news classification is an important task in natural language processing, as it facilitates
the categorisation and retrieval of information from large news sources. This research aims to compare the
performance of machine learning techniques by examining the effects of feature extraction methods and
imbalanced data handling. The dataset used in this study is the HuffPost News Category Dataset. Data
preparation includes text cleaning, stopword removal, and the combination of news headlines with short
descriptions. Features are generated using n-grams and transformed into numerical representations using
Bag- of- Words (BoW) and term frequency-inverse document frequency (TF-IDF). Four algorithms are
evaluated, namely Multinomial Naive Bayes, Complement Naive Bayes, logistic regression, and linear
support vector classification (LinearSVC), using 5-fold cross-validation. The experimental results show that
linearsvc combined with tf-idf achieves the highest performance, with an accuracy of 82.64% and an F1-
score of 81.87%, while multinomial naive bayes is more suitable for Bow. In addition, the use of bigrams
helps reduce ambiguity and provides richer textual context than unigrams. For imbalanced data handling,
SMOTE produces better results than adasyn and undersampling, achieving an accuracy of 81.67% and an
F1-score of 81.68%. In conclusion, this research provides empirical evidence that using tf-idf together with
linearsvc and smote for imbalanced data is a highly effective approach for news classification. These findings

can be applied to other types of text classification systems and serve as guidance for future research.
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Logistic Regression C [0.01, 0.1, 1, 10, 100]

Linear SYM C [0.01, 0.1, 1, 10, 100]
loss function hinge way squared hinge

1Y o

8. A2TIANTI5USLLTUNANITAIUIIY

P v '
[ ds["zjjv o A

nsUszdlulszansnmveslunalunuidelldsmdin ivanuansifisazsiounmsuuaziinziyauda

o

JngouraIiazdanasniuligesausu Tuasdunfitinnldlunsuseiliuaunmueiiuuwandlunigan 3

v
v [ 1%

AN597 3 FRTTR NIDUANTANIEULATA1BDUNE

U

v

T in GLEGRIRY Ae5UY

accuracy K tp, éTmhwumszi’nﬁImmaﬁwmwmw%gﬂé’mﬁwm \ile
o deufusuautomslugenagoy

precision tp ﬂ'mamLLu'ush‘ummwi’mwiwmwaﬁu 9 LYY NN
(tp + fp) Tamaneindu politics sy politics 93a3el

recall Auansaveslumalunisisg i unneiass 9
(t;fpm) 2ONUNARTULALWL 11 917 healthy living 939 Tuinam

Wwanteeiiadla
F1-score (precision x recall) Afiau precision wa recall linAnuannaszninanis
(precision + recall) unggnuazn1smasuluusaeniIng
macro f precision 1dvasmnvanat ngliynuadtinin
precision m Wi YreuenIntunarinnuannasEnI19mNIn g

@ =1
PIALANLNEILA




MUY MIATINYIAENS UV, UN 54 LauR 1 223

£
o @

M137 3 FTIR NiouansAIMKALA1DSUNY (o)

1790 GLEGRITPIY Meduny
macro S recall, Alad e recall vosnnuunY17 I¥asiaaoudiluing
recall k annsnanddnuazve ey isideyatosliaiiede
macro Aads Fl-score wuulidasmiin wangdmdulszdu
Fl-score % Usgansnnlunmsulaglalinnefiideyaunuinay
indeulyymveianadn

micro K tp precision 531YBWNNLINYTT IAgNBITIUWIURAYIIUIEN
precision Kitp + X, fp LavAnINTasT UL Wnzdnsuussdiunmsiaveduna
micro v tp recall 9183919 NMNIA 189 UszAniamsindissuy
recall Ziitp + X, fn anansadsiTigndeseeninléiuelm

micro (micro precision X microrecall) A 1UITANTAINTIUTTAUAI0E19Y 1) g alusuduun
Fl-score (micro precision + microrecall)  {Jsginmuuu single-label ez Wity accuracy Lo

e TP (True Positive) fis S1uauiivhunegnindumnaiiu
FP (False Positive) Aodunuivhunefininlunuindy @59 q Wunuindw)
FN (False Negative) Ao Snuiufiumnaiuass q uivhuieRaludumnndu

K fie Snuiumnangianan uwag n Aeduiudieg1edayariavn

NAN15IVYLALITINA

v
] |

msendunismeaeslunuideiulsesnduaiudiunan laun (1) miei’ﬁm%'ayjal,ﬁwﬁ’fu (2) Ny
Wisuiisumaiansudasfeyaidunadnuas uay (3) msuszdiumedianisdnnisdeyaldauna nanisveaedly
uriazauileil
1. Mashsrateymiosdu

1.1 ensfvesidnet madianesianuivessdwinounisaudmeailiddgseidemvesim wuied
fimufgean loun "the” "to" "a" uaz "of" Faduflsifiamnsiemeazasiemssuunyszanin nésnn
GTWLﬁumsaUﬁwﬁlaiﬁwﬁ’iyLLé’q wudﬂﬁwﬁﬁmmﬁqﬂq@LﬂﬁauLﬂu "new" 91U 13,555 ada91nunANITITLA
148,122 UnAH T99A97LALA "trump” "one” Lag "like" MUEIAU

1.2 MTATIEAOULNTY m'ﬁmeﬁuﬁwLﬁwgﬁmimmﬂuLLﬂiifLum'iNﬁ 4 welsudesingrAgy
vaagunsy ﬁaﬂnmwmwmqmﬂ%mmﬁﬂﬁﬁmmﬁqq LU A197 "new" ﬁﬂﬁmgiuwmwmwyj wellness (1,717
%9 uay entertainment (1,976 a%s) villslannsaldidusyadidnvasamsvosusasmnat il luvasiluun
suuanUszdvdammmieninlaensnndassiiegintu Hreairsuunitaaulazanmiunguiaie fegnad

wudn laun "health care" (216 A39) Tunuan wellness AANUMNBIRNIZIALAT "new york” (189 A59) Tumuan

a

travel Vllizqamwmwmﬁwm wavnIsiUasuan "gay" WJu "gay men" Tuninm queer voices ﬁizgﬂﬁjmﬁ’mma
oty aglsfioy luunsudaiifesfiauisszns iwu "donald trump” Ausingiidiu politics (2,568 ASY) uax
entertainment (304 A%1) WARYINYARAATIIULUIAUATOUARLMANBMNAIAMY UBNANT "sure check luman
style & beauty (770 A$3) awLﬁmﬁmgmwumﬂ%ummiwLﬁyawmé”ﬂ lngasy luunsuuansdszdnsam

=] a a ° o

wilenngfiunsuegretaau lnglideyandinizwazuiuniidaaundt vlnduaiedienivss@niamdmsu

A5IUNUTENNI AT HDRAIN A
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15199 4 Alugduuugiunsuwarluunsy inuvseiignluldasnuinmgun

NUIANYU gunsy (Aad) luuns (Awd)
politics trump (8,610) donald trump (2,568)
wellness new (1,717) health care (216)
entertainment new (1,976) donald trump (304)
travel travel (1,414) new york (189)
style & beauty fashion (1,791) sure check (770)
parenting kids (1,420) cute kids (99)
healthy living health (579) gps guide (107)
queer voices gay (1,705) gay men (98)
food & drink food (788) ice cream (83)
business new (627) women business (120)
comedy trump (702) donald trump (322)
sports nfl (436) super bowl (127)
black voices black (1,390) black lives (87)
home & living home (1,353) craft day (142)
parents kids (537) say darndest (44)

2. maSeudisumaiinnsuUasdoyalunaanuae
msuvatornulmndunisunuaidshaudutuneuddalunisussanananusssun@ wedanisana
AuanvuzFenlvdmalagnswiauszAninmuesdanesiun1siseuiveunies nan1saaesUTe U UTENIN

BoW uaz tfidf lupnsnedl 5 weliiuguuuunisnevauesfivainateveswsazdanesiiy

A1519% 5 MaSeufisulszdnSaim Bow uay tfidf lulunasieg

Model Accuracy Fl-score

BowW  tf-idf  (tf-idf vs Bow) BoW  tf-idf  (tf-idf vs Bow)

Multinomial naive bayes 80.84 69.90 -10.94% 78.75 65.24 -13.51%
Complement naive bayes 80.70 81.49 +0.79% 78.46  79.35 +0.89%
Logistic regression 81.70 82.26 +0.56% 81.55 81.19 -0.36%
Linear support vector classification  80.88 82.64 +1.76% 80.87 81.87 +1.00%

PNHANITIATIERNLEALUAI5199 5 WU Tauwma multinomial naive bayes LanIAMLLMNIEENAU BowW

9g139L9u fuA1 accuracy 7l 80.84% wag Fl-score 7l 78.75% Fageninnsldl tidf i 10.94% uay 13.51%

= o ° .

PSRy HadndilsUssandllaenadosiusingrummguiissyliluaunisi (1) adane3fiudwnanuiinzy
Tngandesiuls Ngnienududnuaiesdiiivsng sukuudeyadnn Bow Jafinudnvasluinnuiuinsmny
JoaunAguresaunsegvanysal luaaed thidf wlasindanaadunafisuaisimin ilideyanteudrdluna

Weauulvandoumsedamansaauiy uenanil nsantininafinulesves t-idf Ssdswalimdfgyvsuen
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ndnualvemIInnYIgnannauALdIAtad dwaliuszavsnmvedunaanianiiadisutunisidanudnu
371 BoW

Tumnansetudin complement naive bayes waniwafiwangns lag tf-idf WWuszansamdfinin Bow
\Entien #awen accuracy i 81.49% uay Fl-score i 79.35% nnsusuvgsiiAndu 0.79% uaz 0.89% mudidu
ArmuAnAsioIainannnsfi complement naive bayes gnosnuutaiitoudladigmussdeyaitliauga vl
anunsaldusylesianmatsindnues thidf 1dfind

TuLaa linear support vector classification UiiqﬂizﬁwﬁﬂﬂququﬁQTGﬁﬁU tf-idf A18A1 accuracy i
82.64% g Fl-score i 81.87% 3Ani1 BoW &1 1.76% wag 1.00% suandu anudniadaenadasiudnume
294 support vector machine ﬁﬁﬂ’ﬂﬁJﬂ’]ﬂJ’liﬂIumi{]}fﬂﬂ?iﬁU%@HﬁﬁﬁﬁﬁQﬂLLagﬂ’J’IMLU’lU’N logistic regression
dnauogUiuuuraule thidf ¥asU$uUse accuracy L ud U 0.56% uindurialil Fi-score anas 0.36%
‘Ui’]ngmifﬂﬁa’maxﬁauﬁqwaﬂswusuaqmidaa‘«fmﬁﬂﬁiamﬁﬁLLuﬂﬂismmﬁﬁ%’agahjama M3UTUU3 accuracy
Tnsswesmieuiunisanasvesseavnmlumssuunnguiidivunndn

v s o

nsfnuiiauendngrudslszdneiiduduinnisidenldmedanisatnquanvasdludesiansansiuiv

(%

Audnuandmnuivesdaneifiunsfeud lifwedalafiuansnnudeniluynuiunnisussondld fadu a
iilalundnnisvinuidsdanesiiudadimuddnlunisidenliinadaililssansnmaagn
3. nsuszlivmatiamsianistayaliaunga
Jaymnsnsznedeyaliaunadunivimeiinuliveslugndeyasss nsdamalisanesiunsiFeusil
wultudnBedludssaniifideyainnnd lunudwundssianinil Ussangmuislssan wu parents wa
black voices fif1uaudiegwiasnispanduegramin anuanisnaaeslutuneunouniiuandliifui
linear support vector classification $3uiu tf-idf liUsean3nmMgagn Aae accuracy WA 82.64% N15ANWITS
Bonldnisdsandiduiugulunisssfiumedanisdanisteyaliaugaauiuy 1dud smote adasyn uas

undersampling

85
83
81.6781.64 81.6781.64 81.7281.67 81.6881.63
81 80.32
79.06
79 78.44 78.44
) I I
75

Accuracy Recall Precision F1 Score

B Undersampling |l SMOTE g ADASYN

JUT 1 msnlSeuiisulssansamveameiansinnisteyaliauga
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91n3U7 1 wanslifiiiug smote Tiuszdnningeanaiean accuracy uwag Fl-score 91 81.67% waz

Aoy o

81.68% snuadiu Audsaves smote iAnannsaedeyadunsginitinaunmdmivUssinndniddeyatios
Tneflimanns k-nearest neighbors Tunmsadasegnslmifiogluinnlndifsstudeyaraiu Fansthelfluna
amnsniSoudnvuzianzvesUsziantiiiveyatesldeg1siiusaniaw 91nnan153AIEY WUt adasyn
wanssEansnmiinnin smote usfinazlindnnisadendaiu mruunnsimdnde adasyn yuliunisaiistoya
TniluvinadendemsGeuinnndy nsufuusddudeudonalmfnmaaiadoyailivensauiudnsmrvos
foyatoru Fadiaruuiviuarifa luvaedl undersampling sy ansnmigalunsvaaesi uwiiineini

dreuitymaruliaunala winisandruiuteyalulssianiddeyauinenaviliaydedoyaniusslovl

lnglangluusunveslayateninuiineanismieg duIuania U FUIUA WIvaInvany

Confusion Matrix of LinearSVC with TF-IDF and SMOTE 5000

ENTERTAINMENT 4 2887 77 79 212 102 67 78
3000

HEALTHY LIVING - 38 536 B4 75 25 39 521

PARENTING - 70 61 1340 47 46 26 179

4000

T
L
f POLITICS 1 178 128 B4 19 77 108
=]
F I 3000
STYLE & BEAUTY { 102 43 51 33 1633 33 54
2000
TRAVEL{ 63 42 28 41 40 1676 76
WELLNESS { 67 374 171 97 63 92 2628 L 1000
= 2 2 4 E g 8
= = E E =4 S =
= - & ] @ = =] _—
= z «© 2 e g
& 5 & o
= g =
g T &

Predicted label

U 2 confusion matrix Y8INTTMUNNLIANLYNY 7 A

1Y 1

NUN 2 Fawana confusion matrix N15ATIZYRANTIUNNUT Rl usedvBnmAwane1aiuegs

a a

Faauluusiasnuianyind WeSeufiguiulssansnmlagsin 81.67% wud wuinny politics wanuseangam

qaqmﬁaamﬁmuﬂﬁgnﬁaa 6,622 S18M159 NN IMUA 7,216 519713 AaLdudnsIALLLug 91.8% s?faqwm
Aadelnesiuds 10.1% Usdindnnsidiesdidnsaramenmanimidanulasuenueglaing Wy fmimsiawy
srunsidles FednnisdlomasUssiumenisdios vy travel uag wellness wansUszAnsnmiinluseiuses
warlndiAsatuaiad slnesiu Ing travel ﬁﬂ'ﬁﬁf’]LLuﬂﬁIQﬂﬁad 1,676 578115370 1,966 518015 (85.2%) wag
wellness ﬁmﬁmuﬂﬁgﬂﬁm 2,628 5181159717 3,492 519015 (75.3%) m’ma‘hL%suawmwgmdwﬁmammﬂ

nsAdEniRnzlauunTaay Wy aa1uiivieaiied AANTTUNISAUNIE §mSU travel wazAAwingIfugunIn

N1509NAN8IN18 NMRARIIEY 15U wellness lunaue iy healthy living uaniUsednsninsign aed
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AuuugLes 40.7% (536 970 1,318 519n13) FeininAnadelnesani 40.9% Ui dadlymddaluns
LLsmwamwgﬁfmﬂwmw@u sUnuumMsTwunndididy msliesevisuuuunssuuniameliifiuusss
dAgyvatelsenis miﬁi’ﬂLLuﬂﬂmﬁﬁulé’%’mﬁqﬂﬁaﬂﬁﬁﬁdn healthy living gnd1uundmdu wellness g 521
s18m3 Fadudnugeaeluavindimua Unngnisaiifansaesuigldanaruauismadeomszaiaaes
nuanny Inovisaeanuiany fnsld@dmyiviA sadesduguain 1y *health” "nutrition” *fitness” "diet"
"exercise” "wellbeing” yililuinalianunsausnueglavg1etniau

miﬁi”lLLuﬂﬁmgﬂLLuuguﬁmaﬂa laun parenting ﬁgﬂﬁi”]LLUﬂﬁmﬂu healthy living 371uU 84 518115
Feawouliifuindomifvriunmsdsmidninidesdestuguamueain nisquaguaimaseuass uazduugiin
Fruguamdmiugunases uenand mnAmy entertainment WARIULUUNIINTFINEFDINITIMUNARLUS S
ey Fionatsiindemiuisdinnunanuaisuareiaeseunquiideie Arudeusumnangsu Jade
fdwasioyszansamnisduun amnuuanidlulszansaimmssuunseninmnenyausaesungldanvane
ady Uadousnie muanizianzsweaddw waavyfifiussansniwgs wu politics Sindidmiamzlaumd
livsingluvsnanydu luvas fivanemyifinssuuniings 1wy healthy living uaz wellness fnsldrdwvisaniu

<

110 Jadeviddne AUt UUINSITUVDINITD ﬁmwyjﬁlﬂugﬂﬁﬁu WU travel MAN1SNAIDIFDIUTILRNY

°

Aanssuamy funliufiezgninunlsusiugnimmaniiduuusssuvienseunquitenine Jedeiiawde
Arwaunavestoys uidaedinsléinada smote uwd uidnuaslanizvendoniluudaznanydsnsdsnase
UsgdvBnmnisiseuivedues

WielinsUssdusyAnsnmuasluinansaunquunnnicnIsseua accuracy Wiissiaien swided
AU precision recall Wag Fl-score LLUﬂ@WNﬁN?ﬂM@gj‘d’h FIWDITNBIUAUU macro-average Wag micro-

average FALVOUNAANTNIIUTEAUNIIANYUAZANTINVBYATBYA

A15197 6 ANUsEANEN NS EVINAVY

%mmmﬂ' Precision Recall Fl-score
entertainment 0.8483 0.8249 0.8364
healthy living 0.4251 0.4067 0.4157
parenting 0.7295 0.7575 0.7432
politics 0.9291 0.9177 0.9234
style & beauty 0.8470 0.8379 0.8424
travel 0.8338 0.8525 0.8431
wellness 0.7212 0.7526 0.7365

A151991 6 wanananistunlunaasnuiany lasvuan politics travel style & beauty uae
entertainment 14i#i1 F1-score g¢n31 0.80 azstoudadnvazAdniianisfigaelilunaswunldeg1auiug
@11 parenting uag wellness T¥A1 Fl-score a&gjﬁﬂizmm 0.73 - 0.74 iz healthy living §if1 F1-score Gi"’lﬁqm
(0.416) LLaxﬁmwmammé"auqq Tnedeyadnuinuingniwunialuidu wellness s19Bsannatinandly gﬂﬁ 2

confusion matrix
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o

A15799 7 HaN15UsEEUUSEANSAINAINS IV UUTIABIRILHITIALUY Macro wag Micro

o

Usplnnsinain Precision Recall F1-score
Macro (edewinfuynysan) 0.7620 0.7642 0.7630
Micro (Laﬁﬂmuﬁwmu%zﬂa) 0.8167 0.8167 0.8167

HAaN1SUTEEIUNINTINAIY Macro kae Micro a@3ulum1s199l 7 wudn A1 Macro Fl-score 61 0.7630 @
Juniswdewinyidunnmne agvouanuaiunsavesunaidelianudidyiuyn vuaavyaminiieuduly
YgT A1 Micro Fl-score 191170 0.8167 @ 94 UWUs AU accuracy 1nemse 11 899 1na1uil tdy single-label

classification 11194 micro-precision micro-recall kag micro-F1 dAvindulaedeny d1us19321I19A1 Macro-F1

° ¥

(0.763) wag Micro-F1 (0.817) agvieuliifiuinlumaduuiliudndos ldmmnemyifidiwudeyaunn Taedsng
Uszaudgmlunisdiuunmnangfidanuiiniumsanumune lnganizeg1adslug ves healthy living uag
wellness Gagmendmifinnundnondsiugs umafiafiugiueg thidf liansosnuesuiunlfasdenfive
Taon s lsaildaunsaduunmnevytnldegiiusyavinm lnslemzmnaiddmdminnzyie
sULuUN ALY Falvien Fl-score ag‘luisé’vqnaﬂwﬁﬁiatﬁaa %’aﬁi’ﬁmﬁwﬂumwmwg WU healthy living 34l
aumnglndiAssiu wellness agvioudnuarvestoyafifinuvivdoudmnumneunnindedinvedluinaios
fedlnadnsdanandiiiuidonadlunstauiiuiy lnensszgninudnvuzsidwiuniiannini ey

Anuasavetlaalunsuenuezmnannfinududouadlunuidusely

A3UNAN133Y

v
o A o =2

Han153deATedEuduisunumdfyuensruIunswIsndeyauaznsidenldinalianisainauan vy
finalagasaioUsravBamuesnsuunusziansmasluuiunvesdoyavualug) msfnvimuinnisausvgs
laivnglunsiuunsutunsldinedaduunsy Tasewzluwnsy wandiiuisnenwlunisananuiniuuay
Wiueus gy JeaenndesiunuiAnmumsiieuanuduiusvesdmunisusngsiufu (co-occurrence

statistics) Tusuasislni 1wy Word2Vec (Mikolov et al., 2013) uag GloVe (Pennington et al., 2014) sl

o

JoyadriumanunsatigiiuauuiugtunsiuundeniuliedaitedAgy

o

s

idewFsuiisumaianisadisiunudeya wuin thidf inadwsfianinluluma complement naive
bayes, logistic regression wa linear svc Tuvauzdl multinomial naive bayes ﬁﬂszﬁw%qumdwLﬁa‘[fﬁs"mﬁ’u
Bow @saonadesiudodanaves Rennie et al (2003) fiszyin multinomial naive bayes ﬁaaguuamﬁgmmi
nszeAuives Uy Fvinuldtidedeyalaildgnusudmiinduiudy el Tunmauvesns

maaaﬁugm linear support vector classification (linear svc) 331U tf-idf Iﬁmmgﬂﬁmqaqmﬁ 82.64% dxviou

'
a

feanumuizanves svm lunisdnanisiudeyafiddagauaziuivng dmsunisdanisdymdeyaliauna
HaNINAaeIWATia smote Tinaansinilondn adasyn wag undersampling Inglvifnaugnaesi 81.67% uax

A1 Fl-score W@gsediu Micro 1 0.8167 wilidnmnugndesazanandntoadeiieudunsdlivivauna wigaeiiiy

iy £

ANUATOUARNTRBUIANISAnAUlILaYananRluiavyNddeyatosldeg1eiiussdnEnm

Y

WA IERUSEANTAWTIENHIY confusion matrix WUINTUAATAINNAILITOIUNITIIMUNTLANFSL

iada o o

agailduddglundazviiavy lngnuiavyndadnriianiziaizasiniauagranisiioes (politics) inuusiugn

Y

gagniia 91.8% luvagNviiany n1sld83nieguain (healthy living) nduiiuseansaina1fign (40.7%) uaz

Y v

wuauiana1nglun1sTnunaduiunuingunniz (wellness) Tedunuldliiuiadayn nstauiuide-
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ALY (semantic overlap) LipsinTiaesmanfimsldmdmidaniugs 1wy diet fitness uay health il
wadafiugiuedis thidf ldanunsausnuerusundiazidengeuilfifivme Feaenndestutodunnlusuves
Mihalcea et al. (2006) eafuALTmMEluMsTundenmidaslndlfssiudeumng

pgalsinu ankansAnwnutenissyisdragdmsunisuiluealildauluaniunisal nanafe
wilueasziimaruuiugilagsngs uiinnudssiiazifinanuianaialunemyfifieuinamsaumnegs
wu Paguamiaglafalad dufu lumefoResdnsannsooenuuulassadtonnamyvilusdng lneais
yAndsnsr Uy ifveumitudeutuiioanauduauresidunauasgld

Mndedidadang 1t muideidianeuuziumisdmiunisdnulueuian 3 Ussiiundn Téun (1)
mMsUszgndldinaiianisiledn (word embeddings) 8171 word2vec lodumuduiusvesiiifinnumanglndidss
fulddndededu (2) manaaedldaniinensmuninieuiidedni danududouuarasaduuiunlddng
TuwmaLBaidy 1y BERT w3e Transformer-based models wag (3) Msvenenanisnaaeuluds yadeyaniwau
W nwilve isedulaw (cross-lingual or cross-domain) sileUszidiuaruausalun1siily (generalization)

Favihludnisiawdduuntnassaludanianuaisuasiaiugrdmsunsidnuaseiely
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