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ABSTRACT
Accurate forecasting of Thailand’s seasoning exports to ASEAN+8 and global markets plays a vital
role in developing effective trade strategies and managing economic risks. This research compares SARIMA
models for export forecasting, utilizing monthly export data from 2013 to 2024. Specifically, we evaluate
SARIMA model selection techniques-Grid Search (based on AIC and BIC) versus automatic SARIMA selection
using the auto.arima() function in R. The results demonstrate that SARIMA models identified through Grid
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Search deliver superior accuracy, especially in short-term forecasting, where errors are reduced by
approximately 30%. Additionally, the use of Bootstrap Prediction Intervals outperforms Standard Prediction
Intervals, offering more flexible and realistic measures of uncertainty that are well-suited to volatile market
environments. By integrating optimal SARIMA modeling with Bootstrap Prediction Intervals, policymakers
and industry stakeholders gain enhanced reliability for strategic planning and risk management decisions in
international trade. This approach significantly strengthens decision-making capabilities in an uncertain

economic context.
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INTRODUCTION

Thailand is a key player in the global seasoning market, ranking sixth among the world’s exporters
of seasoning products, with an average annual growth rate of 7.6% over the past five years. This steady
expansion underscores the country’s strong international position and the growing global demand for high-
quality seasoning goods (Food Intelligence Center, National Food Institute, 2023). In 2024, Thailand’s
seasoning exports reached a total value of USD 1,064.70 million, marking a 9.67% increase from the previous
year (Ministry of Commerce, Thailand, 2024). This upward trajectory highlights Thailand’s competitive
advantage in the international market and reinforces the rising global demand for high-quality seasoning
products.

The primary export markets for Thai seasonings are the ASEAN+8 countries, which include the ten
ASEAN nations, Thailand, Vietnam, Indonesia, Malaysia, Philippines, Singapore, Brunei, Cambodia, Laos, and
Myanmar, along with China, Japan, South Korea, India, Australia, New Zealand, Russia, and the United States.
This region alone accounts for over 65% of Thailand’s total seasoning exports (Ministry of Commerce,
Thailand, 2024).

The growing economic integration within ASEAN, coupled with evolving consumer preferences
favoring Thai and Asian cuisine, has driven a sustained increase in demand for Thai seasoning products
(Euromonitor International, 2023). Thailand’s continued expansion in the global seasoning market is
supported by its ability to adapt to shifting consumer preferences, maintain high production standards, and
capitalize on emerging trade opportunities. These factors reinforce the country’s position as a key exporter
in the industry and highlight its potential for further growth in the coming years.

Accurate forecasting of Thailand’s seasoning exports is crucial for businesses aiming to optimize
production, improve supply chain management, and develop strategic trade policies. The Seasonal
Autoregressive Integrated Moving Average (SARIMA) model is widely recognized as an effective method for
predicting data with seasonal patterns. Numerous studies have confirmed the effectiveness of SARIMA in
export forecasting. For example, Adanacioglu and Yercan (2012) analyzed monthly tomato prices in Turkey

and demonstrated that a SARIMA-based model effectively captured seasonal fluctuations. Similarly, Sabu
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and Kumar (2020) utilized SARIMA alongside other time series methods, such as Holt-Winters and Long
Short-Term Memory (LSTM), to forecast are canut prices in Kerala and reported competitive results.
Divisekara et al. (2020) also applied SARIMA to red lentil price data in Canada, showcasing its capability to
manage weekly seasonality and volatility. In another study, Luo et al. (2013) highlighted the robustness of
SARIMA in modeling cucumber price fluctuations, emphasizing its utility for short-term warnings in perishable
product markets.

Furthermore, Makridakis et al. (2018) noted that machine learning methods can struggle with
overfitting when historical data is limited, reinforcing the relevance of traditional forecasting models such
as SARIMA. Klaharn et al. (2024) recently focused on Thailand’s poultry meat sector, employing SARIMA
and other forecasting models (such as NNAR, ETS, TBATS, STL, and THETA) to predict production and export
volumes. Their findings indicated that SARIMA outperformed other methods in forecasting poultry
production, while the THETA model excelled in export forecasting. Thus, SARIMA remains a powerful tool
for forecasting Thailand’s seasoning exports. However, selecting the most suitable model is critical to
achieving high predictive accuracy. Traditional Grid Search methods, which use the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC), systematically evaluate parameter combinations to
identify the optimal SARIMA model.

While this approach is exhaustive and computationally intensive, it often yields more precise
forecasts. In contrast, automatic SARIMA selection using the auto.arima() function in R automates the model
selection process, reducing computational effort but potentially overlooking superior configurations that
manual tuning could capture. Beyond model selection, understanding forecast uncertainty is equally vital.
Standard SARIMA models assume that residuals follow a normal distribution and derive analytical prediction
intervals (PI) based on this assumption. However, real-world export data frequently encounter structural
changes, market disruptions, and external economic shocks, introducing unpredictable variability. These
complexities often render standard prediction intervals insufficient for capturing the full range of possible
future values. Bootstrap Prediction Interval (Bootstrap PI) offers a more adaptive and data-driven approach
to quantifying forecast uncertainty, as it does not rely on strict distributional assumptions (Stine, 1985).
Unlike traditional methods, Bootstrap Pl captures both innovation and estimation errors, making it
particularly suitable for time series forecasting (Pan and Politis, 2016).

By resampling residuals and constructing empirical prediction intervals, Bootstrap Pl accommodates
dynamic fluctuations in export trends, which is crucial in volatile trade environments. Additionally, Bootstrap
Pl has been effectively applied in complex anomaly detection tasks, demonstrating its robustness in real-
world forecasting scenarios (Kumar and Srivastava, 2012). This flexibility allows for more precise risk
assessments and enhances decision-making for industry stakeholders.

This study evaluates SARIMA models for forecasting Thailand’s seasoning exports to ASEAN+8 and
global markets. By comparing different model selection approaches and assessing the role of Bootstrap P!
in enhancing forecast reliability, this research offers valuable insights for policymakers, exporters, and

industry leaders. The findings contribute to improved trade decision-making, more effective risk
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management strategies, and enhanced predictive methodologies, thereby strengthening Thailand’s

competitive position in the global seasoning industry.

MATERIALS AND METHODS
1. Data Description

This study examines the monthly export values of seasoning products from Thailand to ASEAN+8
countries and global markets. The dataset spans from January 2013 to December 2024 and is sourced from
the Ministry of Commerce of Thailand’s Trade Statistics System (Ministry of Commerce, Thailand, 2024). We
analyze both regional and global trade patterns, as ASEAN+8 serves as a significant market for Thailand’s
seasoning exports.

To develop reliable forecasts, the dataset was divided into training and testing sets. The training
set covers a period of 120 months, from January 2013 to December 2022, and is used to estimate the
SARIMA models. The testing set spans 24 months, from January 2023 to December 2024, and is reserved
exclusively for out-of-sample evaluation. For evaluation purposes, the testing set is further segmented into
three forecasting horizons: short-term (January 2023 to June 2023, 6 months), medium-term (January 2023
to December 2023, 12 months), and long-term (January 2023 to December 2024, 24 months). This
partitioning ensures that the models are trained on sufficient historical data while enabling rigorous
assessment of predictive accuracy across different time horizons.

Export values are measured in millions of Thai Baht (THB). Before fitting the models, we conducted
exploratory data analysis (EDA) to examine long-term trends, seasonality, and potential non-stationarity. To
formally assess stationarity, we applied both the Augmented Dickey—Fuller (ADF) test and the Kwiatkowski-
Phillips—Schmidt-Shin (KPSS) test. The ADF test rejects the null hypothesis of a unit root (stationary) when
the p-value is below 0.05, while the KPSS test rejects the null hypothesis of stationarity when the p-value
is below 0.05. Interpreting the two results jointly provides a more reliable conclusion on whether
differencing is required. Additionally, seasonal decomposition was performed to visualize the trend,
seasonal, and irregular components of the time series. All data processing and statistical tests were carried
out in R, using the tseries and forecast packages. Initial model insights were obtained using the auto.arimal)
function, while final model selection was conducted through AIC- and BIC-based Grid Search to ensure
optimal SARIMA configurations.

2. SARIMA Model Formulation

The Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model extends ARIMA by
incorporating seasonal components to capture periodic patterns in time series data. Box and Jenkins
introduced this framework in 1970, laying the foundation for modern time series modeling (Box et al., 2015).
Their work established the classical framework, which was later elaborated by Brockwell and Davis (2002)

and applied in modern contexts by Hyndman and Athanasopoulos (2018). It is expressed as follows:
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SARIMA(p,d,q) X (P,D,Q)m (1)

where p = Order of the non-seasonal auto-regressive (AR) component, d = Degree of non-seasonal
differencing, ¢ = Order of the non-seasonal moving average (MA) component, P = Order of the seasonal
auto-regressive (SAR) component, D = Degree of seasonal differencing, Q = Order of the seasonal moving
average (SMA) component, m= Length of the seasonal cycle (e.g., m = 12 for monthly data with annual
seasonality).

The general mathematical formulation is:

®p(B™)8,(B)(1 = BYA(1 = B™MPY, = 0(B™)6,(B)e; @)
where B is the backward shift operator, ®p and @,represent the seasonal and non-seasonal autoregressive
components., ® and 6, represent the seasonal and non-seasonal moving average components, €; is the white
noise error term.

The SARIMA model can capture dependencies across multiple time horizons (short, medium, and
seasonal), making it a robust choice for forecasting in various time series applications (Hyndman and
Athanasopoulos, 2018).

3. Model Selection Criteria

This study compares two SARIMA model selection approaches: Grid Search with AIC and BIC, which
involves manual tuning and systematically explores parameter combinations at a higher computational
cost, and the AutoSARIMA function, which automates the search process through stepwise optimization for
efficient model selection.

3.1 AIC and BIC

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are commonly used to

select models by balancing goodness-of-fit and complexity.
AIC =-2InL + 2k (3)

BIC =-2InL+kinn (4)

Where L is the likelihood function, k is the number of parameters, and n is the sample size. The
model with the lowest AIC or BIC is preferred. BIC penalizes complex models more heavily than AIC, making
it more conservative in selecting simpler models.

3.2 Grid Search for SARIMA

Grid Search is a brute-force method for finding the optimal SARIMA parameters by exhaustively
evaluating all possible parameter combinations within a predefined range. The approach follows these steps:

(1) Define the search space: p,d,q,P,Q € {0,1,2}withD € {0,1}.

(2) Fit SARIMA models for each combination and compute AIC and BIC.

(3) Rank models based on AIC/BIC and present the top 5 best-performing models.
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Grid Search ensures optimal parameter selection by systematically evaluating all possible
parameter combinations. However, this exhaustive search process requires significant computational
resources, making it time-consuming, particularly for large datasets or complex models.

3.3 AutoSARIMA (auto.arima in R)

AutoSARIMA performs automatic SARIMA selection using a stepwise search based on information
criteria (typically AlCc by default in R), while AIC and BIC values of the selected models are reported for
comparison.

The function iteratively evaluates candidate models, applies heuristic refinements, and selects the
specification with the lowest information criterion. While computationally efficient and faster than
exhaustive search, this approach may not always yield the globally optimal model.

3.4 Comparison of model selection methods

Table 1 provides a comprehensive comparison of different model selection approaches, detailing
their strengths and limitations. It emphasizes critical aspects such as accuracy, computational efficiency,
and the risk of overfitting, thereby aiding in the selection of the most appropriate method for a given

forecasting scenario.

Table 1 Comparison of SARIMA model selection approaches

Method Search Strategy Computation Time Risk of Overfitting
Grid Search Exhaustive High Low
AIC/BIC Information Criterion Moderate Moderate
AutoSARIMA function Stepwise Search Low Moderate

Grid Search provides the most comprehensive approach to model selection but is computationally
intensive. AIC and BIC serve as reliable criteria for comparing competing models, while the AutoSARIMA
function offers a faster alternative with reasonable accuracy. The choice of approach depends on the trade-
off between computational cost and the need for optimality.

4. Model Evaluation Metrics

Two widely used error metrics are employed to evaluate the performance of the SARIMA models:
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).

Root Mean Square Error (RMSE) measures the average magnitude of the error between predicted

and actual values. It is calculated as follows:

RMSE = JﬁZ?ﬂ(Yt -7 (5)

where Yt = Actual value at time t, ?t = Predicted value at time t, n = Number of observations

Mean Absolute Percentage Error (MAPE) evaluates the average percentage error between predicted

and actual values, and is expressed as a percentage:

oYl o 100 )

1
MAPE ==~37_,
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where Y; # 0 for all t, to avoid division by zero, and other variables are defined as above.

Lower RMSE and MAPE values indicate better model performance, with RMSE emphasizing the
magnitude of errors and MAPE offering a percentage-based measure of accuracy.
5. Prediction Intervals for Forecast Uncertainty

Quantifying forecast uncertainty is essential for assessing the reliability of predictions in time series.
Prediction intervals (PI) provide a confidence range within which future values are expected to fall. This
section presents two approaches: (1) Standard Prediction Intervals, which assume normality in the residuals,
and (2) Bootstrap Prediction Intervals, a data-driven alternative that does not rely on distributional
assumptions.

5.1 Standard prediction intervals (PI)

Standard Prediction Intervals are derived under the assumption that the residuals in the SARIMA

model follow a normal distribution. Given this assumption, the Pl can be computed as follows:
Ply=Y, + Zy)y- 6 %

where ?t = Point forecast at time t, Zoc/2 = Critical value from the standard normal distribution (e.g., 1.96
for a 95% confidence interval), & = Standard deviation of forecast errors.

This method is computationally efficient and easy to implement. However, it assumes that the
residuals are normally distributed, which may not hold in real-world data. If the residuals exhibit skewness,
heteroskedasticity, or outliers, the resulting prediction intervals may be inaccurate and could underestimate
forecast uncertainty (Hyndman and Athanasopoulos, 2018).

5.2 Bootstrap prediction intervals (PI)

Bootstrap Prediction Intervals provide a more flexible approach by estimating uncertainty directly
from the data. Unlike standard PI, bootstrap-based intervals do not assume normality; instead, they rely on
empirical resampling techniques. The procedure consists of the following steps:

(1) Extract the residuals e; = ¥, — ¥, from the fitted SARIMA model.

(2) Resample these residuals with replacement to generate a new set e;.

(3) Generate bootstrap forecasts using:

B _p 4 0
yP=9%+e"” b=12..B ®)

where Yt(b) denotes the b-th bootstrap replicate of the forecast at time t; ?t is the point
forecast obtained from the fitted SARIMA model, et(b) is the resampled residual drawn with replacement
from the model residuals; and B represents the total number of bootstrap replications. Note that in this
context B refers to the number of replications and should not be confused with the backshift operator B
used in the SARIMA model equations.

(4) Compute empirical prediction intervals using the percentiles of the bootstrap forecasts:

Pl = [Percentilewz (Yt(b)) , Percentile;_y;, (Yt(b))] 9)

where typical values of O are 0.05 for a 95% confidence interval.
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Bootstrap methods naturally adapt to non-Gaussian and heteroskedastic error structures, providing
more robust prediction intervals, especially in the presence of structural changes or outliers. The utility of
bootstrap techniques in constructing prediction intervals has been well documented in the literature (Stine,
1985; Efron and Tibshirani, 1994; Pan and Politis, 2016).

5.3 Comparison: Standard vs Bootstrap Pl

The strengths and limitations of the two methods, Standard Prediction Intervals and Bootstrap
Prediction Intervals, are summarized in Table 2, highlighting key differences in their assumptions, flexibility,

and suitability for various forecasting scenarios.

Table 2 Comparison of standard and bootstrap prediction intervals

Method Assumption Flexibility
Standard PI Residuals follow normal distribution Low
Bootstrap Pl No distributional assumption High

Bootstrap Prediction Intervals (PI) offer several advantages over standard methods. They are more
flexible, as they do not require residuals to follow a normal distribution, making them suitable for a wide
range of time series data. Being data-driven, they naturally adapt to non-Gaussian and heteroskedastic error
structures, allowing for more accurate uncertainty estimation. Additionally, Bootstrap Pl is robust to
structural changes, making it a reliable choice when dealing with datasets containing outliers or exhibiting
non-linearity, thereby ensuring more realistic forecast intervals in dynamic environments.

5.4 Evaluation of prediction intervals across forecasting horizons

Forecast uncertainty increases over time, making the assessment of both Standard and Bootstrap
Prediction Intervals across different forecasting horizons essential. This study evaluates short-term
(6 months) forecasts for immediate accuracy, medium-term (12 months) forecasts for seasonal performance,
and long-term (24 months) forecasts for the robustness of SARIMA models in extended predictions. The
comparison focuses on empirical coverage probability and interval width to determine the reliability of
each method. The results indicate that Bootstrap Pl generally produces broader and more reliable
uncertainty bounds, particularly in long-term forecasts, where deviations from normality arise due to

structural changes or evolving market dynamics.

RESULTS AND DISCUSSION
1. Stationarity Analysis and Differencing Selection

Stationarity is critical for SARIMA forecasting. To evaluate the ASIAN+8 and World datasets, we
applied the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, as
summarized in Table 3. Both tests indicated non-stationarity (p-values > 0.05 for ADF and p-values < 0.05
for KPSS), suggesting the presence of a unit root and confirming the need for differencing.

We applied first-order differencing (d = 1), which resulted in stationary series for both datasets, as

confirmed by the ADF test (Table 4). For seasonal stationarity, the ASIAN+8 dataset required one seasonal
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difference (D = 1), whereas the World dataset required two (D = 2) because the first seasonal differencing
was insufficient. Consequently, the final differencing parameters were d = 1, D = 1 for the ASIAN+8 dataset
andd =1, D =2 for the World dataset. These configurations were then used in the SARIMA grid search to

identify the optimal forecasting model.

Table 3 Stationarity test results (before differencing)

Dataset ADF Statistic ADF p-value KPSS Level KPSS p-value
ASIAN+8 -3.0485 0.1411 (Unit Root) 2.2976 0.01 (Non-Stationary)
World -2.8471 0.2247 (Unit Root) 2.3021 0.01 (Non-Stationary)

Table 4 Stationarity test results after differencing and final differencing parameters

Dataset d D ADF Statistic ADF p-value Conclusion
ASIAN+8 1 1 -6.3910 0.01 No Unit Root / Stationary
World 1 2 -6.4183 0.01 No Unit Root / Stationary

2. Model Selection and Performance Evaluation

This study evaluates SARIMA models for Thailand’s seasoning exports using three selection
approaches to ensure optimal forecasting accuracy. The Grid Search (AIC) method selects the model with
the lowest Akaike Information Criterion (AIC), balancing model fit and complexity, as shown in Table 5.
Similarly, the Grid Search (BIC) method prioritizes the model with the lowest Bayesian Information Criterion
(BIC), which imposes a more substantial penalty on model complexity, with the selected models presented
in Table 6. In contrast, the AutoSARIMA function employs an automated stepwise search that evaluates
candidate models using information criteria (typically AlCc by default in R), and Table 7 summarizes the
models selected through this method.

While computationally efficient, the AutoSARIMA function relies on a stepwise heuristic that may
converge to a local optimum rather than the global best specification. By contrast, Grid Search
systematically explores all parameter combinations within the predefined range, thereby ensuring that the
selected SARIMA model corresponds to the global optimum under AIC/BIC criteria. This design choice
explains why the Grid Search models in this study consistently achieved lower AIC, BIC, RMSE, and MAPE
than AutoSARIMA, demonstrating superior forecasting performance across horizons.

The selection process identifies the best SARIMA models for the ASIAN+8 and World datasets by
minimizing AIC and BIC values, ensuring robust model performance across different forecasting scenarios.
The top five SARIMA models selected based on AIC and BIC rankings exhibit variations; however, both criteria
identify the same optimal model for each dataset. For the ASIAN+8 dataset, the best-performing model is
SARIMA (0,1,1) (1,1,1),,, with an AIC of 1296.89 and a BIC of 1307.58. Similarly, for the World dataset, the
optimal model is SARIMA (2,1,2) (1,2,1),,, with an AIC of 1270.05 and a BIC of 1287.93. Models selected
through Grid Search consistently achieve lower AIC and BIC values than AutoSARIMA, highlighting their

superior performance and suitability for forecasting these datasets.
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The explicit model equations obtained from the Grid Search are presented below. For the ASEAN+8
dataset, the optimal specification corresponds to SARIMA(0,1,1)(1,1,1);, which can be expressed as:

(1-®,B)(1-B)(1-B%?)y, =(1+6,B)(1+0,B?)¢,

where B is the backshift operator (By, = y;_;), @1 and 0 are seasonal AR and MA coefficients, and 0 is
the non-seasonal MA coefficient.

For the World dataset, the optimal model identified is SARIMA(2,1,2)(1,2,1),,, which is formulated as:
(1— 1B — $,B*)(1 — &, B'2)(1 — B)(1 — B*?)?y, = (1 + 6;B + 6,B*)(1 + 0, B')e,

where ¢4, ¢, are non-seasonal AR coefficients, 81, 8, are non-seasonal MA coefficients, @1 is the seasonal

AR coefficient, and 04 is the seasonal MA coefficient.

Table 5 Top 5 SARIMA models based on AIC for ASIAN+8 and world

Dataset Rank o d q P D Q AlC
1 0 1 1 1 1 1 1296.89
2 0 1 1 0 1 2 1297.15
ASIAN+8 3 1 1 1 1 1 1 1297.73
a4 0 1 2 1 1 1 1297.99
5 1 1 1 0 1 2 1298.04
1 2 1 2 1 2 1 1270.05
2 2 1 2 1 2 2 1271.42
World 3 2 1 2 2 2 1 1271.71
a4 2 1 2 0 2 2 1272.07
5 2 1 2 2 2 2 1273.40

Table 6 Top 5 SARIMA models based on BIC for ASIAN+8 and world

Dataset Rank p d o} P D Q BIC
1 0 1 1 1 1 1 1307.58
2 0 1 1 0 1 2 1307.84
ASIAN+8 3 0 1 1 0 1 1 1308.71
a4 1 1 1 1 1 1 1311.10
5 0 1 2 1 1 1 1311.35
1 2 1 2 1 2 1 1287.93
2 2 1 2 0 2 2 1289.95
World 3 0 1 1 0 2 2 1290.96
4 0 1 1 1 2 2 1291.28
5 0 1 1 0 2 1 1291.48
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Table 7 Best SARIMA models selected by the AutoSARIMA function for ASEAN+8 and World

Dataset P d q P D Q AIC BIC
ASIAN+8 0 1 1 1 0 0 1436.61 1447.73
World 0 1 1 0 0 2 1522.75 1533.87

3. Comparison of Forecasted and Actual Values

We compare the best SARIMA model, selected based on AIC and BIC criteria, with the forecasts
from the AutoSARIMA function (auto.arima() in R) using actual export data from January 2023 to December
2024. Since both AIC and BIC selected the same model, Table 8 presents its forecasts alongside those
obtained from AutoSARIMA for both datasets.

The results indicate that the selected SARIMA model consistently outperforms the AutoSARIMA
forecasts, especially during months with higher volatility. The selected model effectively captures seasonal
patterns and underlying trends, resulting in more accurate forecasts than AutoSARIMA. This demonstrates
that the selected SARIMA model is the preferred choice for forecasting Thailand’s seasoning exports.

4. Forecasting Accuracy Evaluation

To evaluate the forecasting performance of the selected SARIMA models, we compare the Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) across different forecasting horizons:
short-term (6 months), medium-term (12 months), and long-term (24 months). These metrics quantify
predictive accuracy, with lower values indicating better performance. As shown in Table 9, the results
indicate that the selected SARIMA model consistently outperforms the AutoSARIMA forecasts across all
horizons, achieving the lowest RMSE and MAPE values. These performance metrics highlight the model’s
effectiveness in capturing seasonal trends in Thailand’s seasoning export data.

For short-term forecasting (6 months), the selected SARIMA model demonstrates superior predictive
accuracy, reducing RMSE by 51.0 for the ASEAN+8 dataset and by 24.72 for the World dataset, compared
to the AutoSARIMA forecasts. These improvements underscore the model’s ability to capture short-term
fluctuations in export volumes.

In the medium-term forecasting scenario (12 months), the SARIMA model continues to deliver
higher accuracy, with an RMSE reduction of 15.76 in the World dataset. This suggests improved handling of
seasonal patterns and mid-range variations in export values.

Over the long-term forecasting horizon (24 months), the selected SARIMA model exhibits greater
stability and reliability. It consistently achieves lower RMSE values than AutoSARIMA for both ASEAN+8 and
World datasets, indicating its suitability for strategic export planning and long-term decision-making.

Overall, the selected SARIMA model yields better forecasting performance than AutoSARIMA across
all timeframes, with notably lower RMSE and MAPE values. The short-term forecasting scenario yields
particularly strong results, with MAPE improving to 6.69. These findings confirm the model's robustness and

practical applicability in forecasting export trends under seasonal and volatile conditions.
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Interestingly, the results show that long-term forecasts occasionally yield lower MAPE values than
short-term forecasts. This finding contrasts with the typical expectation that short-term predictions are more
accurate. A plausible explanation is that the initial months of the testing period exhibited higher volatility,
which disproportionately affected short-term forecasts. In contrast, long-term horizons averaged out these
fluctuations, resulting in comparatively lower error rates. While the selected SARIMA model demonstrates
overall robustness, this anomaly highlights potential limitations of the model under conditions of abrupt
short-term variations. Future studies could investigate this issue further by incorporating alternative models
(e.g., SARIMAX with exogenous variables or volatility models such as GARCH) to enhance short-term
forecasting performance.

5. Prediction Intervals for Forecast Uncertainty

Forecast uncertainty is central to the reliability of time series forecasts. In this study, we construct
95% prediction intervals (PI) for SARIMA models using both standard and bootstrap approaches. Standard
Pl assumes normally distributed residuals, while bootstrap Pl provides a more flexible, data-driven estimate
by resampling residuals. To generate bootstrap Pls, we use B = 1000 replications, which is a widely adopted
choice in time series forecasting as it balances accuracy and computational efficiency. As noted by Lima et
al. (2024), bootstrap replications in the order of 1000 are typically sufficient to yield stable interval
estimates, while larger values may improve precision at the cost of additional computation.

Table 10 and Table 11 present the 24-month forecasts and the corresponding 95% prediction
intervals (PI) for the ASEAN+8 and World markets, respectively. Although the structure of results is identical,
the datasets differ by region. Figures 1 and 2 provide visual comparisons between the standard and
bootstrap approaches across both markets. The results show that the standard Pls are generally wider than
the bootstrap Pls, particularly at longer horizons, indicating the conservative nature of the normal-theory
intervals. By contrast, bootstrap Pls yield narrower ranges that more closely reflect the empirical distribution
of residuals. This suggests that the standard approach may overstate forecast uncertainty, while the
bootstrap method provides a more data-driven and practical representation of risk, offering policymakers

and exporters uncertainty ranges that are realistic without being overly conservative.
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Table 8 Comparison of actual values vs. forecasts from the selected SARIMA model and the AutoSARIMA

function for ASIAN+8 and World (Jan 2023 — Dec 2024)

ASIAN+8 World
Date

Actual Selected  AutoSARIMA Actual Selected AutoSARIMA
2023-01 1641.56 1740.97 1826.09 2239.41 2231.05 2475.48
2023-02 1651.92 1837.05 1911.85 2443.56 2560.64 2552.57
2023-03 2014.21 2002.57 1984.09 2889.64 2702.73 2703.42
2023-04 1476.01 1732.10 1797.19 2205.04 2249.42 2373.57
2023-05 1912.96 1832.15 1809.34 2859.52 2507.48 2517.32
2023-06 1896.81 1911.12 1930.19 2838.32 2619.49 2649.87
2023-07 2035.37 1867.48 1868.85 3026.69 2449.69 2529.34
2023-08 2188.06 1849.51 1866.02 3161.73 2498.80 2483.64
2023-09 2067.44 1804.21 1822.14 3150.19 2329.26 2435.44
2023-10 2121.12 1846.88 1856.65 3125.72 2556.13 2431.83
2023-11 2097.47 1933.28 1939.37 3243.64 2847.46 2628.83
2023-12 1747.62 1820.12 1833.02 2794.40 2386.68 2441.21
2024-01 1829.42 1793.53 1898.06 2767.31 2329.81 2466.17
2024-02 1861.67 1867.50 1942.34 2893.64 2622.66 2525.46
2024-03 2131.86 2038.76 1980.28 3297.36 2643.41 2546.24
2024-04 1812.27 1806.86 1896.53 2864.89 2311.56 2390.88
2024-05 2118.62 1930.36 1906.25 3254.71 2415.43 2414.86
2024-06 1865.71 1961.19 1967.01 2969.82 2506.97 2443.50
2024-07 2221.60 1944.63 1942.22 3515.06 2491.82 2419.81
2024-08 2207.15 1925.70 1944.91 3422.93 2422.42 2437.15
2024-09 1993.47 1896.47 1928.32 3121.18 2196.19 2350.76
2024-10 2031.17 1932.82 1948.54 3096.95 2528.88 2307.16
2024-11 2135.60 1996.21 1991.39 3122.13 2696.92 2392.23
2024-12 1924.98 1917.58 1945.47 2938.47 2217.87 2285.56

Table 9 Forecast accuracy comparison (RMSE and MAPE)
Horizon Dataset Selected SARIMA AutoSARIMA
RMSE MAPE (%) RMSE MAPE (%)

Short-term (6m) ASIAN+8 139.41 6.69 190.41 9.57

World 192.57 5.61 217.29 7.95

Medium-term (12m) ASIAN+8 190.64 8.46 206.43 9.76

World 439.36 12.07 455.12 13.50

Long-term (24m) ASIAN+8 168.97 6.85 181.10 7.99

World 583.10 16.46 606.59 17.68
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Table 10 Forecast and prediction intervals for ASIAN+8 (24 months)

Standard Pl (95%)

Bootstrap Pl (95%)

Month Forecast
Lower Upper Lower Upper
1 1740.97 1553.33 1928.60 1583.31 1932.39
2 1837.05 1640.24 2033.86 1650.51 2028.28
3 2002.57 1796.99 2208.15 1844.78 2193.99
4 1732.10 1518.11 1946.09 1574.31 1923.33
5 1832.15 1610.06 2054.23 1674.49 2023.38
6 1911.12 1681.24 2141.01 1753.33 2102.54
7 1867.48 1630.04 2104.92 1709.82 2058.71
8 1849.51 1604.75 2094.27 1691.85 2040.74
9 1804.21 1552.35 2056.08 1646.42 1995.44
10 1846.88 1588.10 2105.65 1689.08 2038.30
11 1933.28 1667.78 2198.78 1775.49 2124.51
12 1820.12 1548.05 2092.18 1662.32 2011.35
13 1793.53 1491.98 2095.07 1635.73 1984.94
14 1867.50 1555.23 2179.77 1709.85 2058.92
15 2038.76 1716.13 2361.39 1880.97 2230.18
16 1806.87 1474.19 2139.54 1649.07 1998.28
17 1930.36 1587.94 2272.78 1772.70 2121.59
18 1961.19 1609.29 2313.10 1803.54 2152.42
19 1944.63 1583.50 2305.76 1786.84 2135.86
20 1925.70 1555.57 2295.82 1767.90 2117.11
21 1896.47 1517.56 2275.39 1738.68 2087.89
22 1932.82 1545.32 2320.32 1775.03 2124.05
23 1996.21 1600.30 2392.11 1838.55 2187.63
24 1917.58 1513.45 2321.71 1759.79 2098.40
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Table 11 Forecast and prediction intervals for the world (24 months)

2400

2000

Export Value (Million THB)

Figure 1 Prediction intervals (95%) for ASIAN+8 over a 24-month horizon

Month

Legend
= Forecast

Confidence Interval
Bootstrap P
Standard P1

Standard Pl (95%)

Bootstrap Pl (95%)

Month Forecast

Lower Upper Lower Upper
1 2231.05 1933.60 2528.50 1913.23 2425.86
2 2560.64 2158.30 2962.98 2270.04 2756.01
3 2702.73 2206.26 3199.20 2412.14 2936.37
a4 2249.42 1673.31 2825.53 1958.83 2444.79
5 2507.48 1870.90 3144.06 2189.66 2702.85
6 2619.49 1918.26 3320.72 2301.67 2814.30
7 2449.69 1691.36 3208.03 2159.10 2644.51
8 2498.81 1693.27 3304.34 2180.98 2694.17
9 2329.26 1470.85 3187.67 2011.43 2562.90
10 2556.13 1651.68 3460.59 2265.54 2751.50
11 2847.46 1902.54 3792.38 2529.64 3042.83
12 2386.68 1395.81 3377.55 2096.08 2582.05
13 2329.81 1224.55 3435.08 2039.22 2525.18
14 2622.66 1425.23 3820.09 2331.39 2818.03
15 2643.40 1346.63 3940.18 2352.81 2838.77
16 2311.56 929.94 3693.18 2020.96 2506.93
17 241543 957.97 3872.89 2097.61 2610.80
18 2506.97 966.27 4047.67 2216.38 2740.61
19 2491.82 880.63 4102.99 2173.99 2725.46
20 2422.42 744.52 4100.31 2188.52 2617.23
21 2196.18 445.42 3946.95 1905.59 2391.56
22 2528.88 717.01 4340.76 2238.29 2724.25
23 2696.92 824.17 4569.67 2379.10 2892.29
24 2217.87 279.87 4155.86 1983.97 245151
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Figure 2 Prediction intervals (95%) for World over a 24-month horizon

CONCLUSIONS

This study evaluates the effectiveness of SARIMA models for forecasting Thailand’s seasoning
export values to ASEAN+8 and global markets. A comparative analysis of model selection techniques,
specifically, grid search using AIC/BIC versus the AutoSARIMA function, provides valuable insights for
optimizing forecasting accuracy. Forecast reliability is assessed by comparing Standard Prediction Intervals
with Bootstrap-based PI.

Results indicate that grid search with AIC consistently outperforms AutoSARIMA, with the optimal
SARIMA models yielding significantly lower RMSE and MAPE across short-, medium-, and long-term horizons.
This demonstrates the advantage of manual tuning over fully automated approaches in various practical
applications. Moreover, Bootstrap Pl provide more robust and adaptive uncertainty quantification than
Standard PI, an essential flexibility for international trade forecasting under structural changes and external
shocks.

These findings have significant practical implications for policymakers, exporters, and industry
professionals. By integrating an optimized SARIMA model with Bootstrap PI, businesses can enhance
forecasting reliability, facilitating more informed decision-making in supply chain planning and market
expansion.

Beyond methodological contributions, the proposed approach has several practical applications,
particularly in supply chain planning, trade policy design, and risk management under volatile market
conditions. Its key strengths include improved short-term accuracy through Grid Search and more robust
uncertainty quantification using Bootstrap PI. However, limitations remain, such as higher computational
cost and sensitivity to data quality. For successful implementation, practitioners should carefully determine
the number of bootstrap replications, ensure reliable input data, and account for potential structural
changes in the market. These considerations are critical to maximize the method’s effectiveness in real-

world applications.
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Future research could further enhance SARIMA-based forecasting by integrating additional external
macroeconomic indicators such as exchange rates and global trade policies to improve predictive precision
and reliability. Moreover, addressing challenges like heteroskedasticity in residuals using models such as
GARCH may further strengthen forecasting robustness in dynamic market environments. These
improvements would significantly advance time series forecasting methodologies, especially in the context

of global trade and economic planning.
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