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บทคัดย่อ 
 การพยากรณ์การส่งออกเครื่องปรุงรสของประเทศไทยไปยังกลุ่มประเทศอาเซียน+8 และตลาดโลกอย่างแม่นย า  
มีบทบาทส าคัญต่อการก าหนดกลยุทธ์ทางการค้าอย่างมีประสิทธิภาพ และการบริหารความเสี่ยงทางเศรษฐกิจ งานวิจัยนี้  
มุ่งเปรียบเทียบแบบจ าลอง SARIMA ที่ใช้ในการพยากรณ์การส่งออก โดยอาศัยข้อมูลรายเดือนตั้งแต่ปี พ.ศ. 2556 ถึง  
พ.ศ. 2567 ทั้งนี้ได้ประเมินประสิทธิภาพของเทคนิคการเลือกแบบจ าลอง SARIMA ระหว่างวิธี Grid Search (โดยพิจารณา
จากค่า AIC และ BIC) กับการเลือกแบบจ าลอง SARIMA อัตโนมัติด้วยฟังก์ชัน auto.arima() ในโปรแกรม R ผลการศึกษา
พบว่า แบบจ าลอง SARIMA ที ่ได้จากการใช้ Grid Search มีความแม่นย าสูงกว่า โดยเฉพาะในการพยากรณ์ระยะสั้น  
ซึ่งสามารถลดค่าความคลาดเคลื่อนลงได้ประมาณร้อยละ 30 นอกจากนี้ การใช้ Bootstrap Prediction Intervals ยังให้
ขอบเขตการพยากรณ์ที่มีความยืดหยุ่นและสมจริงมากกว่าการใช้ขอบเขตการพยากรณ์แบบมาตรฐาน ซึ่งเหมาะสมกับสภาวะ
ตลาดที่มีความผันผวน เมื่อผสานการใช้แบบจ าลอง SARIMA ที่เหมาะสมร่วมกับ Bootstrap Prediction Intervals จะช่วย
เพิ่มความเช่ือมั่นให้แก่ผู้ก าหนดนโยบายและผู้ประกอบการในการวางแผนกลยุทธ์และการตัดสินใจด้านการค้าระหว่างประเทศ
ในบริบทเศรษฐกิจท่ีไม่แน่นอน 
 

ABSTRACT  
 Accurate forecasting of Thailand’s seasoning exports to ASEAN+8 and global markets plays a vital 
role in developing effective trade strategies and managing economic risks. This research compares SARIMA 
models for export forecasting, utilizing monthly export data from 2013 to 2024. Specifically, we evaluate 
SARIMA model selection techniques-Grid Search (based on AIC and BIC) versus automatic SARIMA selection 
using the auto.arima() function in R. The results demonstrate that SARIMA models identified through Grid 
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Search deliver superior accuracy, especially in short-term forecasting, where errors are reduced by 
approximately 30%. Additionally, the use of Bootstrap Prediction Intervals outperforms Standard Prediction 
Intervals, offering more flexible and realistic measures of uncertainty that are well-suited to volatile market 
environments. By integrating optimal SARIMA modeling with Bootstrap Prediction Intervals, policymakers 
and industry stakeholders gain enhanced reliability for strategic planning and risk management decisions in 
international trade. This approach significantly strengthens decision-making capabilities in an uncertain 
economic context. 
 

ค าส าคัญ: การพยากรณ์อนุกรมเวลา  ตัวแบบ SARIMA  การค้นหากริด  ช่วงคาดการณ์แบบบูตสแทร็ป  การส่งออกอาเซียน+8 
Keywords: Time Series Forecasting, SARIMA Model, Grid Search Optimization, Bootstrap Prediction Intervals, 
ASEAN+8 Exports 
 

INTRODUCTION 
 Thailand is a key player in the global seasoning market, ranking sixth among the world’s exporters 
of seasoning products, with an average annual growth rate of 7.6% over the past five years. This steady 
expansion underscores the country’s strong international position and the growing global demand for high-
quality seasoning goods (Food Intelligence Center, National Food Institute, 2023). In 2024, Thailand’s 
seasoning exports reached a total value of USD 1,064.70 million, marking a 9.67% increase from the previous 
year (Ministry of Commerce, Thailand, 2024). This upward trajectory highlights Thailand’s competitive 
advantage in the international market and reinforces the rising global demand for high-quality seasoning 
products. 
 The primary export markets for Thai seasonings are the ASEAN+8 countries, which include the ten 
ASEAN nations, Thailand, Vietnam, Indonesia, Malaysia, Philippines, Singapore, Brunei, Cambodia, Laos, and 
Myanmar, along with China, Japan, South Korea, India, Australia, New Zealand, Russia, and the United States. 
This region alone accounts for over 65% of Thailand’s total seasoning exports (Ministry of Commerce, 
Thailand, 2024). 
 The growing economic integration within ASEAN, coupled with evolving consumer preferences 
favoring Thai and Asian cuisine, has driven a sustained increase in demand for Thai seasoning products 
(Euromonitor International, 2023). Thailand’s continued expansion in the global seasoning market is 
supported by its ability to adapt to shifting consumer preferences, maintain high production standards, and 
capitalize on emerging trade opportunities. These factors reinforce the country’s position as a key exporter 
in the industry and highlight its potential for further growth in the coming years. 
 Accurate forecasting of Thailand’s seasoning exports is crucial for businesses aiming to optimize 
production, improve supply chain management, and develop strategic trade policies. The Seasonal 
Autoregressive Integrated Moving Average (SARIMA) model is widely recognized as an effective method for 
predicting data with seasonal patterns. Numerous studies have confirmed the effectiveness of SARIMA in 
export forecasting. For example, Adanacıoğlu and Yercan (2012) analyzed monthly tomato prices in Turkey 
and demonstrated that a SARIMA-based model effectively captured seasonal fluctuations. Similarly, Sabu 
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and Kumar (2020) utilized SARIMA alongside other time series methods, such as Holt-Winters and Long 
Short-Term Memory (LSTM), to forecast are canut prices in Kerala and reported competitive results. 
Divisekara et al. (2020) also applied SARIMA to red lentil price data in Canada, showcasing its capability to 
manage weekly seasonality and volatility. In another study, Luo et al. (2013) highlighted the robustness of 
SARIMA in modeling cucumber price fluctuations, emphasizing its utility for short-term warnings in perishable 
product markets. 
 Furthermore, Makridakis et al. (2018) noted that machine learning methods can struggle with 
overfitting when historical data is limited, reinforcing the relevance of traditional forecasting models such 
as SARIMA. Klaharn et al. (2024) recently focused on Thailand’s poultry meat sector, employing SARIMA 
and other forecasting models (such as NNAR, ETS, TBATS, STL, and THETA) to predict production and export 
volumes. Their findings indicated that SARIMA outperformed other methods in forecasting poultry 
production, while the THETA model excelled in export forecasting. Thus, SARIMA remains a powerful tool 
for forecasting Thailand’s seasoning exports. However, selecting the most suitable model is critical to 
achieving high predictive accuracy. Traditional Grid Search methods, which use the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC), systematically evaluate parameter combinations to 
identify the optimal SARIMA model. 
 While this approach is exhaustive and computationally intensive, it often yields more precise 
forecasts. In contrast, automatic SARIMA selection using the auto.arima() function in R automates the model 
selection process, reducing computational effort but potentially overlooking superior configurations that 
manual tuning could capture. Beyond model selection, understanding forecast uncertainty is equally vital. 
Standard SARIMA models assume that residuals follow a normal distribution and derive analytical prediction 
intervals (PI) based on this assumption. However, real-world export data frequently encounter structural 
changes, market disruptions, and external economic shocks, introducing unpredictable variability. These 
complexities often render standard prediction intervals insufficient for capturing the full range of possible 
future values. Bootstrap Prediction Interval (Bootstrap PI) offers a more adaptive and data-driven approach 
to quantifying forecast uncertainty, as it does not rely on strict distributional assumptions (Stine, 1985). 
Unlike traditional methods, Bootstrap PI captures both innovation and estimation errors, making it 
particularly suitable for time series forecasting (Pan and Politis, 2016). 
 By resampling residuals and constructing empirical prediction intervals, Bootstrap PI accommodates 
dynamic fluctuations in export trends, which is crucial in volatile trade environments. Additionally, Bootstrap 
PI has been effectively applied in complex anomaly detection tasks, demonstrating its robustness in real-
world forecasting scenarios (Kumar and Srivastava, 2012). This flexibility allows for more precise risk 
assessments and enhances decision-making for industry stakeholders. 
 This study evaluates SARIMA models for forecasting Thailand’s seasoning exports to ASEAN+8 and 
global markets. By comparing different model selection approaches and assessing the role of Bootstrap PI 
in enhancing forecast reliability, this research offers valuable insights for policymakers, exporters, and 
industry leaders. The findings contribute to improved trade decision-making, more effective risk 
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management strategies, and enhanced predictive methodologies, thereby strengthening Thailand’s 
competitive position in the global seasoning industry. 
 

MATERIALS AND METHODS 
1. Data Description 
 This study examines the monthly export values of seasoning products from Thailand to ASEAN+8 
countries and global markets. The dataset spans from January 2013 to December 2024 and is sourced from 
the Ministry of Commerce of Thailand’s Trade Statistics System (Ministry of Commerce, Thailand, 2024). We 
analyze both regional and global trade patterns, as ASEAN+8 serves as a significant market for Thailand’s 
seasoning exports. 
 To develop reliable forecasts, the dataset was divided into training and testing sets. The training 
set covers a period of 120 months, from January 2013 to December 2022, and is used to estimate the 
SARIMA models. The testing set spans 24 months, from January 2023 to December 2024, and is reserved 
exclusively for out-of-sample evaluation. For evaluation purposes, the testing set is further segmented into 
three forecasting horizons: short-term (January 2023 to June 2023, 6 months), medium-term (January 2023 
to December 2023, 12 months), and long-term (January 2023 to December 2024, 24 months). This 
partitioning ensures that the models are trained on sufficient historical data while enabling rigorous 
assessment of predictive accuracy across different time horizons. 
 Export values are measured in millions of Thai Baht (THB). Before fitting the models, we conducted 
exploratory data analysis (EDA) to examine long-term trends, seasonality, and potential non-stationarity. To 
formally assess stationarity, we applied both the Augmented Dickey–Fuller (ADF) test and the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test. The ADF test rejects the null hypothesis of a unit root (stationary) when 
the p-value is below 0.05, while the KPSS test rejects the null hypothesis of stationarity when the p-value 
is below 0.05. Interpreting the two results jointly provides a more reliable conclusion on whether 
differencing is required. Additionally, seasonal decomposition was performed to visualize the trend, 
seasonal, and irregular components of the time series. All data processing and statistical tests were carried 
out in R, using the tseries and forecast packages. Initial model insights were obtained using the auto.arima() 
function, while final model selection was conducted through AIC- and BIC-based Grid Search to ensure 
optimal SARIMA configurations. 
2. SARIMA Model Formulation  
 The Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model extends ARIMA by 
incorporating seasonal components to capture periodic patterns in time series data. Box and Jenkins 
introduced this framework in 1970, laying the foundation for modern time series modeling (Box et al., 2015). 
Their work established the classical framework, which was later elaborated by Brockwell and Davis (2002) 
and applied in modern contexts by Hyndman and Athanasopoulos (2018). It is expressed as follows: 
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 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)  × (𝑃, 𝐷, 𝑄)𝑚 (1) 
 

where 𝑝  = Order of the non-seasonal auto-regressive (AR) component, 𝑑  = Degree of non-seasonal 
differencing, 𝑞 = Order of the non-seasonal moving average (MA) component, 𝑃 = Order of the seasonal 
auto-regressive (SAR) component, 𝐷 = Degree of seasonal differencing, 𝑄 = Order of the seasonal moving 
average (SMA) component, 𝑚= Length of the seasonal cycle (e.g., m = 12 for monthly data with annual 
seasonality). 
 The general mathematical formulation is: 
 

 Φ𝑃(𝐵𝑚)∅𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑚)𝐷𝑌𝑡 = Θ𝑄(𝐵𝑚)𝜃𝑞(𝐵)𝜖𝑡 (2) 
where 𝐵 is the backward shift operator, Φ𝑃 and ∅𝑝represent the seasonal and non-seasonal autoregressive 
components., Θ𝑄 and 𝜃𝑞 represent the seasonal and non-seasonal moving average components, 𝜖𝑡 is the white 
noise error term. 

The SARIMA model can capture dependencies across multiple time horizons (short, medium, and 
seasonal), making it a robust choice for forecasting in various time series applications (Hyndman and 
Athanasopoulos, 2018). 
3. Model Selection Criteria 

This study compares two SARIMA model selection approaches: Grid Search with AIC and BIC, which 
involves manual tuning and systematically explores parameter combinations at a higher computational 
cost, and the AutoSARIMA function, which automates the search process through stepwise optimization for 
efficient model selection. 

3.1 AIC and BIC 
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are commonly used to 

select models by balancing goodness-of-fit and complexity. 

 𝐴𝐼𝐶 = −2 𝑙𝑛 𝐿 + 2𝑘 (3) 

 𝐵𝐼𝐶 = −2 𝑙𝑛 𝐿 + 𝑘 𝑙𝑛 𝑛 (4) 
 

Where 𝐿 is the likelihood function, 𝑘 is the number of parameters, and 𝑛 is the sample size. The 
model with the lowest AIC or BIC is preferred. BIC penalizes complex models more heavily than AIC, making 
it more conservative in selecting simpler models. 

3.2 Grid Search for SARIMA 
Grid Search is a brute-force method for finding the optimal SARIMA parameters by exhaustively 

evaluating all possible parameter combinations within a predefined range. The approach follows these steps: 
 (1) Define the search space: 𝑝, 𝑑, 𝑞, 𝑃, 𝑄 ∈ {0, 1, 2} with 𝐷 ∈ {0, 1}. 

 (2) Fit SARIMA models for each combination and compute AIC and BIC. 
(3) Rank models based on AIC/BIC and present the top 5 best-performing models.  
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 Grid Search ensures optimal parameter selection by systematically evaluating all possible 
parameter combinations. However, this exhaustive search process requires significant computational 
resources, making it time-consuming, particularly for large datasets or complex models. 

3.3 AutoSARIMA (auto.arima in R) 
AutoSARIMA performs automatic SARIMA selection using a stepwise search based on information 

criteria (typically AICc by default in R), while AIC and BIC values of the selected models are reported for 
comparison. 

The function iteratively evaluates candidate models, applies heuristic refinements, and selects the 
specification with the lowest information criterion. While computationally efficient and faster than 
exhaustive search, this approach may not always yield the globally optimal model. 

3.4 Comparison of model selection methods 
Table 1 provides a comprehensive comparison of different model selection approaches, detailing 

their strengths and limitations. It emphasizes critical aspects such as accuracy, computational efficiency, 
and the risk of overfitting, thereby aiding in the selection of the most appropriate method for a given 
forecasting scenario. 
 

Table 1 Comparison of SARIMA model selection approaches 
Method Search Strategy Computation Time Risk of Overfitting 

Grid Search Exhaustive High Low 
AIC/BIC Information Criterion Moderate Moderate 
AutoSARIMA function Stepwise Search Low Moderate 

 

Grid Search provides the most comprehensive approach to model selection but is computationally 
intensive. AIC and BIC serve as reliable criteria for comparing competing models, while the AutoSARIMA 
function offers a faster alternative with reasonable accuracy. The choice of approach depends on the trade-
off between computational cost and the need for optimality. 
4. Model Evaluation Metrics  

Two widely used error metrics are employed to evaluate the performance of the SARIMA models: 
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). 

Root Mean Square Error (RMSE) measures the average magnitude of the error between predicted 
and actual values. It is calculated as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑡  −  𝑌𝑡̂)

2𝑛
𝑡=1  (5) 

where 𝑌𝑡 = Actual value at time t, 𝑌̂𝑡 = Predicted value at time t, 𝑛 = Number of observations 
 

Mean Absolute Percentage Error (MAPE) evaluates the average percentage error between predicted 
and actual values, and is expressed as a percentage: 

 

 
𝑀𝐴𝑃𝐸 = 

1

𝑛
∑ |

𝑌𝑡 − 𝑌̂𝑡 

𝑌𝑡
|𝑛

𝑡=1  ×  100 (6) 
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where 𝑌𝑡 ≠ 0 for all t, to avoid division by zero, and other variables are defined as above. 
 Lower RMSE and MAPE values indicate better model performance, with RMSE emphasizing the 
magnitude of errors and MAPE offering a percentage-based measure of accuracy. 
5. Prediction Intervals for Forecast Uncertainty  

Quantifying forecast uncertainty is essential for assessing the reliability of predictions in time series. 
Prediction intervals (PI) provide a confidence range within which future values are expected to fall. This 
section presents two approaches: (1) Standard Prediction Intervals, which assume normality in the residuals, 
and (2) Bootstrap Prediction Intervals, a data-driven alternative that does not rely on distributional 
assumptions. 

5.1 Standard prediction intervals (PI) 
Standard Prediction Intervals are derived under the assumption that the residuals in the SARIMA 

model follow a normal distribution. Given this assumption, the PI can be computed as follows: 
 

 𝑃𝐼𝑡 = 𝑌̂𝑡  ± 𝑍∝/2 · 𝜎̂ (7) 
 

where 𝑌̂𝑡 = Point forecast at time t, 𝑍∝/2  = Critical value from the standard normal distribution (e.g., 1.96 
for a 95% confidence interval), 𝜎̂ = Standard deviation of forecast errors. 

This method is computationally efficient and easy to implement. However, it assumes that the 
residuals are normally distributed, which may not hold in real-world data. If the residuals exhibit skewness, 
heteroskedasticity, or outliers, the resulting prediction intervals may be inaccurate and could underestimate 
forecast uncertainty (Hyndman and Athanasopoulos, 2018). 

5.2 Bootstrap prediction intervals (PI) 
Bootstrap Prediction Intervals provide a more flexible approach by estimating uncertainty directly 

from the data. Unlike standard PI, bootstrap-based intervals do not assume normality; instead, they rely on 
empirical resampling techniques. The procedure consists of the following steps: 
 (1) Extract the residuals 𝑒𝑡 = 𝑌𝑡 −  𝑌̂𝑡   from the fitted SARIMA model. 
 (2) Resample these residuals with replacement to generate a new set 𝑒𝑡

∗.  

(3) Generate bootstrap forecasts using: 
 

𝑌𝑡
(𝑏)

= 𝑌̂𝑡 +  𝑒𝑡
(𝑏)

,         𝑏 = 1, 2, . . . , 𝐵 (8) 
 

     where 𝑌𝑡
(𝑏) denotes the 𝑏-th bootstrap replicate of the forecast at time 𝑡; 𝑌̂𝑡  is the point 

forecast obtained from the fitted SARIMA model; 𝑒𝑡
(𝑏) is the resampled residual drawn with replacement 

from the model residuals; and 𝐵 represents the total number of bootstrap replications. Note that in this 
context 𝐵 refers to the number of replications and should not be confused with the backshift operator 𝐵 

used in the SARIMA model equations.  
(4) Compute empirical prediction intervals using the percentiles of the bootstrap forecasts: 
 

 𝑃𝐼 =  [𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒∝/2 (𝑌𝑡
(𝑏)

) , 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒1−∝/2 (𝑌𝑡
(𝑏)

)] (9) 

where typical values of α are 0.05 for a 95% confidence interval. 
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Bootstrap methods naturally adapt to non-Gaussian and heteroskedastic error structures, providing 
more robust prediction intervals, especially in the presence of structural changes or outliers. The utility of 
bootstrap techniques in constructing prediction intervals has been well documented in the literature (Stine, 
1985; Efron and Tibshirani, 1994; Pan and Politis, 2016). 

5.3 Comparison: Standard vs Bootstrap PI  
The strengths and limitations of the two methods, Standard Prediction Intervals and Bootstrap 

Prediction Intervals, are summarized in Table 2, highlighting key differences in their assumptions, flexibility, 
and suitability for various forecasting scenarios. 

 

Table 2 Comparison of standard and bootstrap prediction intervals 
Method Assumption Flexibility 

Standard PI Residuals follow normal distribution Low 
Bootstrap PI No distributional assumption High 

 

Bootstrap Prediction Intervals (PI) offer several advantages over standard methods. They are more 
flexible, as they do not require residuals to follow a normal distribution, making them suitable for a wide 
range of time series data. Being data-driven, they naturally adapt to non-Gaussian and heteroskedastic error 
structures, allowing for more accurate uncertainty estimation. Additionally, Bootstrap PI is robust to 
structural changes, making it a reliable choice when dealing with datasets containing outliers or exhibiting 
non-linearity, thereby ensuring more realistic forecast intervals in dynamic environments. 

5.4 Evaluation of prediction intervals across forecasting horizons  
Forecast uncertainty increases over time, making the assessment of both Standard and Bootstrap 

Prediction Intervals across different forecasting horizons essential. This study evaluates short-term  
(6 months) forecasts for immediate accuracy, medium-term (12 months) forecasts for seasonal performance, 
and long-term (24 months) forecasts for the robustness of SARIMA models in extended predictions. The 
comparison focuses on empirical coverage probability and interval width to determine the reliability of 
each method. The results indicate that Bootstrap PI generally produces broader and more reliable 
uncertainty bounds, particularly in long-term forecasts, where deviations from normality arise due to 
structural changes or evolving market dynamics. 

 

RESULTS AND DISCUSSION 
1. Stationarity Analysis and Differencing Selection  

Stationarity is critical for SARIMA forecasting. To evaluate the ASIAN+8  and World datasets, we 
applied the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, as 
summarized in Table 3. Both tests indicated non-stationarity (p-values > 0.05 for ADF and p-values < 0.05 
for KPSS), suggesting the presence of a unit root and confirming the need for differencing. 
 We applied first-order differencing (d = 1) , which resulted in stationary series for both datasets, as 
confirmed by the ADF test (Table 4). For seasonal stationarity, the ASIAN+8 dataset required one seasonal 
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difference (D = 1) , whereas the World dataset required two (D = 2) because the first seasonal differencing 
was insufficient. Consequently, the final differencing parameters were d = 1, D = 1 for the ASIAN+8 dataset 
and d = 1 , D = 2  for the World dataset. These configurations were then used in the SARIMA grid search to 
identify the optimal forecasting model. 
 

Table 3 Stationarity test results (before differencing) 
Dataset ADF Statistic ADF p-value KPSS Level KPSS p-value 

ASIAN+8 -3.0485 0.1411 (Unit Root) 2.2976 0.01 (Non-Stationary) 
World -2.8471 0.2247 (Unit Root) 2.3021 0.01 (Non-Stationary) 

 

Table 4 Stationarity test results after differencing and final differencing parameters 

Dataset d D ADF Statistic ADF p-value Conclusion 
ASIAN+8 1 1 -6.3910 0.01 No Unit Root / Stationary 
World 1 2 -6.4183 0.01 No Unit Root / Stationary 

 

2. Model Selection and Performance Evaluation  
This study evaluates SARIMA models for Thailand’s seasoning exports using three selection 

approaches to ensure optimal forecasting accuracy. The Grid Search (AIC) method selects the model with 
the lowest Akaike Information Criterion (AIC), balancing model fit and complexity, as shown in Table 5. 
Similarly, the Grid Search (BIC) method prioritizes the model with the lowest Bayesian Information Criterion 
(BIC), which imposes a more substantial penalty on model complexity, with the selected models presented 
in Table 6. In contrast, the AutoSARIMA function employs an automated stepwise search that evaluates 
candidate models using information criteria (typically AICc by default in R), and Table 7 summarizes the 
models selected through this method. 

While computationally efficient, the AutoSARIMA function relies on a stepwise heuristic that may 
converge to a local optimum rather than the global best specification. By contrast, Grid Search 
systematically explores all parameter combinations within the predefined range, thereby ensuring that the 
selected SARIMA model corresponds to the global optimum under AIC/BIC criteria. This design choice 
explains why the Grid Search models in this study consistently achieved lower AIC, BIC, RMSE, and MAPE 
than AutoSARIMA, demonstrating superior forecasting performance across horizons. 
 The selection process identifies the best SARIMA models for the ASIAN+8  and World datasets by 
minimizing AIC and BIC values, ensuring robust model performance across different forecasting scenarios. 
The top five SARIMA models selected based on AIC and BIC rankings exhibit variations; however, both criteria 
identify the same optimal model for each dataset. For the ASIAN+8  dataset, the best-performing model is 
SARIMA (0,1,1) (1,1,1)12, with an AIC of 1296.89 and a BIC of 1307.58. Similarly, for the World dataset, the 
optimal model is SARIMA (2,1,2) (1,2,1)12, with an AIC of 1270.05 and a BIC of 1287.93. Models selected 
through Grid Search consistently achieve lower AIC and BIC values than AutoSARIMA, highlighting their 
superior performance and suitability for forecasting these datasets. 
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 The explicit model equations obtained from the Grid Search are presented below. For the ASEAN+8 
dataset, the optimal specification corresponds to SARIMA(0,1,1)(1,1,1)12 which can be expressed as: 
 

(1 − Φ1𝐵12)(1 − 𝐵)(1 − 𝐵12)𝑦𝑡 = (1 + 𝜃1𝐵)(1 + Θ1𝐵12)𝜀𝑡 

where 𝐵 is the backshift operator (𝐵𝑦𝑡 = 𝑦𝑡−1), Φ1 and Θ1 are seasonal AR and MA coefficients, and 𝜃1 is 
the non-seasonal MA coefficient. 
For the World dataset, the optimal model identified is SARIMA(2,1,2)(1,2,1)12, which is formulated as: 

(1 − 𝜙1𝐵 − 𝜙2𝐵2)(1 − Φ1𝐵12)(1 − 𝐵)(1 − 𝐵12)2𝑦𝑡 = (1 + 𝜃1𝐵 + 𝜃2𝐵2)(1 + Θ1𝐵12)𝜀𝑡 

where 𝜙1, 𝜙2 are non-seasonal AR coefficients, 𝜃1, 𝜃2 are non-seasonal MA coefficients, Φ1 is the seasonal 
AR coefficient, and Θ1 is the seasonal MA coefficient. 
 

Table 5 Top 5 SARIMA models based on AIC for ASIAN+8 and world 
Dataset Rank p d q P D Q AIC 

 1 0 1 1 1 1 1 1296.89 
 2 0 1 1 0 1 2 1297.15 

ASIAN+8 3 1 1 1 1 1 1 1297.73 
 4 0 1 2 1 1 1 1297.99 
 5 1 1 1 0 1 2 1298.04 
 1 2 1 2 1 2 1 1270.05 
 2 2 1 2 1 2 2 1271.42 

World 3 2 1 2 2 2 1 1271.71 
 4 2 1 2 0 2 2 1272.07 
 5 2 1 2 2 2 2 1273.40 

 

Table 6 Top 5 SARIMA models based on BIC for ASIAN+8 and world 

Dataset Rank p d q P D Q BIC 
 1 0 1 1 1 1 1 1307.58 
 2 0 1 1 0 1 2 1307.84 

ASIAN+8 3 0 1 1 0 1 1 1308.71 
 4 1 1 1 1 1 1 1311.10 
 5 0 1 2 1 1 1 1311.35 

 1 2 1 2 1 2 1 1287.93 
 2 2 1 2 0 2 2 1289.95 

World 3 0 1 1 0 2 2 1290.96 
 4 0 1 1 1 2 2 1291.28 
 5 0 1 1 0 2 1 1291.48 
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Table 7 Best SARIMA models selected by the AutoSARIMA function for ASEAN+8 and World 
Dataset p d q P D Q AIC BIC 

ASIAN+8 0 1 1 1 0 0 1436.61 1447.73 
World 0 1 1 0 0 2 1522.75 1533.87 

 

3. Comparison of Forecasted and Actual Values  
We compare the best SARIMA model, selected based on AIC and BIC criteria, with the forecasts 

from the AutoSARIMA function (auto.arima() in R) using actual export data from January 2023 to December 
2024. Since both AIC and BIC selected the same model, Table 8 presents its forecasts alongside those 
obtained from AutoSARIMA for both datasets. 

The results indicate that the selected SARIMA model consistently outperforms the AutoSARIMA 
forecasts, especially during months with higher volatility. The selected model effectively captures seasonal 
patterns and underlying trends, resulting in more accurate forecasts than AutoSARIMA. This demonstrates 
that the selected SARIMA model is the preferred choice for forecasting Thailand’s seasoning exports. 
4. Forecasting Accuracy Evaluation 
 To evaluate the forecasting performance of the selected SARIMA models, we compare the Root 
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) across different forecasting horizons: 
short-term (6 months), medium-term (12 months), and long-term (24 months). These metrics quantify 
predictive accuracy, with lower values indicating better performance. As shown in Table 9, the results 
indicate that the selected SARIMA model consistently outperforms the AutoSARIMA forecasts across all 
horizons, achieving the lowest RMSE and MAPE values. These performance metrics highlight the model’s 
effectiveness in capturing seasonal trends in Thailand’s seasoning export data. 

For short-term forecasting (6 months), the selected SARIMA model demonstrates superior predictive 
accuracy, reducing RMSE by 51.0 for the ASEAN+8 dataset and by 24.72 for the World dataset, compared 
to the AutoSARIMA forecasts. These improvements underscore the model’s ability to capture short-term 
fluctuations in export volumes. 

In the medium-term forecasting scenario (12 months), the SARIMA model continues to deliver 
higher accuracy, with an RMSE reduction of 15.76 in the World dataset. This suggests improved handling of 
seasonal patterns and mid-range variations in export values. 

Over the long-term forecasting horizon (24 months), the selected SARIMA model exhibits greater 
stability and reliability. It consistently achieves lower RMSE values than AutoSARIMA for both ASEAN+8 and 
World datasets, indicating its suitability for strategic export planning and long-term decision-making. 

Overall, the selected SARIMA model yields better forecasting performance than AutoSARIMA across 
all timeframes, with notably lower RMSE and MAPE values. The short-term forecasting scenario yields 
particularly strong results, with MAPE improving to 6.69. These findings confirm the model's robustness and 
practical applicability in forecasting export trends under seasonal and volatile conditions. 
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Interestingly, the results show that long-term forecasts occasionally yield lower MAPE values than 
short-term forecasts. This finding contrasts with the typical expectation that short-term predictions are more 
accurate. A plausible explanation is that the initial months of the testing period exhibited higher volatility, 
which disproportionately affected short-term forecasts. In contrast, long-term horizons averaged out these 
fluctuations, resulting in comparatively lower error rates. While the selected SARIMA model demonstrates 
overall robustness, this anomaly highlights potential limitations of the model under conditions of abrupt 
short-term variations. Future studies could investigate this issue further by incorporating alternative models 
(e.g., SARIMAX with exogenous variables or volatility models such as GARCH) to enhance short-term 
forecasting performance. 
5. Prediction Intervals for Forecast Uncertainty  

Forecast uncertainty is central to the reliability of time series forecasts. In this study, we construct 
95% prediction intervals (PI) for SARIMA models using both standard and bootstrap approaches. Standard 
PI assumes normally distributed residuals, while bootstrap PI provides a more flexible, data-driven estimate 
by resampling residuals. To generate bootstrap PIs, we use B = 1000 replications, which is a widely adopted 
choice in time series forecasting as it balances accuracy and computational efficiency. As noted by Lima et 
al. (2024), bootstrap replications in the order of 1000 are typically sufficient to yield stable interval 
estimates, while larger values may improve precision at the cost of additional computation. 

Table 10 and Table 11 present the 24-month forecasts and the corresponding 95% prediction 
intervals (PI) for the ASEAN+8 and World markets, respectively. Although the structure of results is identical, 
the datasets differ by region. Figures 1 and 2 provide visual comparisons between the standard and 
bootstrap approaches across both markets. The results show that the standard PIs are generally wider than 
the bootstrap PIs, particularly at longer horizons, indicating the conservative nature of the normal-theory 
intervals. By contrast, bootstrap PIs yield narrower ranges that more closely reflect the empirical distribution 
of residuals. This suggests that the standard approach may overstate forecast uncertainty, while the 
bootstrap method provides a more data-driven and practical representation of risk, offering policymakers 
and exporters uncertainty ranges that are realistic without being overly conservative. 
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Table 8 Comparison of actual values vs. forecasts from the selected SARIMA model and the AutoSARIMA 
function for ASIAN+8 and World (Jan 2023 – Dec 2024) 

Date 
ASIAN+8 World 

Actual Selected AutoSARIMA Actual Selected AutoSARIMA 
2023-01 1641.56 1740.97 1826.09 2239.41 2231.05 2475.48 
2023-02 1651.92 1837.05 1911.85 2443.56 2560.64 2552.57 
2023-03 2014.21 2002.57 1984.09 2889.64 2702.73 2703.42 
2023-04 1476.01 1732.10 1797.19 2205.04 2249.42 2373.57 
2023-05 1912.96 1832.15 1809.34 2859.52 2507.48 2517.32 
2023-06 1896.81 1911.12 1930.19 2838.32 2619.49 2649.87 
2023-07 2035.37 1867.48 1868.85 3026.69 2449.69 2529.34 
2023-08 2188.06 1849.51 1866.02 3161.73 2498.80 2483.64 
2023-09 2067.44 1804.21 1822.14 3150.19 2329.26 2435.44 
2023-10 2121.12 1846.88 1856.65 3125.72 2556.13 2431.83 
2023-11 2097.47 1933.28 1939.37 3243.64 2847.46 2628.83 
2023-12 1747.62 1820.12 1833.02 2794.40 2386.68 2441.21 

2024-01 1829.42 1793.53 1898.06 2767.31 2329.81 2466.17 
2024-02 1861.67 1867.50 1942.34 2893.64 2622.66 2525.46 
2024-03 2131.86 2038.76 1980.28 3297.36 2643.41 2546.24 
2024-04 1812.27 1806.86 1896.53 2864.89 2311.56 2390.88 
2024-05 2118.62 1930.36 1906.25 3254.71 2415.43 2414.86 
2024-06 1865.71 1961.19 1967.01 2969.82 2506.97 2443.50 
2024-07 2221.60 1944.63 1942.22 3515.06 2491.82 2419.81 
2024-08 2207.15 1925.70 1944.91 3422.93 2422.42 2437.15 
2024-09 1993.47 1896.47 1928.32 3121.18 2196.19 2350.76 
2024-10 2031.17 1932.82 1948.54 3096.95 2528.88 2307.16 
2024-11 2135.60 1996.21 1991.39 3122.13 2696.92 2392.23 
2024-12 1924.98 1917.58 1945.47 2938.47 2217.87 2285.56 

 

Table 9 Forecast accuracy comparison (RMSE and MAPE) 

Horizon Dataset Selected SARIMA AutoSARIMA 
RMSE MAPE (%) RMSE MAPE (%) 

Short-term (6m) ASIAN+8 139.41 6.69 190.41 9.57 
 World 192.57 5.61 217.29 7.95 
Medium-term (12m) ASIAN+8 190.64 8.46 206.43 9.76 
 World 439.36 12.07 455.12 13.50 
Long-term (24m) ASIAN+8 168.97 6.85 181.10 7.99 
 World 583.10 16.46 606.59 17.68 
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Table 10 Forecast and prediction intervals for ASIAN+8 (24 months) 

Month Forecast 
Standard PI (95%) Bootstrap PI (95%) 

Lower Upper Lower Upper 
1 1740.97 1553.33 1928.60 1583.31 1932.39 
2 1837.05 1640.24 2033.86 1650.51 2028.28 
3 2002.57 1796.99 2208.15 1844.78 2193.99 
4 1732.10 1518.11 1946.09 1574.31 1923.33 
5 1832.15 1610.06 2054.23 1674.49 2023.38 
6 1911.12 1681.24 2141.01 1753.33 2102.54 
7 1867.48 1630.04 2104.92 1709.82 2058.71 
8 1849.51 1604.75 2094.27 1691.85 2040.74 
9 1804.21 1552.35 2056.08 1646.42 1995.44 
10 1846.88 1588.10 2105.65 1689.08 2038.30 
11 1933.28 1667.78 2198.78 1775.49 2124.51 
12 1820.12 1548.05 2092.18 1662.32 2011.35 
13 1793.53 1491.98 2095.07 1635.73 1984.94 
14 1867.50 1555.23 2179.77 1709.85 2058.92 
15 2038.76 1716.13 2361.39 1880.97 2230.18 
16 1806.87 1474.19 2139.54 1649.07 1998.28 
17 1930.36 1587.94 2272.78 1772.70 2121.59 
18 1961.19 1609.29 2313.10 1803.54 2152.42 
19 1944.63 1583.50 2305.76 1786.84 2135.86 
20 1925.70 1555.57 2295.82 1767.90 2117.11 
21 1896.47 1517.56 2275.39 1738.68 2087.89 
22 1932.82 1545.32 2320.32 1775.03 2124.05 
23 1996.21 1600.30 2392.11 1838.55 2187.63 
24 1917.58 1513.45 2321.71 1759.79 2098.40 

 

 



งานวิจัย วารสารวิทยาศาสตร์ มข. ปีที่ 54 เล่มที่ 1 97 
 

 

 
 

Figure 1 Prediction intervals (95%) for ASIAN+8 over a 24-month horizon 
 

Table 11 Forecast and prediction intervals for the world (24 months) 

Month Forecast 
Standard PI (95%) Bootstrap PI (95%) 

Lower Upper Lower Upper 
1 2231.05 1933.60 2528.50 1913.23 2425.86 
2 2560.64 2158.30 2962.98 2270.04 2756.01 
3 2702.73 2206.26 3199.20 2412.14 2936.37 
4 2249.42 1673.31 2825.53 1958.83 2444.79 
5 2507.48 1870.90 3144.06 2189.66 2702.85 
6 2619.49 1918.26 3320.72 2301.67 2814.30 
7 2449.69 1691.36 3208.03 2159.10 2644.51 
8 2498.81 1693.27 3304.34 2180.98 2694.17 
9 2329.26 1470.85 3187.67 2011.43 2562.90 
10 2556.13 1651.68 3460.59 2265.54 2751.50 
11 2847.46 1902.54 3792.38 2529.64 3042.83 
12 2386.68 1395.81 3377.55 2096.08 2582.05 
13 2329.81 1224.55 3435.08 2039.22 2525.18 
14 2622.66 1425.23 3820.09 2331.39 2818.03 
15 2643.40 1346.63 3940.18 2352.81 2838.77 
16 2311.56 929.94 3693.18 2020.96 2506.93 
17 2415.43 957.97 3872.89 2097.61 2610.80 
18 2506.97 966.27 4047.67 2216.38 2740.61 
19 2491.82 880.63 4102.99 2173.99 2725.46 
20 2422.42 744.52 4100.31 2188.52 2617.23 
21 2196.18 445.42 3946.95 1905.59 2391.56 
22 2528.88 717.01 4340.76 2238.29 2724.25 
23 2696.92 824.17 4569.67 2379.10 2892.29 
24 2217.87 279.87 4155.86 1983.97 2451.51 
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Figure 2 Prediction intervals (95%) for World over a 24-month horizon 
 

CONCLUSIONS 
This study evaluates the effectiveness of SARIMA models for forecasting Thailand’s seasoning 

export values to ASEAN+8 and global markets. A comparative analysis of model selection techniques, 
specifically, grid search using AIC/BIC versus the AutoSARIMA function, provides valuable insights for 
optimizing forecasting accuracy. Forecast reliability is assessed by comparing Standard Prediction Intervals 
with Bootstrap-based PI. 

Results indicate that grid search with AIC consistently outperforms AutoSARIMA, with the optimal 
SARIMA models yielding significantly lower RMSE and MAPE across short-, medium-, and long-term horizons. 
This demonstrates the advantage of manual tuning over fully automated approaches in various practical 
applications. Moreover, Bootstrap PI provide more robust and adaptive uncertainty quantification than 
Standard PI, an essential flexibility for international trade forecasting under structural changes and external 
shocks. 

These findings have significant practical implications for policymakers, exporters, and industry 
professionals. By integrating an optimized SARIMA model with Bootstrap PI, businesses can enhance 
forecasting reliability, facilitating more informed decision-making in supply chain planning and market 
expansion. 

Beyond methodological contributions, the proposed approach has several practical applications, 
particularly in supply chain planning, trade policy design, and risk management under volatile market 
conditions. Its key strengths include improved short-term accuracy through Grid Search and more robust 
uncertainty quantification using Bootstrap PI. However, limitations remain, such as higher computational 
cost and sensitivity to data quality. For successful implementation, practitioners should carefully determine 
the number of bootstrap replications, ensure reliable input data, and account for potential structural 
changes in the market. These considerations are critical to maximize the method’s effectiveness in real-
world applications. 
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Future research could further enhance SARIMA-based forecasting by integrating additional external 
macroeconomic indicators such as exchange rates and global trade policies to improve predictive precision 
and reliability. Moreover, addressing challenges like heteroskedasticity in residuals using models such as 
GARCH may further strengthen forecasting robustness in dynamic market environments. These 
improvements would significantly advance time series forecasting methodologies, especially in the context 
of global trade and economic planning. 
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