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ABSTRACT
In this work, we investigate an orbital motion of massive particle around a static and spherically
symmetric magnetically charged object in Einstein-Maxwell-dilaton gravity. This solution has three
characteristics parameters, dilaton flux D, magnetic charged P and dilaton coupling constant A. These
results provide observational means for understanding physical behaviors of magnetically charged compact

object in general relativity.
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INTRODUCTION

The motion of test particles around compact astrophysical objects serves as a powerful tool to
probe the nature of spacetime geometry and to test alternative theories of gravity in the strong-field regime.
Among the extended theories motivated by string theory and low-energy effective actions, Einstein-

Maxwell-dilaton (EMD) gravity introduces a scalar dilaton field that couples to both the gravitational and
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electromagnetic sectors, resulting in significant modifications to black hole and compact object solutions
compared to general relativity (GR) (Gibbons and Maeda, 1988; Garfinkle et al, 1991). For example, in
(Promsiri et al., 2023), the shadow of electrically charged black hole in the EMD theory is investigated. In
GR, the photon ring radius of the Schwarzschild black hole (3M), where M is the Schwarzschild black hole
mass, is the largest. The authors of (Promsiri et al., 2023) find that the presence of dilaton coupling leads
to a possibility that photon ring radius can be larger than 3M.

In particular, EMD gravity allows the existence of magnetically charged black holes, which are of
special interest due to their unique spacetime structures and their role in our understanding of the
interactions between scalar, electromagnetic, and gravitational fields. Unlike their electrically charged
counterparts, magnetically charged solutions are often less explored, especially in relation to geodesic
motion and observational consequences such as gravitational lensing, particle acceleration, and accretion
phenomena (Hirschmann et al., 2018).

Analyzing the trajectories of massive particles in such spacetimes can offer insights into the
influence of the dilaton field and magnetic charge on the stability and characteristics of orbits. This becomes
especially relevant in regimes where deviations from general relativity may be non-negligible. Prior works
have considered test particle motion around dilatonic black holes (Minazzoli and Wavasseur, 2025; Vargas
and Cuyubamba, 2024), but few have examined in depth the combined effects of magnetic charge and
dilaton coupling on massive particle dynamics.

In addition to studying of how massive particles move in curved spacetime, it is also interesting to
explore how photon behaves close to black holes. For instance, shadows of Kerr black hole with scalar hair
presents a novel shape and smaller in size (Porfyriadis and Remmen, 2023) compared to the shadow of
standard Kerr black hole. Moreover, null geodesics of black hole in the EMD theory is explored in (Promsiri
et al., 2023) where an influence of black hole electric charge and dilaton coupling constant on null
geodesics are studied. The width of photon ring depends on black hole’s electric charge and the coupling
constant.

In this paper, we investigate the motion of massive particles around a magnetically charged
compact object in Einstein-Maxwell-dilaton gravity. We derive the equations of motion, analyze the effective
potential, and classify the types of orbits-tracing stable circular, bound, and escape trajectories. The results
may provide both theoretical insights and observational signatures to identify non-standard compact objects

in astrophysical settings.
Magnetically charged object on Einstein-Maxwell-dilaton gravity

In this section, we introduce a spherically symmetric static general solution from EMD gravity. The

EMD action is given by (Garfinkle et al., 1991)
Seun = [ #0705 (R = 201" 0% - F(@)F ™), )

where the coupling function of Maxwell and dilaton field is f(®) = e 2® )is the dilaton

coupling constant. When g is the determinant of metric tensor g,y in Einstein’s frame relativity, R is the
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Ricci tensor, ggv is the inverse of metric tensor in Einstein’s frame, @ is the dilaton field, Fuv and F*Vis
the Maxwell tensor and its inverse, respectively. The Maxwell tensor Fy,, in purely magnetic case has only

an angular component (8, ¢) and the dilaton profile are given by (Porfyriadis and Remmen, 2023)

F=Psin0dd Add. 2)

A r—-r)@r-r)] 1A r—1
=— +— . 3

o(r) YD) log [ - t5 log [r — r_] + @, (3)
where we set @, = 0 without loss of generality. The spherically symmetric static line element solution is

ds? = —f(r)dt? + g(r)dr? + h(r)(d6? + Sin?6dd?). (@)

The metric functions are given by
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where we define 4 = (](1—46-12;) , () = (%)q — 1 with r, and 7_ being the outer and inner
horizons, respectively. We introduce a parameter q that represents a relation to Komar mass (M), magnetic

charged (P), and integrated dilaton flux (D). These are given by
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(10)

These parameters are global charges defined by the Kormar formula given in (Porfyriadis and Remmen,
2023). In a similar manner as finding total electric charged by integrating the electric field over a certain
surface, these charges are the source of the corresponding fields i.e., M as source of gravitational field, P
as source of electromagnetic field and D as source of scalar field. In this case, the fields are integrated over
the surface at spatial infinity. To reduce the magnetic charged P and dilaton flux D parameters into a
simple form. We define the following parameters

P = P ,and D =

m (11)

™
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Then, we can write parameter q as
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2 (12)
1+ D% — p?
From eq. (8) - (11), the horizon can be derived as
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Ficure 1 shows the behavior of the metric functions f(r), g(r), and h(r) as a function of the radius from
top to bottom row respectively, with the variation of the parameters A, D, and P shown from left column
to right column, respectively. In the first column, there are the variations of A for fixed D = —2 and P =
0.8. In the second column, there are the variations of D with fixed A = 2 and P = 0.8. In right column,
there are the variations of P with fixed A = 2 and D = —2. The plots indicate that the metric function

asymptotically approaches flatness at large radii.

Time-like geodesics

In this section, we consider time-like geodesics of EMD charged compact object. To analyze the

geodesics, we use Hamilton-Jacobi equation method (Chandrasekhar, 1998), from eq. (4) the Lagrangian is

1 1 : . :
L=2gui"x" =S [-f )i + g(Ir? + h(r)(0° + Sin*067)]. (15)

. aL .
The canonical momenta can be calculated by p,, = e gu\,xv,

pe = —f(t, (16)
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pr =g, (17)
pe = h(1)0, (18)
py = h(r)sin?6¢. (19)
From Hamilton-Jacobi equation, % =pyand S = [ £ dA . Therefore, we obtain
as 1
== 59" Py (20)

The Jacobi action S can be separated into S = %87\— Et + Lo + S, (r) + Sg(0) where the constant E is
energy, and the constant L is angular momentum. The separation of Jacobi action above is found by Carter
(Carter, 1968) where the given form makes the Hamilton-Jacobi equation solvable. For null- or time-like

geodesics, we have § = 0 or 1. Thus, we get

1 1[ E? 1 (0S.\* 1 [3Sg\° 12
then 2%= _E[_ OMTO) (?) MeS) (%) + h(r)sinze]' @y
h(r) ,  h@)@S\* (8Se\* |
h(T)S—%E +ﬁ(6r> L ——<%) — Lcot“0. (22)

The left-hand side (LHS) of eq. (22) depends on radial coordinate and the right-hand side (RHS) solely

depends on the angular coordinate. Therefore, we can equate both side of eq. (22) to a constant —Q.
LHS = RHS = —Q,

where @ is carter constant. Since, we have

_PMf @) (95
R(r) = W(W) , (23)
2
0(0) = (%") . (24)
Then, these are
R(r) = h2(r)E? — fF(h@)[h(@)8 + L2 + 0], (25)
0(0) = Q — L?cot?0. (26)
From eq. (16) - (19), we get
<ﬂ> _ RO , 27)
dxJ  h() f()g)
dao 1
(ﬁ) =7 /e®. (28)

The radial equation of motion of particle is

2

(%) + Vi (r) = E2. (29)
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From eq. (25) and (27), the effective potential is

[h(r)8 + L% + Q].

~ _ 2 1 1
Vers(r) = E (1 - f(r)g(r)> T 9R®

The radial equation above explain how photon propagates under the influence of gravitational potential

Veff(r). In this work, we consider the orbital motion of massive particle on the equatorial plane, that is

0= % and @ = 0. Eq. (22) leads to Q = 0. After that, we redefine a parameter of eq. (29) under A = ﬁ
which can be rewritten as

dr\? 1

)+ =5 0

where b = l}’;—l and Vesr = Vefflg=0,5=1' In this work, we consider time-like geodesics, which means § = 1.

Hence, the effective potential for time-like curved on the equatorial plane takes the form

v, 1(1 ! >+ ! (1+ 1) (31)
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Figure 2 The effective potential Vs for different value of parameters. In left panel we fix parameters D =
—2,P = 0.5,4 = 10. In the middle panel, we fix 1 = 0.5, P = 0.5. In the right panel, we fix A = 0.5,D = —2.

Note that in this figure, the impact parameter is fixed to 10.

Now let us consider the innermost stable circular orbit (ISCO). ISCO plays a crucial role in
characterizing the dynamics of particles in strong gravitational fields, as it marks the transition between
stable and unstable circular trajectories (Chandrasekhar, 1998; Yagi and Stein, 2016). For a time-like geodesic,

the conditions for circular motion are obtained by requiring the effective potential V(1) to satisfy

From the above condition, we can be obtaining the radius of ISCO 7s¢, which corresponds to parameters
A, D, and P. To understand the orbital motion of particle, the standard approach is to observe the motion

in 7 — ¢ plane. To achieve this, let us consider the following

(ZT;) ) (%> <%) B };((:)) [bz;(r) N h(lr) _le_ (33)
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1
By introducing u = - we have u as a function of ¢, u(¢). Therefore, the radial equation is now

1 2

(3_;)2 _ 4h(al) 1 __ 11 _Liz - P(w). (34)
a(@) b @) n(@)

As a final step, we differentiate the above equation with respect to ¢. We arrive at the standard second-

order differential equation

d’*u(¢) 1dp

_Llar (35)
gz 2dd

It can be solved by standard differential equation solver programing. In practice, we initially set the starting
point (p) of a particle at u(0) = % and demand that Z_Z, = 0 at ¢ = 0 which serves as our initial condition
when integrating eq. (34). The resulting u(¢) explains how a massive particle moves around the compact
object in the EMD gravity.

The analysis of the behavior of the effective potential V¢ of EMD charged compact object
surrounded by massive particles are shown in Fig.2. In left panel, we vary parameter A and fix parameter
D =—-2 P =0.5and b = 10. We find that when A increases, the peak of the effective potential tends
to get higher, and all the variations approaches a constant when 7 increases. The location of the minimum
of the potential (when it exists) shifts to the right with increasing A, suggesting a larger stable circular orbit
radius. The middle panel illustrates how V¢ changes with r for various values of the parameter P, from
P=0to P =15and fixed D =—2,A=0.5and b = 10. As P increases, the peak of the potential
becomes sharper and shifts to the right. The maximum value of Vess also increases with P, suggesting a
higher potential barrier and the potential well becoming narrower and more localized with higher P. The
growing barrier and its shifting position suggest that increasing P makes it harder for a particle to approach
the central region, potentially affecting the stability and radius of circular orbits. The right panel of fig .2
displays the effective potential as a function of r for different values of D, ranging from D = —4to D =
—2 with fixed A = 0.5, P = 0.5 and b = 10. As D increases (becomes less negative), The peak of the
effective potential shifts to larger " and decreases in magnitude, and the potential well becomes wider
and shallower with increasing D.

Next, we will consider a trajectory of massive particle around EMD charged compact object from a
top-view as shown in Fig. 3. The first row shows the variation of A = 0.3, 0.8, and 1.3 with fixed parameters
D = —1and P = 0.5 . We find that when A increases, the compact object and the orbital radius get bigger.
The orbital path has a gradual change in course and appears more orderly. The second row shows the
variation of D = —1.5, —1, and —0.5. with fixed 4 = 1.5 and P = 0.1. The size of compact object
decreases with increasing D while the orbital radius of massive particle gets wider. The last row shows the
variation of parameter P = 0.5, 1, and P4, (1.25219) with fixed A = 0.5 and D = —0.8 . To compare
with the general relativity, we plot trajectories of massive particle around the magnetically charged
Reissner-Nordstrom (RN) black hole in the left and the middle panels of the last row figures. The trajectories

are denoted by red solid curves and the corresponding ISCO are shown
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Figure 3 The trajectory of massive particle around EMD charged compact object for different values of 4, D,
and P The initial position of massive particle is at (8,0) in coordinate X — Y. The black disk at the center
denotes a compact object where the blue dotted circle is the innermost stable circular orbit (ISCO). In the
first row, A is varied for 4 = 0.3,0.8, and 1.3 with fix D = —1 and P = 0.5. The second row, D is
varied for D = —1.5,—1, and —0.5 withfixed A = 1.5 and P = 0.1. The last row is the variation of P
for P =0.5,1, and Py, (1.25219) with fixed A = 0.5and D = —0.8. We set impact parameter b =
5and L = 4.25.In the left and middle panel of the last row, the trajectories of massive particle around
the Reissner-Nordstrom are represented by red curves where the red dotted curve represents ISCO
corresponding to the Reissner-Nordstorm case. as a red dotted circle. Remark that for the RN case, P > 1
yields a naked singularity scenario, which is out of scope of our study. Here, we observe that ISCO of the
RN solution in GR is generally smaller than the compact solution in the EMD gravity. Moreover, the orbits
close to the central object appear to be more chaotic in GR than in the EMD gravity. The size of the object
decreases when P increases whereas the orbital radius gets wider. These findings highlight the roles of the
parameters A, D, and P in shaping the gravitational field and influencing the dynamical motion of particles
around the compact object. This provides valuable insight for further analysis within the EMD theoretical

framework.
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CONCLUSIONS

In this study, we have investigated the orbital motion of massive particles in the gravitational field
of a magnetically charged compact object within the framework of Einstein-Maxwell-dilaton (EMD) gravity.
By deriving the geodesic equations, using the Hamilton-Jacobi formalism and analyzing the effective
potential, we have shown that the presence of a dilaton field and magnetic charge significantly alters the
dynamics compared to standard general relativistic scenarios.

Our results indicate that the effective potential is highly sensitive to the values of the dilaton
coupling constant A, the magnetic charge P, and the integrated dilaton flux D. Specifically, increasing A or
D tends to shift the location of the innermost stable circular orbit (ISCO) outward and reduce the depth of
the potential well. This is consistent with results from scalar-tensor gravity models, which often predict
weakened gravitational attraction due to scalar field screening effects (Cunha et al., 2015). Such behavior
has also been discussed in dilaton black hole models in higher-dimensional or string-inspired gravity
theories, where modified orbital characteristics have been proposed as potential observational signatures
of new physics beyond general relativity (Sotiriou and Faraoni, 2008; Fernando, 2006; Chen, 2019).

Moreover, the impact of the magnetic charge on particle trajectories reveals a rich structure in the
effective potential landscape, contributing to a deeper understanding of the interplay between
electromagnetic and scalar interactions in curved spacetime. This aligns with findings in studies of nonlinear
electrodynamics coupled to scalar fields, which have similarly demonstrated modifications to particle
motion and black hole properties (Aydn-Beato and Garcia, 1998).

The qualitative behavior of orbits such as the transition from bound to unbound trajectories and
the sensitivity of ISCO radii to model parameters highlights the potential for distinguishing EMD compact
objects from classical black holes through astrophysical observations. These findings are particularly
relevant in light of recent developments in black hole imaging, gravitational wave astronomy, and precision
timing of pulsars near compact objects, all of which offer promising avenues to test deviations from general
relativity in the strong-field regime (Yagi and Stein, 2016; Moffat and Toth, 2020).

For future work, it would be valuable to extend the present analysis to include rotation (i.e.,
axisymmetric EMD spacetimes), study the influence of a cosmological constant, and examine the role of
massive scalar fields or higher-order curvature corrections. Such extensions may further enhance our
understanding of how dilaton and magnetic effects can influence astrophysical processes and provide

unique observational footprints.
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