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บทคัดย่อ 
 ในงานวิจัยนี้ เราศึกษาการเคลื่อนที่แบบวงโคจรของอนุภาคที่มีมวลรอบวัตถุหนาแน่นที่มีประจุแม่เหล็ก ซึ่งอยู่ใน
สภาวะนิ่งและมีสมมาตรทรงกลม ภายใต้สนามโน้มถ่วงแบบไอน์สไตน์-แม็กซ์เวลล์-ดีเลตรอน ผลที่ได้วิเคราะห์นี้มีตัวแปร
ลักษณะเฉพาะสามตัว ได้แก่ ฟลักซ์ของดีเลตรอน ประจุแม่เหล็ก และค่าคงที่ของดีเลตรอน ผลลัพธ์เหล่านี้ช่วยให้สามารถ
เข้าใจพฤติกรรมทางกายภาพของวัตถุที่มีประจุแม่เหล็กในทฤษฎีสัมพัทธภาพท่ัวไปได้จากการสังเกตการณ์ 
 

ABSTRACT 
 In this work, we investigate an orbital motion of massive particle around a static and spherically 
symmetric magnetically charged object in Einstein-Maxwell-dilaton gravity. This solution has three 
characteristics parameters, dilaton flux 𝐷 , magnetic charged 𝑃 and dilaton coupling constant λ. These 
results provide observational means for understanding physical behaviors of magnetically charged compact 
object in general relativity. 

 

ค าส าคัญ: วิถีการโคจร  อนุภาคแบบมีมวล  สนามโน้มถ่วงแบบไอน์สไตน์-แม็กซ์เวลล์-ดีเลตรอน 
Keywords: Trajectory, Massive Particle, Einstein-Maxwell-dilaton (EMD) 
 

INTRODUCTION 
 The motion of test particles around compact astrophysical objects serves as a powerful tool to 
probe the nature of spacetime geometry and to test alternative theories of gravity in the strong-field regime. 
Among the extended theories motivated by string theory and low-energy effective actions, Einstein-
Maxwell-dilaton (EMD) gravity introduces a scalar dilaton field that couples to both the gravitational and 
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electromagnetic sectors, resulting in significant modifications to black hole and compact object solutions 
compared to general relativity (GR) (Gibbons and Maeda, 1988; Garfinkle et al., 1991).  For example, in 
(Promsiri et al., 2023), the shadow of electrically charged black hole in the EMD theory is investigated. In 
GR, the photon ring radius of the Schwarzschild black hole (3M), where M is the Schwarzschild black hole 
mass, is the largest. The authors of (Promsiri et al., 2023) find that the presence of dilaton coupling leads 
to a possibility that photon ring radius can be larger than 3M.  
 In particular, EMD gravity allows the existence of magnetically charged black holes, which are of 
special interest due to their unique spacetime structures and their role in our understanding of the 
interactions between scalar, electromagnetic, and gravitational fields. Unlike their electrically charged 
counterparts, magnetically charged solutions are often less explored, especially in relation to geodesic 
motion and observational consequences such as gravitational lensing, particle acceleration, and accretion 
phenomena (Hirschmann et al., 2018). 
 Analyzing the trajectories of massive particles in such spacetimes can offer insights into the 
influence of the dilaton field and magnetic charge on the stability and characteristics of orbits. This becomes 
especially relevant in regimes where deviations from general relativity may be non-negligible. Prior works 
have considered test particle motion around dilatonic black holes (Minazzoli and Wavasseur, 2025; Vargas 
and Cuyubamba, 2024), but few have examined in depth the combined effects of magnetic charge and 
dilaton coupling on massive particle dynamics.  
 In addition to studying of how massive particles move in curved spacetime, it is also interesting to 
explore how photon behaves close to black holes. For instance, shadows of Kerr black hole with scalar hair 
presents a novel shape and smaller in size (Porfyriadis and Remmen, 2023) compared to the shadow of 
standard Kerr black hole. Moreover, null geodesics of black hole in the EMD theory is explored in (Promsiri 
et al., 2023) where an influence of black hole electric charge and dilaton coupling constant on null 
geodesics are studied. The width of photon ring depends on black hole’s electric charge and the coupling 
constant.  
 In this paper, we investigate the motion of massive particles around a magnetically charged 
compact object in Einstein-Maxwell-dilaton gravity. We derive the equations of motion, analyze the effective 
potential, and classify the types of orbits-tracing stable circular, bound, and escape trajectories. The results 
may provide both theoretical insights and observational signatures to identify non-standard compact objects 
in astrophysical settings. 

Magnetically charged object on Einstein-Maxwell-dilaton gravity 
 In this section, we introduce a spherically symmetric static general solution from EMD gravity. The 
EMD action is given by (Garfinkle et al., 1991)  
 

𝑆𝐸𝑀𝐷 = ∫ 𝑑4𝑥√−𝑔𝐸 (ℛ − 2𝑔𝐸
𝜇𝜈

𝛻𝜇𝛷𝛻𝜈𝛷 − 𝑓(𝛷)𝐹𝜇𝜈𝐹𝜇𝜈), (1) 
 

 where the coupling function of Maxwell and dilaton field is 𝑓(Φ) = 𝑒−2𝜆Φ , λ is the dilaton 
coupling constant. When 𝑔𝐸 is the determinant of metric tensor 𝑔μν in Einstein’s frame relativity, ℛ is the 
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Ricci tensor, 𝑔𝐸
μν is the inverse of metric tensor in Einstein’s frame, 𝛷 is the dilaton field, 𝐹μν and 𝐹μν is 

the Maxwell tensor and its inverse, respectively. The Maxwell tensor 𝐹𝜇𝜈 in purely magnetic case has only 
an angular component (𝜃, 𝜙) and the dilaton profile are given by (Porfyriadis and Remmen, 2023) 

  𝐹 = 𝑃 𝑠𝑖𝑛 θ 𝑑θ ∧ 𝑑ϕ. (2) 

 𝛷(𝑟) = −
𝜆

2(1 + 𝜆2)
𝑙𝑜𝑔 [

(𝑟 − 𝑟+)(𝑟 − 𝑟−)

𝑟2
] ±

𝜆∆

2
𝑙𝑜𝑔 [

𝑟 − 𝑟+

𝑟 − 𝑟−

] + Φ0. (3) 

 

where we set Φ0 = 0 without loss of generality. The spherically symmetric static line element solution is 
 

 𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡2 + 𝑔(𝑟)𝑑𝑟2 + ℎ(𝑟)(𝑑θ2 + 𝑆𝑖𝑛2θ𝑑ϕ2 ). (4) 
 

The metric functions are given by 
 

 
𝑓(𝑟) = (

𝑟 − 𝑟+

𝑟 − 𝑟−

)
±∆

(
(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝑟2
)

1
1+λ2

, (5) 

 
𝑔(𝑟) = (

𝑟 − 𝑟+

𝑟 − 𝑟−

)

2
𝑞

∓∆

(
(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝑟2
)

λ2

1+λ2

(
𝑟±𝑟−

𝑞
)

4

(
Π(𝑟)−4𝑟2

(𝑟 − 𝑟+)3(𝑟 − 𝑟−)3
), (6) 

 
ℎ(𝑟) = (

𝑟 − 𝑟+

𝑟 − 𝑟−

)
−1+

1
𝑞

∓∆

(
𝑟(𝑟+ − 𝑟−)

𝑞(𝑟 − 𝑟−)Π(𝑟)
)

2

. (7) 

 

where we define 𝛥 ≡
𝜆√1−𝑞2+𝜆2

𝑞(1+𝜆2)
 , Π(𝑟) ≡ (

𝑟−𝑟+

𝑟−𝑟−
)

1

𝑞
− 1  with 𝑟+  and 𝑟−  being the outer and inner 

horizons, respectively. We introduce a parameter 𝑞 that represents a relation to Komar mass (𝑀̃), magnetic 
charged (𝑃̃), and integrated dilaton flux (𝐷̃). These are given by 
 

 

𝑀̃ =
𝑟+ + 𝑟−

2(1 + λ2)
+

λ(𝑟+ − 𝑟−)

2(1 + λ2)

√1 − 𝑞2 + λ2

𝑞
, (8) 

 

𝑃̃ = √
2𝑟+𝑟−

1 + λ2
, (9) 

 

𝐷̃ = −
λ(𝑟+ + 𝑟−)

2(1 + λ2)
+

𝑟+ − 𝑟−

2(1 + λ2)

√1 − 𝑞2 + λ2

𝑞
. (10) 

 

These parameters are global charges defined by the Kormar formula given in (Porfyriadis and Remmen, 
2023). In a similar manner as finding total electric charged by integrating the electric field over a certain 
surface, these charges are the source of the corresponding fields i.e., 𝑀̃ as source of gravitational field, 𝑃̃ 
as source of electromagnetic field and 𝐷̃ as source of scalar field. In this case, the fields are integrated over 
the surface at spatial infinity. To reduce the magnetic charged 𝑃̃ and dilaton flux 𝐷̃ parameters into a 
simple form. We define the following parameters 

 
𝑃 =

𝑃̃

√2𝑀̃
, and 𝐷 =

𝐷̃

𝑀̃
 . (11) 
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Then, we can write parameter 𝑞 as  
 

𝑞2 =
(1 − λ𝐷)2 − (1 + λ2)𝑃2

1 + 𝐷2 − 𝑃2
 . (12) 

 

From eq. (8) - (11), the horizon can be derived as 
 

𝑟+ = 1 − λ𝐷 ± √(1 − 𝜆𝐷)2 − (1 + λ2)𝑃2, (13) 

 
𝑟− =

(1 + λ2)𝑃2

1 − λ𝐷 ± √(1 − λ𝐷)2 − (1 + λ2)𝑃2
 (14) 

Figure 1 shows the behavior of the metric functions 𝑓(𝑟), 𝑔(𝑟), and ℎ(𝑟) as a function of the radius from 
top to bottom row respectively, with the variation of the parameters , 𝐷, and 𝑃 shown from left column 
to right column, respectively. In the first column, there are the variations of 𝜆 for fixed 𝐷 =  −2 and 𝑃 =

 0.8. In the second column, there are the variations of 𝐷 with fixed λ = 2 and 𝑃 = 0.8. In right column, 
there are the variations of 𝑃 with fixed λ = 2 and 𝐷 = −2. The plots indicate that the metric function 
asymptotically approaches flatness at large radii. 
 

Time-like geodesics  
 In this section, we consider time-like geodesics of EMD charged compact object. To analyze the 
geodesics, we use Hamilton-Jacobi equation method (Chandrasekhar, 1998), from eq. (4) the Lagrangian is 
 

ℒ =
1

2
𝑔μν𝑥̇μ 𝑥̇ν =

1

2
[−𝑓(𝑟)𝑡̇2 + 𝑔(𝑟)𝑟2̇ + ℎ(𝑟)(𝜃̇2 + 𝑆𝑖𝑛2θ𝜙̇2)]. (15) 

 

The canonical momenta can be calculated by 𝑝μ =
∂ℒ

∂𝑥̇𝜇 = 𝑔μν𝑥̇𝜈, 
 

 𝑝𝑡 = −𝑓(𝑟)𝑡̇, (16) 
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 𝑝𝑟 = 𝑔(𝑟)𝑟̇, (17) 

 𝑝θ = ℎ(𝑟)𝜃̇, (18) 

 𝑝ϕ = ℎ(𝑟)𝑠𝑖𝑛2𝜃𝜙̇ . (19) 
 

From Hamilton-Jacobi equation, ∂𝑆

∂𝑥μ = 𝑝μ and 𝑆 = ∫ ℒ 𝑑𝜆 . Therefore, we obtain 
 

 ∂𝑆

∂λ
= −

1

2
𝑔μν𝑝μ𝑝ν (20) 

 

The Jacobi action 𝑆 can be separated into 𝑆 =
1

2
δλ − 𝐸𝑡 + 𝐿ϕ + 𝑆𝑟(𝑟) + 𝑆θ(θ) where the constant 𝐸 is 

energy, and the constant 𝐿 is angular momentum. The separation of Jacobi action above is found by Carter 
(Carter, 1968) where the given form makes the Hamilton-Jacobi equation solvable. For null- or time-like 
geodesics, we have 𝛿 = 0 or 1. Thus, we get  

then 1

2
δ = −

1

2
[−

𝐸2

𝑓(𝑟)
+

1

𝑔(𝑟)
(

𝜕𝑆𝑟

∂𝑟
)

2

+
1

ℎ(𝑟)
(

∂𝑆θ

∂θ
)

2

+
𝐿2

ℎ(𝑟)𝑠𝑖𝑛2θ
], (21) 

 ℎ(𝑟)δ −
ℎ(𝑟)

𝑓(𝑟)
𝐸2 +

ℎ(𝑟)

𝑔(𝑟)
(

∂𝑆𝑟

∂𝑟
)

2

+ 𝐿2 = − (
∂𝑆𝜃

∂θ
)

2

− 𝐿2𝑐𝑜𝑡2𝜃 . (22) 

 

The left-hand side (LHS) of eq. (22) depends on radial coordinate and the right-hand side (RHS) solely 
depends on the angular coordinate. Therefore, we can equate both side of eq. (22) to a constant −𝑄. 

𝐿𝐻𝑆 = 𝑅𝐻𝑆 = −𝒬 , 
where 𝒬 is carter constant. Since, we have   
 

ℛ(𝑟) =
ℎ2(𝑟)𝑓(𝑟)

𝑔(𝑟)
(

∂𝑆𝑟

∂𝑟
)

2

, (23) 

 
Θ(θ) = (

∂𝑆θ

∂θ
)

2

. (24) 

Then, these are 
 ℛ(𝑟) = ℎ2(𝑟)𝐸2 − 𝑓(𝑟)ℎ(𝑟)[ℎ(𝑟)δ + 𝐿2 + 𝒬], (25) 

 
θ(θ) = 𝒬 − 𝐿2𝑐𝑜𝑡2𝜃 . (26) 

From eq. (16) - (19), we get 
 

(
𝑑𝑟

𝑑λ
) =

1

ℎ(𝑟)
√

ℛ(𝑟)

𝑓(𝑟)𝑔(𝑟)
 , (27) 

 
(

𝑑θ

𝑑λ
) =

1

ℎ(𝑟)
√Θ(θ) . (28) 

The radial equation of motion of particle is 

 
(

𝑑𝑟

𝑑λ
)

2

+ 𝑉̃𝑒𝑓𝑓(𝑟) = 𝐸2. (29) 
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From eq. (25) and (27), the effective potential is 
 

𝑉̃𝑒𝑓𝑓(𝑟) = 𝐸2 (1 −
1

𝑓(𝑟)𝑔(𝑟)
) +

1

𝑔(𝑟)ℎ(𝑟)
[ℎ(𝑟)δ + 𝐿2 + 𝒬]. 

 

The radial equation above explain how photon propagates under the influence of gravitational potential 
𝑉̃𝑒𝑓𝑓(𝑟).  In this work, we consider the orbital motion of massive particle on the equatorial plane, that is  

𝜃 =
𝜋

2
 and 𝜃̇ = 0. Eq. (22) leads to 𝒬 = 0. After that, we redefine a parameter of eq. (29) under 𝜆 =

𝜆̃

|𝐿|
,  

which can be rewritten as 
 

(
𝑑𝑟

𝑑λ̃
)

2

+ 𝑉𝑒𝑓𝑓(𝑟) =
1

𝑏2
 , (30) 

where 𝑏 =
|𝐿|

𝐸
 and 𝑉𝑒𝑓𝑓 = 𝑉̃𝑒𝑓𝑓|𝒬=0,δ=1

. In this work, we consider time-like geodesics, which means 𝛿 = 1. 
Hence, the effective potential for time-like curved on the equatorial plane takes the form 
 

𝑉𝑒𝑓𝑓 =
1

𝑏2
(1 −

1

𝑓(𝑟)𝑔(𝑟)
) +

1

𝑔(𝑟)
(1 +

1

ℎ(𝑟)
) . (31) 

Figure 2 The effective potential 𝑉𝑒𝑓𝑓 for different value of parameters. In left panel we fix parameters 𝐷 =

−2, 𝑃 = 0.5, 𝜆 = 10. In the middle panel, we fix 𝜆 = 0.5, 𝑃 = 0.5. In the right panel, we fix 𝜆 = 0.5, 𝐷 = −2. 
Note that in this figure, the impact parameter is fixed to 10. 
 

 Now let us consider the innermost stable circular orbit (ISCO). ISCO plays a crucial role in 
characterizing the dynamics of particles in strong gravitational fields, as it marks the transition between 
stable and unstable circular trajectories (Chandrasekhar, 1998; Yagi and Stein, 2016). For a time-like geodesic, 
the conditions for circular motion are obtained by requiring the effective potential 𝑉𝑒𝑓𝑓(𝑟) to satisfy 
 

𝑉𝑒𝑓𝑓
′ = 0, 𝑉𝑒𝑓𝑓

′′ = 0. (32) 

From the above condition, we can be obtaining the radius of ISCO 𝑟𝐼𝑆𝐶𝑂, which corresponds to parameters 
λ, 𝐷, and 𝑃. To understand the orbital motion of particle, the standard approach is to observe the motion 
in 𝑟 − 𝜙 plane. To achieve this, let us consider the following  
 

(
𝑑𝑟

𝑑𝜙
)

2

= (
𝑑𝑟

𝑑𝜆̃
)

2

(
𝑑𝜆̃

𝑑𝜙
)

2

=
ℎ2(𝑟)

𝑔(𝑟)
[

1

𝑏2𝑓(𝑟)
−

1

ℎ(𝑟)
−

1

𝐿2
]. (33) 
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By introducing 𝑢 ≡
1

𝑟
, we have 𝑢 as a function of 𝜙, 𝑢(𝜙). Therefore, the radial equation is now  

 

(
𝑑𝑢

𝑑𝜙
)

2

= 𝑢4
ℎ (

1
𝑢

)
2

𝑔 (
1
𝑢

)
[

1

𝑏2𝑓 (
1
𝑢

)
−

1

ℎ (
1
𝑢

)
−

1

𝐿2
] ≡ 𝑃(𝑢). (34) 

As a final step, we differentiate the above equation with respect to ϕ. We arrive at the standard second-
order differential equation 
 𝑑2𝑢(ϕ)

𝑑ϕ2
=

1

2

𝑑𝑃

𝑑ϕ
 , (35) 

It can be solved by standard differential equation solver programing. In practice, we initially set the starting 

point (𝑝) of a particle at 𝑢(0) =
1

𝑝
 and demand that 𝑑𝑢

𝑑𝜙
= 0 at 𝜙 → 0 which serves as our initial condition 

when integrating eq. (34). The resulting 𝑢(𝜙) explains how a massive particle moves around the compact 
object in the EMD gravity. 
 The analysis of the behavior of the effective potential 𝑉𝑒𝑓𝑓  of EMD charged compact object 
surrounded by massive particles are shown in Fig.2. In left panel, we vary parameter λ and fix parameter 
𝐷 = −2  𝑃 = 0.5 and 𝑏 = 10. We find that when λ increases, the peak of the effective potential tends 
to get higher, and all the variations approaches a constant when 𝑟 increases. The location of the minimum 
of the potential (when it exists) shifts to the right with increasing 𝜆, suggesting a larger stable circular orbit 
radius. The middle panel illustrates how 𝑉𝑒𝑓𝑓  changes with 𝑟 for various values of the parameter 𝑃, from 
𝑃 = 0 to 𝑃 = 1.5 and fixed 𝐷 = −2, λ = 0.5 and 𝑏 = 10. As 𝑃 increases, the peak of the potential 
becomes sharper and shifts to the right. The maximum value of 𝑉𝑒𝑓𝑓  also increases with 𝑃, suggesting a 
higher potential barrier and the potential well becoming narrower and more localized with higher 𝑃. The 
growing barrier and its shifting position suggest that increasing 𝑃 makes it harder for a particle to approach 
the central region, potentially affecting the stability and radius of circular orbits. The right panel of fig .2 
displays the effective potential as a function of 𝑟 for different values of 𝐷, ranging from 𝐷 = −4 to 𝐷 =

−2 with fixed 𝜆 = 0.5, 𝑃 = 0.5 and 𝑏 = 10. As 𝐷 increases (becomes less negative), The peak of the 

effective potential shifts to larger 𝑟 and decreases in magnitude, and the potential well becomes wider 
and shallower with increasing 𝐷. 
 Next, we will consider a trajectory of massive particle around EMD charged compact object from a 
top-view as shown in Fig. 3. The first row shows the variation of λ = 0.3, 0.8, and 1.3 with fixed parameters 
𝐷 = −1 and 𝑃 = 0.5 . We find that when λ increases, the compact object and the orbital radius get bigger. 
The orbital path has a gradual change in course and appears more orderly. The second row shows the 
variation of 𝐷 = −1.5, −1, and −0.5. with fixed 𝜆 =  1.5 and 𝑃 = 0.1. The size of compact object 
decreases with increasing 𝐷 while the orbital radius of massive particle gets wider. The last row shows the 
variation of parameter 𝑃 = 0.5, 1, and 𝑃𝑚𝑎𝑥(1.25219) with fixed 𝜆 =  0.5 and 𝐷 = −0.8 .  To compare 
with the general relativity, we plot trajectories of massive particle around the magnetically charged  
Reissner-Nordstrom (RN) black hole in the left and the middle panels of the last row figures. The trajectories 
are denoted by red solid curves and the corresponding ISCO are shown  
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Figure 3 The trajectory of massive particle around EMD charged compact object for different values of 𝜆, 𝐷, 
and 𝑃 The initial position of massive particle is at (8,0) in coordinate 𝑋 − 𝑌. The black disk at the center 
denotes a compact object where the blue dotted circle is the innermost stable circular orbit (ISCO). In the 
first row, 𝜆 is varied for 𝜆 =  0.3, 0.8, and 1.3 with fix 𝐷 =  −1 and 𝑃 =  0.5. The second row, 𝐷 is 
varied for 𝐷 =  −1.5, −1, and −0.5 with fixed 𝜆 =  1.5 and 𝑃 =  0.1 . The last row is the variation of 𝑃 
for 𝑃 = 0.5,1, and 𝑃𝑚𝑎𝑥(1.25219) with fixed 𝜆 =  0.5 and 𝐷 =  −0.8. We set impact parameter 𝑏 =

 5 and 𝐿 =  4.25 . In the left and middle panel of the last row, the trajectories of massive particle around 
the Reissner-Nordstrom are represented by red curves where the red dotted curve represents ISCO 
corresponding to the Reissner-Nordstorm case. as a red dotted circle. Remark that for the RN case, 𝑃 > 1 
yields a naked singularity scenario, which is out of scope of our study. Here, we observe that ISCO of the 
RN solution in GR is generally smaller than the compact solution in the EMD gravity. Moreover, the orbits 
close to the central object appear to be more chaotic in GR than in the EMD gravity. The size of the object 
decreases when 𝑃 increases whereas the orbital radius gets wider. These findings highlight the roles of the 
parameters λ, D, and 𝑃 in shaping the gravitational field and influencing the dynamical motion of particles 
around the compact object. This provides valuable insight for further analysis within the EMD theoretical 
framework. 
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CONCLUSIONS 
 In this study, we have investigated the orbital motion of massive particles in the gravitational field 
of a magnetically charged compact object within the framework of Einstein-Maxwell-dilaton (EMD) gravity. 
By deriving the geodesic equations, using the Hamilton-Jacobi formalism and analyzing the effective 
potential, we have shown that the presence of a dilaton field and magnetic charge significantly alters the 
dynamics compared to standard general relativistic scenarios. 
 Our results indicate that the effective potential is highly sensitive to the values of the dilaton 
coupling constant 𝜆, the magnetic charge 𝑃, and the integrated dilaton flux 𝐷. Specifically, increasing 𝜆 or 
𝐷 tends to shift the location of the innermost stable circular orbit (ISCO) outward and reduce the depth of 
the potential well. This is consistent with results from scalar-tensor gravity models, which often predict 
weakened gravitational attraction due to scalar field screening effects (Cunha et al., 2015). Such behavior 
has also been discussed in dilaton black hole models in higher-dimensional or string-inspired gravity 
theories, where modified orbital characteristics have been proposed as potential observational signatures 
of new physics beyond general relativity (Sotiriou and Faraoni, 2008; Fernando, 2006; Chen, 2019). 
 Moreover, the impact of the magnetic charge on particle trajectories reveals a rich structure in the 
effective potential landscape, contributing to a deeper understanding of the interplay between 
electromagnetic and scalar interactions in curved spacetime. This aligns with findings in studies of nonlinear 
electrodynamics coupled to scalar fields, which have similarly demonstrated modifications to particle 
motion and black hole properties (Ayón-Beato and García, 1998). 
 The qualitative behavior of orbits such as the transition from bound to unbound trajectories and 
the sensitivity of ISCO radii to model parameters highlights the potential for distinguishing EMD compact 
objects from classical black holes through astrophysical observations. These findings are particularly 
relevant in light of recent developments in black hole imaging, gravitational wave astronomy, and precision 
timing of pulsars near compact objects, all of which offer promising avenues to test deviations from general 
relativity in the strong-field regime (Yagi and Stein, 2016; Moffat and Toth, 2020). 
 For future work, it would be valuable to extend the present analysis to include rotation (i.e., 
axisymmetric EMD spacetimes), study the influence of a cosmological constant, and examine the role of 
massive scalar fields or higher-order curvature corrections. Such extensions may further enhance our 
understanding of how dilaton and magnetic effects can influence astrophysical processes and provide 
unique observational footprints. 
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