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ABSTRACT
This study proposes machine learing models to estimate erythemal ultraviolet (EUV) radiation
under all sky conditions using several available atmospheric and meteorological parameters. Data at four
ground-based stations in key regions of Thailand namely, Chiang Mai, Ubon Ratchathani, Songkhla, and
Nakhon Pathom, were collected from 2019 to 2023. Two well-known machine learning techniques, Artificial

Neural Networks (ANN) and Extreme Gradient Boosting (XGBoost), were developed and employed, and their
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performance was compared. The results show that XGBoost outperformed ANN in terms of accuracy, with
the best performance at each site yielding normalized root mean square errors (NRMSE) ranging from 8.56%
to 14.32%. This superior performance suggests that XGBoost is more effective for estimating EUV radiation

in Thailand and could be further improved for radiation forecasting.
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INTRODUCTION

Ultraviolet (UV) radiation is a component of solar radiation and can be categorized into three types
based on their wavelength ranges. Ultraviolet C (UV-C) has a wavelength range of 100 - 280 nm, ultraviolet
B (UV-B) ranges from 280 - 315 nm, and ultraviolet A (UV-A) spans from 315 - 400 nm (WHO 2002).
The amount of UV radiation reaching the Earth's surface is influenced by various factors, including
atmospheric components such as ozone, aerosols, clouds, and water vapor. Additionally, the geometry of
a location on the Earth relative to the sun such as the distance between the Earth and the sun, the solar
zenith angle, and the Earth's axial tilt also affects the intensity of UV radiation (Prasad et al., 2023).

The ultraviolet radiation that reaches the Earth's surface, specifically UV-A and UV-B, accounts for
only 5 - 7% of the total solar radiation (Roshan et al., 2020; Ahmed et al., 2022). Nevertheless, it is
considered an important type of radiation for human health, the environment, and ecosystems (Rivas et
al., 2020). Regarding human health, particularly the skin, exposure to UV radiation can have both positive
and negative effects. On the positive side, UV radiation helps synthesize vitamin D, which strengthens bones
and supports a healthy immune system (Juzeniene and Moan, 2012; Webb et al., 2021). In medicine,
it is also used to treat conditions such as atopic dermatitis, psoriasis, and vitiligo (Elmets et al., 2019).
On the negative side, overexposure can lead to premature wrinkles, freckles, or even skin cancer (Bilbao et
al., 2014). However, the occurrence of these effects depends on the amount of UV radiation received,
as well as factors like age, gender, and skin color. The UV radiation associated with these effects is identified
by the International Commission on Illumination (CIE) as erythemal UV (EUV) radiation (CIE, 2006), which
causes redness in the human skin. This weighted UV radiation can be converted into UV index, which is
more commonly promoted in society (WHO, 2002).

Generally, the amount of UV radiation at the Earth's surface can be obtained directly from ground-
based measurements. However, due to high costs and maintenance requirements, the installation of such
instruments is very limited. Therefore, modeling is an alternative option to estimate UV radiation. There are
several approaches to estimate UV radiation, such as empirical models and physical models (Anton et al,,
2009; Janjai et al., 2010a). Recently, Artificial Intelligence (Al) approaches, such as machine learning models,
have become increasingly popular and offer high performance. These models effectively capture nonlinear
relationships and learn temporal patterns in input and output variables, making them well-suited for
predicting solar radiation influenced by rapidly changing weather conditions such as clouds and aerosols,

which are difficult to model with conventional methods (Prasad et al., 2023). Consequently, several recent
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studies have applied machine learning models to estimate or forecast solar radiation including UV radiation
in different regions around the world such as Australia (Prasad et al., 2025; Ahmed et al., 2022), Thailand
(Raksasat et al., 2021), Spain (Dieste-Velasco et al., 2023), and Turkey (Demir and Citakoglu, 2023). In case
of UV radiation, Ahmed et al. (2022) forecasted the UV Index in Perth, Australia, using several hybrid deep
learning models based on atmospheric and meteorological variables, as well as climate indices.
Dieste-Velasco et al. (2023) explored the performance of Artificial Neural Networks (ANN) and regression
models for estimating UV radiation (280 - 400 nm) in Burgos, Spain, using meteorological data. The results
showed that ANN provided greater accuracy than the regression approaches.

In Thailand, studies on solar UV radiation have received limited attention (Janjai et al., 2010b;
Raksasat et al., 2021; Laiwarin et al., 2024), partly due to the high cost of measurement instruments and
the need for regular maintenance to ensure data quality, despite the fact that UV radiation levels are
notably high. Given the potential health risks associated with excessive UV exposure, it is crucial to improve
our understanding and prediction of these radiation levels. Therefore, this study focuses on developing two
well-known machine learning models, Extreme Gradient Boosting (XGBoost) and ANN, as they can effectively
capture complex nonlinear relationships present in atmospheric variables. This makes them practical and
efficient tools for estimating EUV radiation under all sky conditions in Thailand. Another aim is to use easily

accessible and readily available input data.

MATERIALS AND METHODS

In this study, four different climate locations in Thailand are selected based on the availability of
ground-based data. The first site is located in the northern part of Thailand, Chiang Mai (18.78°N, 98.98°E),
in a meteorological center. The second site is in a meteorological center in Ubon Ratchathani (15.25°N,
104.87°E), the northeastern part of the country. The third site is located in the central region, at Silpakorn
University, Nakhon Pathom (13.82°N, 100.04°E). Finally, the Songkhla site (7.20°N, 100.60°E), located at a
meteorological center in the southeastern part of Thailand. The climate at these sites is influenced by two
local monsoons: the northeast and southwest monsoons. These bring cool air masses during the winter
season, warm and humid conditions during the summer, and heavy rainfall during the rainy season to the
sites. However, Songkhla, which is located on the eastern coast and in the southern part of the country,
has a distinctly different climate compared to the other stations due to its coastal location. The climate in
Songkhla is characterized by high humidity and significant rainfall throughout the year, with no distinct dry
season. The locations of these sites are shown in Figure 1.

At each site, a UV-Biometer (501A, Solar Light Company) was installed on the rooftop of the building
(Figure 1), and voltage signals were recorded every second using a datalogger (DX2000, Yokogawa). The
voltages were converted to EUV irradiance in watt per square meter (W/m2) following the standard
procedure described in Webb et al. (2006). This method was also used in the work of Janjai et al. (2010b).
These data were quality controlled using the criteria outlined in Bilbao and de Migue (2020), which stated

that EUV should not exceed 1.2 times the extraterrestrial EUV irradiance, as well as the procedure described
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in Janjai et al. (2010b). Erroneous data were subsequently rejected. The EUV irradiances were then averaged
over each hour, and these data were referred to as hourly EUV irradiance from 07:00 to 17:00 local time.
In this study, the hourly EUV irradiance at 7:00, 10:00, 13:00, and 16:00 local time was used as the model
output. Variations in EUV irradiance at the four sites, which change significantly with the seasons and are
influenced by atmospheric components, have been reported in the work of Janjai et al. (2010a; 2010b).

Chiang Mai
(18.78°N, 98.98°E)

(15.25°N, 104.87°E)

(7.20°N, 100.60°E)

Figure 1 The locations of the studied sites in Thailand where (a) UV-Biometers and (b) pyranometers were

installed.

For the input of the model, several atmospheric compositions and meteorological variables that
affect the variations of EUV radiation were considered. These include global broadband irradiance (lgp),
extraterrestrial EUV irradiance (EUV,), cloud cover (CQ), visibility (VIS), total column ozone (O5), and air
temperature (T). These data are available and easily accessible within the country. Broadband irradiance
was measured by a pyranometer (CM21, Kipp&Zonen) at each site, and data acquisition was the same as
for the UV-Biometer. Cloud cover and visibility were observed by meteorological professionals at Chiang
Mai, Ubon Ratchathani, Songkhla, and Nakhon Pathom (14.01°N, 99.97°E) meteorological stations, and
provided on a three-hourly basis at 7:00, 10:00, 13:00, and 16:00 local time. Air temperature data were
retrieved from the National Center for Environmental Prediction (NCEP) and The National Center for
Atmospheric Research (NCAR) (Kalnay et al., 1996). The data were provided on a six-hourly basis at 1:00,
7:00, 13:00, 19:00 local time. For total column ozone, the data were provided by National Aeronautics and
Space Administration (NASA), measured by the Ozone Monitoring Instrument (OMI) on the AURA satellite.
The data are available on a daily basis (Levelt et al., 2006).

Due to the different time resolutions of the datasets, and to minimize errors caused by excessive
interpolation, we decided to estimate EUV irradiance at a 3-hour resolution. The total column ozone from
OMI/AURA was set as constant throughout the day based on the fact that total column ozone typically
does not vary significantly within a single day. Therefore, only the NCEP/NCAR data were interpolated using

linear interpolation, due to its simplicity and effectiveness. Consequently, the prediction times were set at
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07:00, 10:00, 13:00, and 16:00 local time to align with data availability and adequately capture daytime EUV
variations. The information for all data used in this study is summarized in Table 1.

Table 1 The information of input and output of the models

Attribute name Acronym Source Instrument Unit
Erythemal ultraviolet irradiance EUV Ground UV-Biometer mwW/m?’
Global broadband irradiance les Ground Pyranometer W/m?
Extraterrestrial erythemal ultraviolet irradiance EUV, Calculation Janjai et al. W/m?

(2010a)

Cloud cover CcC Ground Observation tenths
Visibility VIS Ground Observation km
Total column ozone 0, Satellite OMI/AURA DU
Air temperature T Reanalysis NCEP/NCAR °C

ANN is a computational model that works like the human brain, consisting of layers of
interconnected neurons that learn nonlinear relationships through training. It is widely used for its strong
self-learning capabilities and high predictive accuracy (Dieste-Velasco et al., 2023). Similarly, XGBoost is an
efficient approach to gradient boosting that builds an ensemble of decision trees to correct errors
sequentially. Moreover, due to its speed, accuracy, and robustness, XGBoost performs well on capturing
complex patterns in data and is commonly applied in predictive tasks such as solar radiation forecasting
(Prasad et al., 2025).

In the modeling process, the input data presented in Table 1, covering the years 2019 to 2023,
were used. Pearson correlation coefficients were calculated to assess the relationship between each input
variable and EUV irradiance. The results showed that only global broadband irradiance and extraterrestrial
EUV irradiance exhibited strong correlations (r = 0.82 - 0.89), while the remaining variables had relatively
low coefficients (r < 0.42). Nevertheless, all six input parameters were retained in the model, as they are
known to influence the attenuation and variability of UV radiation at the surface. Including these variables
allows for a more comprehensive representation of the atmospheric conditions that affect EUV levels.

These data were randomly divided into three groups: training, validation, and testing datasets, using
a ratio of 70:15:15. This ratio is not strictly fixed and may vary depending on the user's preference; however,
a larger proportion is typically allocated to the training set. For example, the ratio of 68:12:20 used in Prasad
et al. (2023), and Dieste-Velasco et al. (2023) employed in 70:15:15. Once the data were separated, each
group was kept fixed and ensured to cover the full range of EUV values, from low to high. Additionally,
the data selected in this work cover all sky conditions: clear, intermediate, and overcast, as verified using
cloud cover data from Thai Meteorological Department (TMD). This ensures that the model is trained and
tested under various atmospheric conditions, supporting its ability to generalize well. To incorporate
temporal dependencies, time-lagged and previous-day data were included as inputs, allowing the model

to learn from historical patterns and improve estimation accuracy.
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The performance of the constructed model was tested with statistical matrics, including coefficient
of determination (R?), index of agreement (IOA), normalized mean bias error (NMBE), and normalized root

mean square error (NRMSE) (Dieste-Velasco et al., 2023). The equations can be represented as follows.

2
R2 _ _ Z?:1(EUVmeasured,i - EUVmodel.i) (1)
- J— 2
21“:1(EUVmeasured,i _EUVmeasured)

2
IOA — 1 _ Zin=1( EUVmodel,i - EUvmeasured,i) (2)
- [ [— 2
21“:1(|EUVmodel,i - EUVmeasured| + |EUVmeasured,i _EUVmeasuredD

1
n Z?=1(EUVmodel,i - EUVmeasured,i)

EUVnmeasured

nMBE = X 100% (3)

1 2
JH E?=1(Em0del,i - Emeasured,i)

nRMSE =

X 100% (4)

EUVmeasured

where EUVeasured @Nd EUVp 0401 @re the erythemal ultraviolet irradiance from the measurement and the
model in mW/m? n is the number of data. EUV,easured is the averaged value of the erythemal ultraviolet
irradiance from the measurement.

The R? indicates the proportion of variance in the measured data explained by the model; higher
values denote better performance. The I0A, ranging from 0 to 1, assesses the degree of match between
estimated and measured values, with values closer to 1 indicating stronger agreement. The nMBE reflects
systematic bias in the estimation; values closer to zero suggest less bias. The nRMSE measures the average

magnitude of errors; lower values indicate higher accuracy.

RESULTS AND DISCUSSION

Using all six input parameters, XGBoost and ANN were utilized in this study to estimate EUV
irradiance in Thailand. Several trials were undertaken throughout the creation of the models. For the ANN,
several hyperparameters were varied to achieve the best estimation performance, including the number of
hidden layers (3), number of neurons (16, 32, 64, 128, 256), leamning rate (0.01, 0.001, 0.0001), dropout rate
(0.1, 0.2, 0.3), activation function (RelLU), number of epochs (200, 500, 1000), and batch size (64). Similarly,
for the XGBoost model, the following hyperparameters were tuned: max depth (3, 5, 7), learning rate (0.01,
0.05, 0.10), number of estimators (200, 500, 800), subsample ratio (0.7, 0.8, 1.0), column sampling ratio by
tree (colsample bytree, 0.8), and random state (42). Grid search was applied for hyperparameter tuning to
identify the optimal combination that yielded the best estimation performance. The selected parameters

for each site are summarized in Table 2.
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Table 2 Hyperparameters that yielded the best performance
Model Parameter Chiang Mai Ubon Ratchathani  Nakhon Pathom Songkhla
ANN Hidden layer 3 3 3 3
Neurons 256, 128, 64 128, 64, 32 128, 64, 32 256, 128, 64
Learning rate 0.0001 0.0001 0.001 0.01
Dropout rate 0.1 0.1 0.2 0.2
Activation function RelU RelU RelU RelU
Epoch 1000 500 500 1000
Batch size 64 64 64 64
XGBoost  Max depth 5 5 5 5
N_estimators 0.05 0.05 0.1 0.1
Subsample 800 800 500 800
Colsample_bytree 0.8 0.7 0.8 0.8
Learning rate 0.8 0.8 0.8 0.8
Random state 42 a2 a2 a2

Using the parameters in Table 2, the best performances for estimating the radiation are shown in

Table 3. It is clear that the performance of XGBoost is better than ANN for all sites. The comparison between

the EUV irradiance from the measurement and the XGBoost model are presented as scatter plots in

Figure 2.

Table 3 Comparison of the performance of ANN and XGBoost models

Site name ANN XGBoost
R’ NMBE (%) nRMSE (%) R®  I0A  nMBE (%)  NnRMSE (%)
Chiang Mai 0.98 0.99 0.75 10.91 0.98 1.00 0.55 10.47
Ubon Ratchathani  0.94  0.99 1.90 16.06 0.96 0.99 1.84 14.30
Nakhon Pathom 095 099  -0.89 14.60 096 099  -143 14.32
Songkhla 0.99 1.00 0.81 9.65 0.99 1.00 0.28 8.56
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Figure 2 Scatter plots comparing the measured erythemal ultraviolet irradiance (EUV Measured) with

predictions from the XGBoost model (EUV Model) at Chiang Mai (a), Ubon Ratchathani (b), Nakhon Pathom

(c), and Songkhla (d). The red line represents the 1:1 line, the black line represents the regression line, and

n denotes the number of data points.

Therefore, XGBoost was chosen to optimize the number of input variables, using the same model

configuration and testing dataset as in Table 3. In this analysis, input variables were removed one at a time,

and the model’s performance was compared. However, global broadband irradiance and extraterrestrial

EUV irradiance were retained in all trials, as they showed high Pearson correlation coefficients with EUV

irradiance. The performance results are shown in Table 4.
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Table 4 Comparison of the model performance when reducing the number of inputs

Site name Input variable XGBoost
R? I0A nMBE (%)  nRMSE (%)
Chiang Mai leg, EUV,, CC, O, VIS, T 0.98 1.00 0.55 10.47
less EUV,, CC, Os, VIS 0.98 0.99 0.90 10.81
legs EUV,, CC, O5, T 0.98 0.99 0.54 10.93
les, EUV,, CC, VIS, T 0.98 0.99 0.62 10.96
legs EUVy, O3, VIS, T 0.98 0.99 - 0.02 10.74
Ubon Ratchathani les, EUVe, CC, Os, VIS, T 0.96 0.99 1.83 14.30
lgs, EUV,, CC, Os, VIS 0.95 0.99 1.79 15.10
less EUV,, CC, O5, T 0.95 0.99 1.91 14.63
lge, EUV,, CC, VIS, T 0.95 0.99 1.95 15.70
lgg, EUV,, O, VIS, T 0.95 0.99 2.24 15.56
Nakhon Pathom les, EUV,, CC, O4, VIS, T 0.96 0.99 -1.43 14.32
lgs, EUV,, CC, Os, VIS 0.95 0.99 -0.90 14.73
lgs, EUV,, CC, O3, T 0.95 0.99 -1.32 15.64
legs EUV,, CC, VIS, T 0.94 0.98 -0.72 16.81
g, leuvos O VIS, T 0.94 0.98 -091 16.66
Songkhla leg, EUV,, CC, O, VIS, T 0.99 1.00 0.28 8.56
leg, EUV,, CC, O, VIS 0.99 1.00 0.34 8.95
lgs, EUV,, CC, O3, T 0.99 1.00 0.83 9.36
legs EUV,, CC, VIS, T 0.98 1.00 -0.10 10.05
log, EUV,, O, VIS, T 0.99 1.00 0.39 8.93

From the results shown in Table 4, it could be seen that using different input combinations led
to slight variations in NRMSE values. For example, at Nakhon Pathom station, when using all six parameters,
the NRMSE was 14.32%, while excluding T resulted in an nRMSE of 14.73%. To determine whether these
differences were statistically significant, an additional analysis was performed using the Friedman test,
followed by the Wilcoxon signed-rank test (Rainio et al., 2024). However, since the Friedman test could not
be applied directly to nRMSE values, in this study, the Friedman analysis was conducted based on mean
absolute error (MAE). The results showed that excluding the O; variable at Ubon Ratchathani (p = 0.0019),
Nakhon Pathom (p = 0.0015), and Songkhla (p = 0.0044) stations produced significantly different outcomes
compared to using all input variables at the 95% confidence level. In contrast, for other variables and
at Chiang Mai station, p - values were greater than 0.05, indicating no significant differences. These results
indicated that, for the three stations, excluding O led to an increase in NRMSE, suggesting that O was an
important input variable that contributed positively to the model’s prediction accuracy. However, at Chiang

Mai site, the model appeared less sensitive to the exclusion of individual input variables, which might have
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reflected complex atmospheric influences in the region that diminished the apparent importance of any
single variable. Based on these findings, we recommend using all six parameters, as it generally yields lower
NRMSE, ranging from 8.56% to 14.32%, and ensures robust performance across different stations.

When comparing our results with previous studies, the nRMSE values obtained in this work range
from 8.56% to 14.32%, which were comparable to those reported by Ahmed et al. (2022) (2% to 26%),
Garcia-Rodriguez et al. (2023) (12.35% to 19.20%) and Dieste-Velasco et al. (2023) (3.77% to 46.05%).
Furthermore, when compared with a study in Thailand, the machine learning approaches used in this study
appeared to provide better estimations of UV values than the empirical methods used by Laiwarin et al.
(2024). This comparison demonstrated that the models proposed here achieve competitive performance in

estimating EUV irradiance.

CONCLUSIONS

In conclusion, machine learning techniques, ANN and XGBoost, were successfully applied to
estimate erythemal ultraviolet irradiance, a key factor affecting human health. The models utilized six input
variables that account for the variation in erythemal ultraviolet radiation at the Earth’s surface: global
broadband irradiance, extraterrestrial erythemal UV irradiance, cloud cover, visibility, total column ozone,
and air temperature. These variables are typically obtained from ground-based and reanalysis data
measurements within the country. The XGBoost model outperformed the ANN model in terms of estimating
radiation, and incorporating all six variables led to enhanced accuracy. This approach holds promise for
future applications in forecasting erythemal ultraviolet radiation, helping to raise awareness and protect

human health from harmful sun exposure.
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