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ABSTRACT

Data management plays a crucial role in Laboratory Information Management Systems, which are
used to collect customer information and conduct chemical tests for water samples. However, successfully
managing chemical testing processes presents obstacles, particularly in terms of financial expenditures,
resource allocation, and waste management. A well-designed dashboard can help optimize chemical testing
and improve resource planning. This study presents data in the form of dashboards that feature both
historical and predictive maintenance observations. The primary goal is to evaluate and show historical
water sample data, which will serve as the foundation for developing a prediction model using Gradient
Boosted Regression. The study process consists of collecting data from the water sample testing service
from Laboratory Information Management System (LIMS), Center of Measurement and Standard
Accreditation, Faculty of Science, Prince of Songkla University, followed by data processing, which involves
data cleaning. This cleaned data is then used to create a model and present the visualization from both
the predictions and the actual data. The R-squared score from this model is 0.82. By analyzing and
forecasting the volume of water samples, the study helps improve the accuracy of resource allocation,
allowing for more efficient planning and management of chemical testing operations. Ultimately, this
approach contributes to reducing waste and minimizing unnecessary expenses, optimizing both financial

and environmental outcomes in water quality testing.
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INTRODUCTION

Data plays an important role in business operations by enabling organizations to extract insights
from historical records and align them with strategic objectives. The water quality analysis, understanding
customer behavior and sample characteristics is essential for planning chemical use efficiently. Since the
types of chemicals vary by water sample, improper stock management can hinder operations. Overstocking
can lead to chemical degradation over time, while understocking risks insufficient supply for operational
needs. Predictive modeling offers a solution by forecasting sample types and volumes based on historical
trends. This helps laboratories prepare the right amount of chemicals while also identifying customer usage
patterns for targeted marketing and retention efforts.

This research utilizes data from Center of Measurement and Standard Accreditation, Faculty of
Science, Prince of Songkla University, which provides analysis and testing services to industrial sectors,
external government agencies, independent local and provincial organizations, and other public entities.
The center operates under a Laboratory Information Management System (LIMS) which has been developed
by them. LIMS supports the management of data in scientific laboratories. At the center, it is used for the
water quality testing system for customer-submitted samples. All relevant data is recorded and stored in
the system. The data is used to develop a dashboard for analysis and visualization, leveraging water sample

data categorized by time and customer. The study employs the Gradient Boosting Regression technique to
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construct a predictive model for water quality testing. Predictive modeling in the water industry has
increasingly relied on data-driven methodologies to support proactive decision-making, particularly in water
quality monitoring and forecasting. The integration of machine learning (ML) and big data analytics has
demonstrated considerable potential in enhancing prediction accuracy, reducing operational costs, and
addressing the limitations of traditional statistical or mechanistic models.

Several studies have leveraged diverse datasets for modeling water quality parameters, including
sensor-based real-time data, such as pH, dissolved oxygen, turbidity, and chlorine levels (Wei et al., 2024),
meteorological and hydrological information such as rainfall, temperature and river discharge (Yang, 2023;
Wang et al., 2016), geospatial data on land use and industrial activity (Nair and Vijaya, 2021), and historical
laboratory records similar to our LIMS-based dataset (Khan and Chai, 2016). These datasets are typically
characterized by missing values, seasonal fluctuations, and temporal inconsistencies, all of which require
extensive preprocessing and transformation. Addressing these challenges through comprehensive
preprocessing and transformation represents a significant focus of our current study.

Various machine learning models have been applied in this domain. Tree-based models like
Random Forest and Gradient Boosting Regression have demonstrated robustness to missing values and the
ability to capture nonlinear relationships (Li et al., 2023; Wei et al., 2024). Neural networks, particularly
Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM), are frequently employed for
modeling time-dependent variables like dissolved oxygen or chlorine levels (Yang, 2023) while Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) combine neural learning with fuzzy logic to handle uncertainty in
environmental data (Yang, 2023). Aligned with these trends, this study employs Gradient Boosting
Regression, which effectively handles mixed-type tabular data and captures complex patterns in water
quality variables.

The literature also highlights the importance of structured modeling workflows, especially data
preprocessing and feature engineering, such as temporal decomposition, normalization, and regional
categorization (Khan and Chai, 2016; Nair and Vijaya, 2021), along with model validation methods like k-fold
cross-validation to ensure generalizability and reduce overfitting (Li et al., 2023; Wei et al., 2024). For
example, Wei et al. (2024) applied Random Forest and LSTM models to predict chlorine levels in drinking
water and validated the models using real-time monitoring feedback. Their integration of model outputs
into dashboards for decision support aligns with our use of Looker Studio for data visualization.

In terms of performance, machine learning models have achieved high predictive accuracy in water
quality applications. Common metrics include Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and the coefficient of determination (R%). Previous work by Khan and Chai (2016) reported over a 30%
reduction in RMSE compared to traditional regression models, while Li et al. (2023) achieved R* values
exceeding 0.90 in predicting parameters such as total suspended solids using Gradient Boosting Regression.
These comparative benchmarks provide a reference point for assessing the effectiveness of our model,
which is evaluated using similar metrics and tested on a geographically imbalanced dataset primarily

composed of samples from the southern provinces of Thailand.
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Although the aforementioned studies have explored various machine learning techniques in water
quality contexts, few have explicitly addressed the challenges of laboratory-sourced, historical datasets or
examined the implications of regional sampling imbalances. Our study contributes to the field by utilization
of structured LIMS-derived historical data in place of real-time sensor data making the approach applicable
in resource-limited settings. Geographic attributes are incorporated to reflect regional water quality variation,
supporting more localized predictions. The model is designed using Gradient Boosting Regression and is
further enhanced through interpretability tools such as feature importance analysis and deployment via
interactive dashboards. These elements collectively support informed decision-making in laboratory
operations and water quality management.

Collectively, these contributions position the present work as both complementary to and distinct
from existing studies, by extending the applicability of machine learning techniques using historical
laboratory data as the data source for water quality management. This research adopts the CRISP-DM (Cross-
Industry Standard Process for Data Mining) methodology to guide the design and implementation of the

predictive analytics and visualization system.

MATERIALS AND METHODS

The system development process is structured around a six-stage framework, depicted in Figure 1,

and is elaborated in detail in the subsequent section.
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Figure 1 The proposed framework

1. Data Collection (Business Understanding and Data Understanding)

This study aims to enhance water quality monitoring and optimize chemical testing through a
predictive system that identifies trends, detects potential issues at an early stage, and supports data-driven
decision-making. It also offers insights into customer engagement with the service. Water sample data from
LIMS includes information on water samples, consumers, locations, testing dates, and chemicals. Initial
exploration was conducted to assess its structure, quality, and distribution. The dataset employed in this

study was obtained from LIMS, which is used to monitor and manage water samples submitted for chemical
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analysis. Prior to the implementation of LIMS, data were manually recorded using Microsoft Excel
spreadsheets, resulting in inconsistencies due to human error and the absence of standardized formatting
protocols. Based on these understanding, two key points can be summarized as data characteristics and
data limitations.

The exported dataset includes approximately 10,000 records with five key features such as sample
collection date, province, and sample type, organized in relational tables spanning 2013 to 2023, primarily
covering southern provinces. During data exploration, issues such as inconsistent naming (e.g., “Songkla” vs.
“Songkhla”), missing or incomplete data entries, and underrepresentation of certain provinces, leading to
geographic imbalance. This stage is critical for understanding the business context and assessing data quality.
It establishes the foundation for effective preprocessing, model development, and accurate interpretation
of analytical results in the subsequent phases of the CRISP-DM framework.

2. Data Preparation

This phase involves data cleaning, transformation, and integration to ensure quality and
consistency. Missing values are handled, formats standardized, and the structured dataset is prepared for
machine learning input.

Data cleaning

Data cleaning is a critical step to ensure the accuracy, consistency, and reliability of the dataset. In
this study, missing values in numerical fields were imputed using either the mean or median, depending on
the distribution skewness, while categorical fields such as province were manually completed using domain
knowledge. Inconsistent spellings were standardized through predefined mapping dictionaries (e.g.,
“Songkla” corrected to “Songkhla”) to maintain uniformity. Irrelevant attributes, including sample IDs and
technician comments, were excluded to reduce noise and improve model efficiency. Temporal filtering was
also applied by removing records outside the 2013 - 2023 period to ensure consistency. These
preprocessing steps collectively enhanced data integrity and provided a solid foundation for effective
feature engineering and model development.

Data Transformation (Outlier Handlings and Feature Engineering)

To facilitate analysis and modeling, the data was transformed into a suitable format through various
techniques aimed at enhancing quality and extracting meaningful features. Regional data was derived from
provincial information to support models that analyze sample submissions by geographic zone. Outlier
detection, a critical step in ensuring the reliability of chemical testing, was conducted using both visual
tools such as box plots and statistical methods like the 3-sigma rule. We establish a robust approach to
identifying these unusual data points. A comparison between the box plots and 3-sigma methods revealed
overlapping as well as distinct sets of outliers. While some observations were identified by both methods,
others were uniquely flagged by the 3-sigma rule, demonstrating its sensitivity in detecting extreme values
that might not fall outside using box plots. Continuous monitoring through LIMS helped maintain data
integrity throughout the process. Feature engineering was also applied to enrich the dataset. Temporal

features were created by decomposing date fields into components such as month and year, allowing for
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seasonal pattern detection and trend analysis. Additionally, provinces were grouped into five regions to add
spatial context. These transformations improved the dataset’s analytical depth and supported more
accurate exploratory and predictive modeling.

Data Splitting (Modeling Preparation)

To assess the performance of the model, the dataset is partitioned into distinct subsets in order to
ensure a fair and unbiased evaluation of the predictive models. The dataset was partitioned into training
and testing subsets. The training set, comprising 80% of the data, is utilized to train the machine learning
regression model. The testing set, consisting of the remaining 20% of the dataset, is reserved for evaluating
the model's accuracy. This division ensures a reliable assessment of the model's performance. This splitting
approach ensures that the model's performance metrics reflect its generalizability to unseen data.

3. Model Creation (Modeling)

A regression model is employed due to its effectiveness in capturing numerical patterns and
forecasting trends in water quality testing. The model is trained on historical data to predict future values,
allowing stakeholders to anticipate potential risks or anomalies. In this study, we employed Gradient
Boosting Regression, a technique that constructs an ensemble of decision trees in a sequential manner.
Each tree is designed to correct the errors of its predecessor by minimizing a predefined loss function. This
approach enables the model to improve predictive accuracy iteratively and effectively capture complex
nonlinear relationships within the data. The system was implemented using Python 3 within the PyCharm
development environment on the Windows operating system. To enhance the robustness and
generalizability of the model, 4-fold cross-validation was employed. This procedure divides the dataset into
four equal subsets. During each iteration, one subset was used for testing while the remaining three were
used for training. This process was repeated four times, with each subset serving as the test set while the
others are used for training. The results were averaged across all folds to provide a comprehensive and
unbiased estimate of the model’s predictive capability.

4. Model Evaluation (Evaluation)

The model’s performance is evaluated using standard regression metrics, including Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and the coefficient of
determination (R2). This evaluation ensures that the model aligns with the project objectives and delivers
actionable insights. The model performance was assessed using several key metrics. The R? score indicates
the proportion of variance in the dependent variable explained by the independent variables, with higher
values signifying better model performance. The R score measures the strength and direction of the linear
relationship between predicted and actual values, where values close to +1 indicate a strong positive
correlation. Mean Absolute Error (MAE) represents the average absolute difference between predicted and
actual values, offering a clear measure of overall prediction accuracy. Root Mean Squared Error (RMSE),
which calculates the square root of the average squared differences between predicted and actual values,
is more sensitive to large errors and highlights variance in predictive accuracy. These metrics collectively

provide a robust basis for evaluating the accuracy, consistency, and generalizability of the predictive model.



268 KKU Science Journal Volume 53 Number 2 Research

5. Data Visualization (Deployment and Communication)

The final model is deployed via Looker Studio, Google’s cloud-based visualization platform,
enabling real-time dashboards and integration with multiple data sources. These visualizations support
continuous monitoring, strategic planning, and resource allocation in water quality management. By
following the CRISP-DM methodology, the study ensures a structured and practical approach to predictive
analytics, enhancing both interpretability and the resulting system in real-world water quality management
contexts. Data visualization plays a crucial role in identifying patterns, trends, and insights within datasets.
Various visualization techniques are utilized to effectively represent both the data and the model’s
performance. In this study, Looker Studio was used to create interactive visualizations that enable dynamic
exploration of the results. Time series plots illustrate temporal variations in water sample quantities,
allowing for the identification of seasonal patterns and long-term trends. Scatter plots show the relationship
between actual and predicted values, providing insight into the model's accuracy and performance. Feature
importance plots highlight the variables that significantly influence water sample quantities, shedding light
on the key drivers in the dataset.

Although the implementation process involves multiple complex steps, it presents a valuable
challenge by utilizing real operational data to make predictions based on desired attributes. For example,
preparing appropriate quantities of related chemicals based on the demand for each month or quarter of
the year, in order to avoid overstocking that could lead to waste or understocking that could result in

insufficient supply.

RESULTS AND DISCUSSION

The Gradient Boosting Regression model had a test set R? score of 0.82, suggesting strong predictive
performance. The feature importance plot demonstrated that the most important parameters influencing
water sample volumes were location and season (month and year). The model accurately predicted
historical water sample volumes and recognized trends over time. In this study, we found that predicted
values were higher than actual observations (Over-predictions) and predicted values were lower than actual
observations (Under-predictions). Over-predictions were observed in water types with complex
contamination patterns, such as frozen squid products and hospital drinking water. Under-predictions, in
contrast, were more frequently associated with water types like tap water and drinking water in sealed
containers.

We applied our dataset to four models: Linear Regression, Ridge Regression, Random Forest
Regression, and Gradient Boosting Regression. R? are computed to assess model performance, as shown in
Table 1. These regression techniques were chosen to assess the performance of various approaches, ranging
from simple linear models to more complex ensemble methods, on this prediction task. Both Linear and
Ridge Regression had low R? values of 0.338, meaning they explained only about 34% of the variance in
the data. In contrast, Random Forest and Gradient Boosting achieved much higher R? values of 0.815 and

0.819, respectively, indicating that they explained over 81% of the variance.
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The correlation coefficient for the ensemble models also indicates a strong positive relationship
between the predicted and actual values (0.916 for Random Forest and 0.915 for Gradient Boosting), in
contrast to the weaker correlations observed for Linear and Ridge Regression (both approximately 0.58).

Gradient Boosting Regression has the lowest RMSE (107.294), with Random Forest slightly behind
at 108.467. This indicates that their predictions are much closer to the actual values compared to the linear
models, which had RMSE values exceeding 205. In terms of MAE, Random Forest achieved the lowest MAE
(30.139), followed by Gradient Boosting (31.745), whereas the linear models reported much higher MAE
values (approximately 89).

This suggests that Random Forest and Gradient Boosting are far better at capturing complex
patterns in the data. Their ability to model complex, nonlinear relationships makes them more suitable for
datasets with intricate patterns. These results highlight the advantage of ensemble tree-based methods in
regression tasks that go beyond the capacity of simple linear approaches.

This predictive feature can be used to optimize chemical testing resources and improve overall
management planning in the Laboratory Information Management System. The following visualizations are

provided to demonstrate these findings.

Table 1 Comparison for different models

Regression model R” R RMSE MAE
Linear Regression 0.338 0.582 205.587 89.462
Ridge Regression 0.338 0.583 205.484 89.035
Random Forest Regression 0.815 0.916 108.467 30.139
Gradient Boosting Regression 0.819 0.915 107.294 31.745

The dashboard is shown in two pages, prediction and historical view. The prediction view (Figure
2a), the data can be filtered by year, region, province and water sample. The dashboard in historical view
is demonstrated in Figure 2b. The data on both pages can be filtered by clicking directly on the graph, as
shown in Figure 2b, which only shows groundwater sample data. Each graph shows the number of water
sample data recorded from 2012 - 2023. The privileged people in the center can access the pages by login

to their account.
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Prediction View

The following chart provides a visual comparison between the predicted and actual values across

different types of water samples, showcasing the performance and accuracy of the predictive model.
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The figure compares projected and actual values for several water samples, showing key patterns
and inconsistencies (Figure 3). Predicted values are generally lower than actual values, especially in high-
point samples like tap water and drinking water in sealed containers, implying that the model may be
underestimating. In mid-range samples, such as chemicals, projected values are more closely aligned with
actual readings, indicating greater accuracy. In contrast, in low-point samples, such as hospital drinking water
and frozen squid items, real levels are sometimes lower than expected, indicating that the model have

overestimated.
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Figure 3 Analysis of Predicted vs Actual Data for Water Samples

Figure 4 displays two comparative bar charts that indicate anticipated actual values across two
time periods: months (January to December) on the left and years (2013 to 2023) on the right. Dark bars
represent predicted values, whereas bright bars reveal actual values. From an analytical standpoint, the
charts clearly show disparities between predicted and actual outcomes. The monthly figure shows probable
patterns of overestimation or underestimation over specific time periods, which may reflect seasonal
impacts or limitations in the model's sensitivity to monthly fluctuations. Similarly, the annual chart displays

patterns over time, indicating potential improvements or consistent biases in the model's performance.
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Figure 4 Comparison of Predicted vs Actual Values Across Time (Monthly and Yearly)
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Figure 5 depicts a comparative study of data from the top five water types: eroundwater, water
property analysis, tap water, drainwater, and drinking water in sealed containers, as measured monthly from
January to December. The given values most likely represent the volumes of each water type that the
organization received from all clients each month. The figure shows that each water type has distinct
patterns over time. For example, groundwater readings are rather steady over the first half of the year, with
a considerable spike around midyear. Tap water and drinking water in sealed containers, on the other hand,
tend to follow a more regular pattern over time. These variations may reflect seasonal causes or changes

in water management systems.
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Figure 5 Comparative Analysis of Water Types Over a Year (Top 5)

However, the charts in Figures 4 and 5 show specific months of the year when a considerable
volume of sample water is expected. This information allows staff to plan of time, ensuring that adequate
testing materials and resources are available. These insights are critical for improving operational readiness
and ensuring smooth testing operations during busy months. Furthermore, these insights provide useful

suggestions for enhancing water resource management and improving future planning methods.

Historical View

The charts' historical view allows us to track changes and patterns over time in the number of
water kinds. Figure 6 shows a bar chart of water types based on the number of samples taken between
2012 and 2023, with the top categories highlighted. Groundwater has the most samples (more than 1,000),
followed by tap water, water property analysis, and drinking water in sealed containers, all of which have
comparable sample numbers. Other categories, such as filtered water and drainwater, follow closely behind,
while less common varieties, such as rubber wood water, wastewater, and wood preservatives, have much
less samples. This graph depicts the distribution of sample efforts across various water types, emphasizing

the dominance of specific categories and offering information on the focus areas for water study.
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The pie chart in Figure 7 depicts the percentage distribution of samples obtained from the top five
provinces. Songkhla leads with 25.8%, followed by Nakhon Si Thammarat (20.4%), Bangkok (19.4%),
Phatthalung (18.3%), and Trang (16.1%). Songkhla and Nakhon Si Thammarat account for 46.2% of the total

samples, demonstrating the considerable contribution of the southern provinces.

Percentage of samples obtained by province (Top 5)

@ Songkhla
@ Nakhen Si Thammarat
® Bangkok

Phatthalung

Trang

Figure 7 Percentage of Samples Obtained by Province (Top 5)

Figure 8 depicts annual (2012 - 2023) and monthly sample collection trends. The annual data show
a continuous increase in sample collecting beginning in 2012, peaking in 2021, then slightly declining in
subsequent years. The monthly statistics show moderate seasonal fluctuations, with more samples
obtained between January and March and a noticeable reduction near the end of the year, particularly in
December. These tendencies could be attributed to operational limitations, environmental conditions, or

seasonal variations in sampling attempts.
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Figure 8 Sample Collection Trends by Year and Month (2012 - 2023)

Based on the insights presented above, it can be observed that the chemicals used for water
quality analysis are mainly applied to the testing of groundwater and tap water. Seasonal trends also
influence when water samples are submitted, with fluctuations varying by month and year. For instance,
the number of groundwater samples remains relatively stable throughout the year, with noticeable peaks
occurring around the middle of the year. In contrast, tap water and drinking water samples stored in sealed
containers exhibit a consistent annual pattern.

These findings can assist laboratories in forecasting resource requirements and optimizing
operational planning ahead of peak testing periods, thereby improving efficiency and ensuring timely
processing of water samples. For example, the laboratory staff can prepare sufficient chemicals for
groundwater quality analysis throughout the year by planning to increase chemical orders before the mid-
year peak period. On the other hand, during the third quarter of the year, overstocking these chemicals
should be avoided, as prolonged storage can lead to deterioration in quality, resulting in the need to

dispose of the expired chemicals.

CONCLUSIONS

This study proposed a strategy for employing Gradient Boosted Regression to optimize chemical
testing for all sorts of water and resource management within a Laboratory Information Management
System. The goal is to produce good prediction performance using the Gradient Boosted Regression model,
which has a test set R-squared score of 0.82 Location and season were shown to be the most important
factors influencing water sample quantity. The prediction algorithm can properly forecast past water sample
volumes and identify long-term trends. This data-driven strategy can help firms make better decisions about
chemical testing resources and management planning within their LIMS systems.

Future work can focus on expanding the scope of prediction to other water quality parameters,
larger datasets or integrating additional data sources such as weather forecasts to improve prediction
accuracy that may better capture the complexities of water testing operations. In addition to cross-

validation, the external validation is an essential step in assessing the model’s generalizability.
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