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บทคัดย่อ 
 การจัดการข้อมูลมีบทบาทส าคัญในระบบจัดการข้อมูลห้องปฏิบัติการ (Laboratory Information Management 
Systems: LIMS) ซึ่งมีบทบาทในการจัดเก็บข้อมูลลูกค้าและสนับสนุนกระบวนการวิเคราะห์ทางเคมีของตัวอย่างน ้า อย่างไรก็
ตาม การบริหารจัดการกระบวนการทดสอบสารเคมีอย่างมีประสิทธิภาพนั้นยังคงเผชิญกับความท้าทายหลายประการ 
โดยเฉพาะอย่างยิ่งด้านค่าใช้จ่าย การจัดสรรทรัพยากร และการจัดการของเสีย แดชบอร์ดที่ออกแบบอย่างเหมาะสมสามารถ
ช่วยเพิ่มประสิทธิภาพของกระบวนการใช้สารเคมีและการวางแผนการใช้ทรัพยากรอย่างเหมาะสม งานวิจัยนีน้ าเสนอข้อมูลใน
รูปแบบของแดชบอร์ดที่ประกอบด้วยการวิเคราะห์ข้อมูลเชิงประวัติศาสตร์ควบคู่กับการท านายข้อมูล โดยมีวัตถุประสงค์หลัก
เพื่อวิเคราะห์และแสดงข้อมูลประวัติการทดสอบตัวอย่างน ้า อันเป็นพื้นฐานส าหรับการพัฒนาแบบจ าลองเชิงพยากรณ์ด้วย
เทคนิค Gradient Boosted Regression กระบวนการวิจัยเริ่มจากการรวบรวมข้อมูลจากระบบ LIMS ของศูนย์เครื่องมือ
วิทยาศาสตร์และรับรองมาตรฐาน คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์  จากนั้นจึงด าเนินการเตรียมข้อมูล ซึ่ง
ครอบคลุมถึงการท าความสะอาดและจัดโครงสร้างข้อมูลให้เหมาะสม ก่อนน าไปใช้ในการสร้างแบบจ าลองและน าเสนอผลลัพธ์
ในรูปแบบภาพข้อมูลเชิงวิเคราะห์ (data visualization) ที่สะท้อนทั้งข้อมูลจริงและข้อมูลที่ได้จากการพยากรณ์ โดยโมเดล
ดังกล่าวมีค่าความแม่นย าที่วัดจาก R-squared เท่ากับ 0.82 การศึกษานี้มีส่วนช่วยในการพัฒนาความแม่นย าของการ
คาดการณ์ปริมาณตัวอย่างน ้าท่ีส่งเข้าทดสอบ ซึ่งน าไปสู่การจัดสรรทรัพยากรอย่างมีประสิทธิภาพ และสามารถลดการสูญเสีย
จากการสั่งซื้อสารเคมีที่มากเกินความจ าเป็น หรือน้อยจนไม่เพียงพอกับความต้องการ ทั้งนี้แนวทางดังกล่าวยังส่งผลเชิงบวก
ต่อการลดต้นทุนและผลกระทบต่อสิ่งแวดล้อม อันเป็นการยกระดับคุณภาพของการให้บริการด้านการทดสอบคุณภาพน ้าใน
ภาพรวม 
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ABSTRACT 
Data management plays a crucial role in Laboratory Information Management Systems, which are 

used to collect customer information and conduct chemical tests for water samples. However, successfully 
managing chemical testing processes presents obstacles, particularly in terms of financial expenditures, 
resource allocation, and waste management. A well-designed dashboard can help optimize chemical testing 
and improve resource planning. This study presents data in the form of dashboards that feature both 
historical and predictive maintenance observations. The primary goal is to evaluate and show historical 
water sample data, which will serve as the foundation for developing a prediction model using Gradient 
Boosted Regression. The study process consists of collecting data from the water sample testing service 
from Laboratory Information Management System (LIMS), Center of Measurement and Standard 
Accreditation, Faculty of Science, Prince of Songkla University, followed by data processing, which involves 
data cleaning. This cleaned data is then used to create a model and present the visualization from both 
the predictions and the actual data. The R-squared score from this model is 0.82.  By analyzing and 
forecasting the volume of water samples, the study helps improve the accuracy of resource allocation, 
allowing for more efficient planning and management of chemical testing operations. Ultimately, this 
approach contributes to reducing waste and minimizing unnecessary expenses, optimizing both financial 
and environmental outcomes in water quality testing. 

 

ค าส าคัญ: การแสดงข้อมูลด้วยภาพ  แดชบอร์ด  การจัดการข้อมูล 
Keywords: Data Visualization, Dashboard, Data Management 
 

INTRODUCTION  
 Data plays an important role in business operations by enabling organizations to extract insights 
from historical records and align them with strategic objectives.  The water quality analysis, understanding 
customer behavior and sample characteristics is essential for planning chemical use efficiently. Since the 
types of chemicals vary by water sample, improper stock management can hinder operations. Overstocking 
can lead to chemical degradation over time, while understocking risks insufficient supply for operational 
needs.  Predictive modeling offers a solution by forecasting sample types and volumes based on historical 
trends. This helps laboratories prepare the right amount of chemicals while also identifying customer usage 
patterns for targeted marketing and retention efforts. 

This research utilizes data from Center of Measurement and Standard Accreditation, Faculty of 
Science, Prince of Songkla University, which provides analysis and testing services to industrial sectors, 
external government agencies, independent local and provincial organizations, and other public entities. 
The center operates under a Laboratory Information Management System (LIMS) which has been developed 
by them. LIMS supports the management of data in scientific laboratories. At the center, it is used for the 
water quality testing system for customer-submitted samples. All relevant data is recorded and stored in 
the system. The data is used to develop a dashboard for analysis and visualization, leveraging water sample 
data categorized by time and customer. The study employs the Gradient Boosting Regression technique to 
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construct a predictive model for water quality testing.  Predictive modeling in the water industry has 
increasingly relied on data-driven methodologies to support proactive decision-making, particularly in water 
quality monitoring and forecasting. The integration of machine learning (ML) and big data analytics has 
demonstrated considerable potential in enhancing prediction accuracy, reducing operational costs, and 
addressing the limitations of traditional statistical or mechanistic models. 
 Several studies have leveraged diverse datasets for modeling water quality parameters, including 
sensor-based real-time data, such as pH, dissolved oxygen, turbidity, and chlorine levels (Wei et al., 2024), 
meteorological and hydrological information such as rainfall, temperature and river discharge (Yang, 2023; 
Wang et al., 2016), geospatial data on land use and industrial activity (Nair and Vijaya, 2021), and historical 
laboratory records similar to our LIMS-based dataset (Khan and Chai, 2016). These datasets are typically 
characterized by missing values, seasonal fluctuations, and temporal inconsistencies, all of which require 
extensive preprocessing and transformation. Addressing these challenges through comprehensive 
preprocessing and transformation represents a significant focus of our current study. 
 Various machine learning models have been applied in this domain. Tree-based models like 
Random Forest and Gradient Boosting Regression have demonstrated robustness to missing values and the 
ability to capture nonlinear relationships (Li et al., 2023; Wei et al., 2024). Neural networks, particularly 
Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM), are frequently employed for 
modeling time-dependent variables like dissolved oxygen or chlorine levels (Yang, 2023) while Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) combine neural learning with fuzzy logic to handle uncertainty in 
environmental data (Yang, 2023). Aligned with these trends, this study employs Gradient Boosting 
Regression, which effectively handles mixed-type tabular data and captures complex patterns in water 
quality variables. 

 The literature also highlights the importance of structured modeling workflows, especially data 
preprocessing and feature engineering, such as temporal decomposition, normalization, and regional 
categorization (Khan and Chai, 2016; Nair and Vijaya, 2021), along with model validation methods like k-fold 
cross-validation to ensure generalizability and reduce overfitting (Li et al., 2023; Wei et al., 2024). For 
example, Wei et al. (2024) applied Random Forest and LSTM models to predict chlorine levels in drinking 
water and validated the models using real-time monitoring feedback. Their integration of model outputs 
into dashboards for decision support aligns with our use of Looker Studio for data visualization. 
 In terms of performance, machine learning models have achieved high predictive accuracy in water 
quality applications. Common metrics include Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 
and the coefficient of determination (R2). Previous work by Khan and Chai (2016) reported over a 30% 
reduction in RMSE compared to traditional regression models, while Li et al. (2023) achieved R2 values 
exceeding 0.90 in predicting parameters such as total suspended solids using Gradient Boosting Regression. 
These comparative benchmarks provide a reference point for assessing the effectiveness of our model, 
which is evaluated using similar metrics and tested on a geographically imbalanced dataset primarily 
composed of samples from the southern provinces of Thailand.  
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Although the aforementioned studies have explored various machine learning techniques in water 
quality contexts, few have explicitly addressed the challenges of laboratory-sourced, historical datasets or 
examined the implications of regional sampling imbalances. Our study contributes to the field by utilization 
of structured LIMS-derived historical data in place of real-time sensor data making the approach applicable 
in resource-limited settings. Geographic attributes are incorporated to reflect regional water quality variation, 
supporting more localized predictions. The model is designed using Gradient Boosting Regression and is 
further enhanced through interpretability tools such as feature importance analysis and deployment via 
interactive dashboards. These elements collectively support informed decision-making in laboratory 
operations and water quality management. 
 Collectively, these contributions position the present work as both complementary to and distinct 
from existing studies, by extending the applicability of machine learning techniques using historical 
laboratory data as the data source for water quality management. This research adopts the CRISP-DM (Cross-
Industry Standard Process for Data Mining) methodology to guide the design and implementation of the 
predictive analytics and visualization system.  
 

MATERIALS AND METHODS  
The system development process is structured around a six-stage framework, depicted in Figure 1, 

and is elaborated in detail in the subsequent section.  
 

 
 

Figure 1 The proposed framework 
 

1. Data Collection (Business Understanding and Data Understanding) 
This study aims to enhance water quality monitoring and optimize chemical testing through a 

predictive system that identifies trends, detects potential issues at an early stage, and supports data-driven 
decision-making. It also offers insights into customer engagement with the service. Water sample data from 
LIMS includes information on water samples, consumers, locations, testing dates, and chemicals. Initial 
exploration was conducted to assess its structure, quality, and distribution. The dataset employed in this 
study was obtained from LIMS, which is used to monitor and manage water samples submitted for chemical 



266 KKU Science Journal Volume 53 Number 2  Research 

analysis. Prior to the implementation of LIMS, data were manually recorded using Microsoft Excel 
spreadsheets, resulting in inconsistencies due to human error and the absence of standardized formatting 
protocols. Based on these understanding, two key points can be summarized as data characteristics and 
data limitations. 

The exported dataset includes approximately 10,000 records with five key features such as sample 
collection date, province, and sample type, organized in relational tables spanning 2013 to 2023, primarily 
covering southern provinces. During data exploration, issues such as inconsistent naming (e.g., “Songkla” vs. 
“Songkhla”), missing or incomplete data entries, and underrepresentation of certain provinces, leading to 
geographic imbalance. This stage is critical for understanding the business context and assessing data quality. 
It establishes the foundation for effective preprocessing, model development, and accurate interpretation 
of analytical results in the subsequent phases of the CRISP-DM framework. 
2. Data Preparation 

This phase involves data cleaning, transformation, and integration to ensure quality and 
consistency. Missing values are handled, formats standardized, and the structured dataset is prepared for 
machine learning input.  
Data cleaning 

Data cleaning is a critical step to ensure the accuracy, consistency, and reliability of the dataset. In 
this study, missing values in numerical fields were imputed using either the mean or median, depending on 
the distribution skewness, while categorical fields such as province were manually completed using domain 
knowledge. Inconsistent spellings were standardized through predefined mapping dictionaries (e.g., 
“Songkla” corrected to “Songkhla”) to maintain uniformity. Irrelevant attributes, including sample IDs and 
technician comments, were excluded to reduce noise and improve model efficiency. Temporal filtering was 
also applied by removing records outside the 2013 – 2023 period to ensure consistency. These 
preprocessing steps collectively enhanced data integrity and provided a solid foundation for effective 
feature engineering and model development. 
Data Transformation (Outlier Handlings and Feature Engineering) 

To facilitate analysis and modeling, the data was transformed into a suitable format through various 
techniques aimed at enhancing quality and extracting meaningful features. Regional data was derived from 
provincial information to support models that analyze sample submissions by geographic zone. Outlier 
detection, a critical step in ensuring the reliability of chemical testing, was conducted using both visual 
tools such as box plots and statistical methods like the 3-sigma rule. We establish a robust approach to 
identifying these unusual data points. A comparison between the box plots and 3-sigma methods revealed 
overlapping as well as distinct sets of outliers. While some observations were identified by both methods, 
others were uniquely flagged by the 3-sigma rule, demonstrating its sensitivity in detecting extreme values 
that might not fall outside using box plots. Continuous monitoring through LIMS helped maintain data 
integrity throughout the process. Feature engineering was also applied to enrich the dataset. Temporal 
features were created by decomposing date fields into components such as month and year, allowing for 
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seasonal pattern detection and trend analysis. Additionally, provinces were grouped into five regions to add 
spatial context. These transformations improved the dataset’s analytical depth and supported more 
accurate exploratory and predictive modeling. 
Data Splitting (Modeling Preparation) 

To assess the performance of the model, the dataset is partitioned into distinct subsets in order to 
ensure a fair and unbiased evaluation of the predictive models.  The dataset was partitioned into training 
and testing subsets. The training set, comprising 80% of the data, is utilized to train the machine learning 
regression model. The testing set, consisting of the remaining 20% of the dataset, is reserved for evaluating 
the model's accuracy. This division ensures a reliable assessment of the model's performance. This splitting 
approach ensures that the model's performance metrics reflect its generalizability to unseen data. 
3. Model Creation (Modeling) 

A regression model is employed due to its effectiveness in capturing numerical patterns and 
forecasting trends in water quality testing. The model is trained on historical data to predict future values, 
allowing stakeholders to anticipate potential risks or anomalies. In this study, we employed Gradient 
Boosting Regression, a technique that constructs an ensemble of decision trees in a sequential manner. 
Each tree is designed to correct the errors of its predecessor by minimizing a predefined loss function. This 
approach enables the model to improve predictive accuracy iteratively and effectively capture complex 
nonlinear relationships within the data. The system was implemented using Python 3 within the PyCharm 
development environment on the Windows operating system.  To enhance the robustness and 
generalizability of the model, 4-fold cross-validation was employed. This procedure divides the dataset into 
four equal subsets. During each iteration, one subset was used for testing while the remaining three were 
used for training. This process was repeated four times, with each subset serving as the test set while the 
others are used for training.  The results were averaged across all folds to provide a comprehensive and 
unbiased estimate of the model’s predictive capability.  
4. Model Evaluation (Evaluation) 

The model’s performance is evaluated using standard regression metrics, including Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and the coefficient of 
determination (R²). This evaluation ensures that the model aligns with the project objectives and delivers 
actionable insights. The model performance was assessed using several key metrics. The R² score indicates 
the proportion of variance in the dependent variable explained by the independent variables, with higher 
values signifying better model performance. The R score measures the strength and direction of the linear 
relationship between predicted and actual values, where values close to +1 indicate a strong positive 
correlation. Mean Absolute Error (MAE) represents the average absolute difference between predicted and 
actual values, offering a clear measure of overall prediction accuracy. Root Mean Squared Error (RMSE), 
which calculates the square root of the average squared differences between predicted and actual values, 
is more sensitive to large errors and highlights variance in predictive accuracy. These metrics collectively 
provide a robust basis for evaluating the accuracy, consistency, and generalizability of the predictive model. 
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5. Data Visualization (Deployment and Communication) 
The final model is deployed via Looker Studio, Google’s cloud-based visualization platform, 

enabling real-time dashboards and integration with multiple data sources. These visualizations support 
continuous monitoring, strategic planning, and resource allocation in water quality management. By 
following the CRISP-DM methodology, the study ensures a structured and practical approach to predictive 
analytics, enhancing both interpretability and the resulting system in real-world water quality management 
contexts. Data visualization plays a crucial role in identifying patterns, trends, and insights within datasets. 
Various visualization techniques are utilized to effectively represent both the data and the model’s 
performance. In this study, Looker Studio was used to create interactive visualizations that enable dynamic 
exploration of the results. Time series plots illustrate temporal variations in water sample quantities, 
allowing for the identification of seasonal patterns and long-term trends. Scatter plots show the relationship 
between actual and predicted values, providing insight into the model's accuracy and performance. Feature 
importance plots highlight the variables that significantly influence water sample quantities, shedding light 
on the key drivers in the dataset.  

Although the implementation process involves multiple complex steps, it presents a valuable 
challenge by utilizing real operational data to make predictions based on desired attributes. For example, 
preparing appropriate quantities of related chemicals based on the demand for each month or quarter of 
the year, in order to avoid overstocking that could lead to waste or understocking that could result in 
insufficient supply. 

 

RESULTS AND DISCUSSION 
The Gradient Boosting Regression model had a test set R² score of 0.82, suggesting strong predictive 

performance. The feature importance plot demonstrated that the most important parameters influencing 
water sample volumes were location and season (month and year). The model accurately predicted 
historical water sample volumes and recognized trends over time. In this study, we found that predicted 
values were higher than actual observations (Over-predictions) and predicted values were lower than actual 
observations (Under-predictions). Over-predictions were observed in water types with complex 
contamination patterns, such as frozen squid products and hospital drinking water. Under-predictions, in 
contrast, were more frequently associated with water types like tap water and drinking water in sealed 
containers. 

We applied our dataset to four models: Linear Regression, Ridge Regression, Random Forest 
Regression, and Gradient Boosting Regression. R² are computed to assess model performance, as shown in 
Table 1. These regression techniques were chosen to assess the performance of various approaches, ranging 
from simple linear models to more complex ensemble methods, on this prediction task. Both Linear and 
Ridge Regression had low R² values of 0.338, meaning they explained only about 34% of the variance in 
the data. In contrast, Random Forest and Gradient Boosting achieved much higher R² values of 0.815 and 
0.819, respectively, indicating that they explained over 81% of the variance.  
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The correlation coefficient for the ensemble models also indicates a strong positive relationship 
between the predicted and actual values (0.916 for Random Forest and 0.915 for Gradient Boosting), in 
contrast to the weaker correlations observed for Linear and Ridge Regression (both approximately 0.58). 

Gradient Boosting Regression has the lowest RMSE (107.294), with Random Forest slightly behind 
at 108.467. This indicates that their predictions are much closer to the actual values compared to the linear 
models, which had RMSE values exceeding 205. In terms of MAE, Random Forest achieved the lowest MAE 
(30.139), followed by Gradient Boosting (31.745), whereas the linear models reported much higher MAE 
values (approximately 89). 

This suggests that Random Forest and Gradient Boosting are far better at capturing complex 
patterns in the data. Their ability to model complex, nonlinear relationships makes them more suitable for 
datasets with intricate patterns. These results highlight the advantage of ensemble tree-based methods in 
regression tasks that go beyond the capacity of simple linear approaches. 

This predictive feature can be used to optimize chemical testing resources and improve overall 
management planning in the Laboratory Information Management System. The following visualizations are 
provided to demonstrate these findings.  

 

Table 1 Comparison for different models 

Regression model R2 R RMSE MAE 

Linear Regression 0.338 0.582 205.587 89.462 
Ridge Regression 0.338 0.583 205.484 89.035 
Random Forest Regression 0.815 0.916 108.467 30.139 
Gradient Boosting Regression 0.819 0.915 107.294 31.745 

 

The dashboard is shown in two pages, prediction and historical view. The prediction view (Figure 
2a), the data can be filtered by year, region, province and water sample. The dashboard in historical view 
is demonstrated in Figure 2b. The data on both pages can be filtered by clicking directly on the graph, as 
shown in Figure 2b, which only shows groundwater sample data. Each graph shows the number of water 
sample data recorded from 2012 - 2023. The privileged people in the center can access the pages by login 
to their account.  
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Figure 2a LIMS Dashboard Page 1 (Prediction View) 
 

 
 

Figure 2b LIMS Dashboard Page 2 (Historical View) 
 

Prediction View  
The following chart provides a visual comparison between the predicted and actual values across 

different types of water samples, showcasing the performance and accuracy of the predictive model.  
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The figure compares projected and actual values for several water samples, showing key patterns 
and inconsistencies ( Figure 3) .  Predicted values are generally lower than actual values, especially in high-
point samples like tap water and drinking water in sealed containers, implying that the model may be 
underestimating. In mid-range samples, such as chemicals, projected values are more closely aligned with 
actual readings, indicating greater accuracy. In contrast, in low-point samples, such as hospital drinking water 
and frozen squid items, real levels are sometimes lower than expected, indicating that the model have 
overestimated. 

 

 
 

Figure 3 Analysis of Predicted vs Actual Data for Water Samples 
 

Figure 4 displays two comparative bar charts that indicate anticipated actual values across two 
time periods:  months (January to December)  on the left and years (2013 to 2023)  on the right.  Dark bars 
represent predicted values, whereas bright bars reveal actual values.  From an analytical standpoint, the 
charts clearly show disparities between predicted and actual outcomes. The monthly figure shows probable 
patterns of overestimation or underestimation over specific time periods, which may reflect seasonal 
impacts or limitations in the model's sensitivity to monthly fluctuations. Similarly, the annual chart displays 
patterns over time, indicating potential improvements or consistent biases in the model's performance.  

 

 
 

Figure 4 Comparison of Predicted vs Actual Values Across Time (Monthly and Yearly) 
 

 



272 KKU Science Journal Volume 53 Number 2  Research 

Figure 5 depicts a comparative study of data from the top five water types:  groundwater, water 
property analysis, tap water, drainwater, and drinking water in sealed containers, as measured monthly from 
January to December.  The given values most likely represent the volumes of each water type that the 
organization received from all clients each month.  The figure shows that each water type has distinct 
patterns over time. For example, groundwater readings are rather steady over the first half of the year, with 
a considerable spike around midyear. Tap water and drinking water in sealed containers, on the other hand, 
tend to follow a more regular pattern over time.  These variations may reflect seasonal causes or changes 
in water management systems.  

 

 
 

Figure 5 Comparative Analysis of Water Types Over a Year (Top 5) 
 

However, the charts in Figures 4 and 5 show specific months of the year when a considerable 
volume of sample water is expected. This information allows staff to plan of time, ensuring that adequate 
testing materials and resources are available. These insights are critical for improving operational readiness 
and ensuring smooth testing operations during busy months.  Furthermore, these insights provide useful 
suggestions for enhancing water resource management and improving future planning methods. 
 

Historical View 
The charts' historical view allows us to track changes and patterns over time in the number of 

water kinds.  Figure 6 shows a bar chart of water types based on the number of samples taken between 
2012 and 2023, with the top categories highlighted. Groundwater has the most samples (more than 1,000), 
followed by tap water, water property analysis, and drinking water in sealed containers, all of which have 
comparable sample numbers. Other categories, such as filtered water and drainwater, follow closely behind, 
while less common varieties, such as rubber wood water, wastewater, and wood preservatives, have much 
less samples.  This graph depicts the distribution of sample efforts across various water types, emphasizing 
the dominance of specific categories and offering information on the focus areas for water study. 
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Figure 6 Sample different water types 
 

The pie chart in Figure 7 depicts the percentage distribution of samples obtained from the top five 
provinces.  Songkhla leads with 25. 8% , followed by Nakhon Si Thammarat ( 20. 4%) , Bangkok ( 19. 4%) , 
Phatthalung (18.3%), and Trang (16.1%). Songkhla and Nakhon Si Thammarat account for 46.2% of the total 
samples, demonstrating the considerable contribution of the southern provinces. 

 

 
 

Figure 7 Percentage of Samples Obtained by Province (Top 5) 
 

Figure 8 depicts annual (2012 - 2023) and monthly sample collection trends. The annual data show 
a continuous increase in sample collecting beginning in 2012, peaking in 2021, then slightly declining in 
subsequent years.  The monthly statistics show moderate seasonal fluctuations, with more samples 
obtained between January and March and a noticeable reduction near the end of the year, particularly in 
December.  These tendencies could be attributed to operational limitations, environmental conditions, or 
seasonal variations in sampling attempts. 
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Figure 8 Sample Collection Trends by Year and Month (2012 - 2023) 
 

Based on the insights presented above, it can be observed that the chemicals used for water 
quality analysis are mainly applied to the testing of groundwater and tap water. Seasonal trends also 
influence when water samples are submitted, with fluctuations varying by month and year. For instance, 
the number of groundwater samples remains relatively stable throughout the year, with noticeable peaks 
occurring around the middle of the year. In contrast, tap water and drinking water samples stored in sealed 
containers exhibit a consistent annual pattern.  

These findings can assist laboratories in forecasting resource requirements and optimizing 
operational planning ahead of peak testing periods, thereby improving efficiency and ensuring timely 
processing of water samples. For example, the laboratory staff can prepare sufficient chemicals for 
groundwater quality analysis throughout the year by planning to increase chemical orders before the mid-
year peak period. On the other hand, during the third quarter of the year, overstocking these chemicals 
should be avoided, as prolonged storage can lead to deterioration in quality, resulting in the need to 
dispose of the expired chemicals. 

 

CONCLUSIONS 
This study proposed a strategy for employing Gradient Boosted Regression to optimize chemical 

testing for all sorts of water and resource management within a Laboratory Information Management 
System. The goal is to produce good prediction performance using the Gradient Boosted Regression model, 
which has a test set R- squared score of 0. 82 Location and season were shown to be the most important 
factors influencing water sample quantity. The prediction algorithm can properly forecast past water sample 
volumes and identify long-term trends. This data-driven strategy can help firms make better decisions about 
chemical testing resources and management planning within their LIMS systems. 

Future work can focus on expanding the scope of prediction to other water quality parameters, 
larger datasets or integrating additional data sources such as weather forecasts to improve prediction 
accuracy that may better capture the complexities of water testing operations.  In addition to cross-
validation, the external validation is an essential step in assessing the model’s generalizability. 
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