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ABSTRACT

This study aims to investigate the efficiency of finding the optimal parameters for forecasting using
Fruit Fly Optimization Algorithm with Classical Decomposition model (FOA-CD) and Holt-Winter Exponential
Smoothing (FOA-HW) were compared with classic forecasting model that Classical Decomposition (CD) and
Holt-Winter Exponential Smoothing with grid search (Grid-HW). The forecast data were the average monthly
water volume from 8 dam reservoirs in northern Thailand, which comprise 132 training datasets. The
model's performance was evaluated using the Root Mean Squared Error (RMSE). The results indicated that
FOA-CD was more efficient in finding the optimal parameters compared to the CD across all 8 dam
reservoirs, while FOA-HW performed comparably to Grid-HW. Model selection for 12-months-ahead
forecasting, the evaluation criteria included RMSE, Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE), with the best 2 out of 3 metrics considered. The results revealed that the CD
method was effective for forecasting in 4 dam reservoirs. The FOA-HW method also demonstrated
comparable effectiveness for other 4 dam reservoirs. Moreover, the FOA-HW method showed superior

forecasting accuracy and suitability in certain cases.

ANENARY: NIAUTIINTALTIgAveILIad N1snensal Usunainlulou

Keywords: Fruit Fly Optimization Algorithm, Forecasting, Reservoir Water Volume
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LLﬁ"i’Jigmﬂfﬂﬁuwé’u Tngagdgyimindisyasanusivesiliinlras uamyau Ui e (En1us,
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mnudemeuardssansznusieiasugiavesussimalneegisnn Tasanzludunsinuasuazgnannnssuiises
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v a v o =

ordenandanemanenniuingiv fafuiendufesimuuumstanaos s auwasivsyninmie
annanssnuuazaiseudulunslininensiwessamdlnglfiAntu uenanisioditoyaluofnntasly
msdnaulalunmswennsaiifletismanisaiviinaniludoudednmsyiinarossiisyavnm
nsnennsaldaimuddduegrannitetislunstaedndulanaznanutiinanludeu lusues
Tng3nswernsalounsunaniunuimddglutimaneUikiusn 1wy 3lead-3umes (Holt-Winters: HW) 19y
F8nsnensaleynsunatnuggnia d9Ussansaimuazanuusiug1veis HW #‘fuaajﬁumnﬁanwwmﬁma%
MsANTRILININUIATNE3aR (Metaheuristic Method) annsauiuussussansnimuas Anuisiuguenis

wensalld Ineduisnmsivslunsuilymnsifiadsednsanidudeulasfounuunssuiunsnasssuga gn

v
v =

Ifograwnsvagludagiu wu F5Weiugnssu (Genetic Algorithm: GA) gnéinAudulul w.a. 2531 lng Goldberg
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and Holland (1988) 35@1aunilauun (Ant Colony Optimization: ACO) gnaAnaulul w.a. 2549 lag Dorigo et al.

v
a v

(2006) IBuuUNgUOYNIA (Particle Swarm Optimization: PSO) gnanAudwlul w.a. 2538 laeg Kennedy and
Eberhart (1995) funeuisuuuisios (Firefly Algorithm: FA) anAnAulul w.a. 2552 g Yang (2009) 35MsAumM
wuuuRNN (Cuckoo Search: CS) gnAnAuliud n.a. 2552 Tay Yang and Deb (2009) wayFsmsmeanvanziian
WUUIIW (Whale Optimization Algorithm: WOA) gnaaaulud w.a. 2559 Tae Miralili and Lewis (2016) laSu

auenlunsundgmnisinuseansamidudou 1uadelul w.e. 2565 oy Khairalla (2022) Bufuinasium-

o =

§13aRd annsaiiuanuusiuguasysyavinmussiiuuumsnennsaleynsunanldesaiitduddy Seaenadeatu
4143389949 Minsan and Minsan (2023) Tud w.a. 2566 lavin1s@nwinsaunaIuiuseninadsnisuendiu
Us¢nau (Classical Decomposition: CD) wagds HW saufiu WOA Tun1svinmsnennsalsielasguiasieidou lny
wuin Mssaunaldinafiign lulesn Minsan and Minsan (2024) I6Anwnsnasmaiusznings o uas 33
HW $aaifu WOA Tumsvhmswennsaivsunaniitlnadisnafiving euvualngluniald 4 wisvessvmdlng
sfsfnw3S €D uay HW AlFSun1sUTuUTsse WOA nsdi@nwinsnensal PM2.5 Tu 8 Smiamamieves
Useinelng (Ussauuazagn, 2567b) uaﬂmﬂﬁ Minsan et al. (2024) §3laviINSANYINTHANNEIUNUTENINGID
CD uagd8 HW $aufiu (Cuckoo Search: CS) lunsyiniswennsalA1sluy PM2.5 s1edualy 8 fminniawmiloves
Uszinelne gnving Usisauuazagn (2567a) dilanesanis CS InsnaunaIuiuds CD wag HW Anwiniswensal
Vsuanhitlvaderafuivnslngseden lunany fusenvesdsundlng warlud w.a. 2562 Jiang et al.
(2020) lavinnsAnwINSNELNATUTENINGIE HW 59uAU (Fruit fly optimization algorithm: FOA) Tunnswennsal
USunaunsldlin essddludsemaiu wWisudisududsnsnensaldy o wuin S3naunaiuseningdd HW
$amfu FOA fiuszAviBamgean warliszornadifiunsduniiisdu 4 38 FOA gnAndutiulng Pan 1ud wa. 2555
(Pan, 2012) iumnAnannginssulumsdumesveauasi uuasifauansalunismsiadu uaznsius
fensilegueauvasemssnensnsiaduneanesdlueinia lunisfumemsvesusasidagldsunuunmsnsadu
fumisomnsuay DulUSsumsduiiug
av s o

Wewnauddedaiing FOA udssendldlunsussanamnsivesveauudnaes HW wihduwasly
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o
a v a

nsAnuilfafesinnuailafiazdeseanisfinuued Jiang et al. (2020) 1new133 FOA umaunauiuIs HW uaz
38 €D AIULUININTDIUTITOUILAEIF (2567a; 2567b) Minsan and Minsan (2023; 2024) Wag Minsan et al.
(2024) ilemAmNTTwesTIvINzTian nMsUuUTsAmITmesdnantisfiuauusiuglunsiune uazan
Yoflanarnveanuudiaes vinliaunsniluldnuduteyalmildetsdivszansam dsazdamalinadnsiinm
Yideiedu 1ne3s HW Fosnisusvanaamsiines 3 A1 fie ArasiiuSusu (@) Aasiivsusulifu (B) uay
AAsivsungna () uazds CD FosnsUszanammniives 2 mde B way By laeldmsusssnamniines
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ymsudsoyaiinahiadenefeueusazideuseniiusuiu 2 yadoya fio Joyayaieus (Training Data
Set) Usgnaudedayaaus Wiouunsiau wa. 2552 fadeusunen wa. 2565 S1u7u 132 gatoyn uazdeyayn
yaaau (Testing Data Set) Usznaudedoyasus iounnsiau w.a. 2566 fafousunau wa. 2566 S1uan 12
yadoya Idvhnisaraeuteyauaswuirdidggmeludeyavesis 8 iWeu maggmevesdeyaenaiintuldan

wangawe Wi anudanaialuduneunisdaivieya niedeRanaraiitininaunsaideudeya Tun1sdnuile

Wenliisuszanumgymelasnisunumgymemeanatvedidazineululneumi suuiainsauwilduiay
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aa o Ly
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2. FBnswensaluvuuendiusznauiuuaaadnvaseynsuaan (Classical Decomposition: CD)

A

FBnsuendiulsznouwuuaatadnaynsuian Wuisiuweneunsuiatesnidudiuuszneude q fe

wwllilu (Trend) gan1a (Seasonal) 19303 (Cycle) wagmmni1saldnund (megular) MnusazaIuUTENOUNLEN

2 o -

ganuRgyuanvurnsiedoulmveteunsIIaLsardI (N3RS, 2539) Inglunuideaseiideyadituiunih

o
LYY L4

nsnensallifidinvesindng uazsmensaliaund Asiudanuuneinsaludseentmdudinuunisn wasfauuy
n3Ras Asaunsi (1) uag (2)
fuun1suINn (Additive Model)

Y, =T, +5, 1)
fwuun1IAn (Multiplicative Model)

Y, =T, xS, 2)
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gl Y WUTaYaaUNTHLIAN
T LNUAILUTENDUVDILUILLL
S

unuduUsENOUTRIANIA

o+

WUBIaT adlAnans 1 89 n laei n unuduudeyaluaynsuiia

3. 351gad-2uwas (Holt-Winters: HW)

o
1Y

manensalleeldis HW luisnsmanisalounsunandiddy 3Bnstdsaummlwesegiiaiun 3

17

W3dwes Ae ANAINUTUTEAY (@) AAsUTuLIldy (B) wazAtAsiusugania (y) Avessdinesivaiiled

U

sedne 0 89 1 anansauvsléidu 2 Ussan fie nsusuliSeudaidulduant idwuulead-Jumesuuuuan
(Holt-Winters additive exponential smoothing: HWA) T¥funiswennsaleynsunanfifidnnaiuvesnnuiuuls
muggniaedwuiliuaed wagnmsuulniZeudisdulduandiiduuulsad-Tumesuuugm (Holt-Winters
multiplicative exponential smoothing: HWM) Tdfun1swensaloynsuatidsnsdiuvesainuiuulsai
q;gmam'aﬂ'wLLmIﬁaJLﬁuﬂﬁuﬁaamaamunaﬂﬁmé“auwaﬂﬂ (Winters, 1960)

FILUUNGINTEINTALLUULIN

Ve+m = (Te + bem) + Seym-y, (3)
e Deem  wuAMEINTel o a7 t Taed m unuswautisandigesnsnennselludnamin
T, WUTEAUYDIDUNTULIAT
b, WUkl uN TN
S WUOANNAYDIDUNTULIAT
t unutana dediindaud 1 8 n Tnefl n unuswudeyalueynsunm
L WUAHEIVEITBUNYNA

A1 T, b, waz S, furaanaunsi (@) - (6)

Ty =a(Y; = Si-1) + (1 —a)(Tr—1 + be—1) (a)
by = B(Ty = Tr-1) + (1 = B)br—y (5)
Se =y —T) + (1 =y)Se—y (6)
FluuNeNsaIneiluuan
Vevm = (Te + bym)Seym-1 @)

A1 T, by uaz S, MuIeINAuNIsH (8) - (10)

)¢
T, = aﬁ + (1 —a)(Te—1 + be—y) ®)
by = B(Ty = Te—1) + (1 = B)be—4 (9)
S, = y;],—z (=S, (10)

Woa fuagy unuaAasilaedaA1sening 0 69 1
Y, WUBUNTULIAT 8 13N ¢

ANSURY O 118 ¢ URENNIST (@) - (6) wag (8) - (10) Feouunuldluaunisi (11)-(13)

LN (11)
O—EZ%
t=1



MUY MIATINYIANENS 1Y, UN 53 Laud 2 211

Sok =Yk — T ASEILUUUIN
Vie - (12)
Sok =7 ASRILUUALY
0 Y
by =0 (13)
) k LAUIANNNANSUN teedlen k=1, 2, .., 12

TnglunsAnwildvinisiansanamnsimesan 3 i TngldiEnsAumuuuninesy Fadumedaides
SL‘fTLUﬂﬁL%“c’Jué/EUENLﬂ%‘IEN (Machine Learning) Lﬁamﬁf’lwwswﬁLmai‘ﬁﬁﬁqmﬁ’m%’uﬁmuu 1ag9i1n15AINUANTS
Wasuwlassvesnsfiweslunaiion 2 fumds Buduain 0.01 89 0.99 Snsufiuades 0.01 dwaliiseunisou
g1amsiedu 970,299 58U 3unn1sAnwdidn Grid-HW (Us13nuikazagn, 2567a) Ineileduaanszuaumsaniden

salaa a

AMIILADTNANAATITINNTNNRINAIAILARIALATEUAE IR URRY (Root Mean Square Error : RMSE) #61an

Objective minRMSE= /% n (Y, - 7)? (14)

We ¥, wnuAmensaifilaainds Grid-HW

4. SunauIBInANIETigALUULLA (FOA)

Tunoudsmavmiefigauuuuuacm 3o FOA gninauelay Pan Tull ae. 2012 iukuadnain
wafnssulunsfumuvasemsvesusand uamisinuannsalunisnsady uazmsiufmsieguoumas
p1nsFEnsmsIasuteanaaluena laseurznisiuivemamiamsanunaulsvnuiniasseyluenie
wazdilsinausimsaniiegrinseenly 40 Alawns lunsdumemsveauasmazldguuuunisnsiadusiums
o1sogsaztBunuardulusaiunaiuiud anduuuasiagdudulumemsmunuussvesniueims

unsensluiisgaiionsed (Pan, 2012) Tnenaludunaunmsfumuuuuiamiesuelinagui 3

[Algorithin Pseudo code of the original FOA
L. Initial Objeccrive Function
2. Initialization
Ser maxgen, sizepop
‘or g = limaxgen
for i = lisizepop
{ Random initial the position of fruit fly population
¥, = mmhuu(umj}n‘ml‘ Y= random(uniform)
3.Process
3.1 Random distance and direction to randomly for food searching of any individual fruit fly|

X = .\'“+.l'and(.‘-'.f€). Y = .\'"+rcmd(!-'R)
3.2 Caleulare the distance to the inirializarion locarion
.")r'.\.l‘H = "Xf + }"‘;
And calculate the smell concentration judgment value
s, = 1/ Dist,

3.3 Caleulare the smell concentration

Smell = function minimwm RMSE =
i

3.4 Fine our the fruit fly with minimal smell concentration ameng the sywam
[ht{rr&nm’.f, I)t'\r."ndt'r] = urm(.ﬁmr‘l.’)
i

/ Update x_and y
] o

end for

if smell > bestsmell then
i

x =X
0 bestindex

v =Y

0 bestindex

end if

end for

gﬂﬁ 3 SWALIYY Pseudo code w89 FOA (Wang et al., 2015)
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5. maUszgndtuneudivafivansiigauuuusamilumamansanuwiniivnes
TumsussgndldtuneuiBmeniuansfianuuuusami dwsunsweinsal CD way nawensel HW &

AiidesnsUsvanm fo By By a B war v Ineiitunousail

1) MyuailiduvesingUszasd

TneflsiduveringUszasanldlumamunaansae MidugaussasdiieniA1sniiaeveIriniy

=

AIALARBUMAtERLARENATIAR AsaNN1N (15)

Function minRMSE= ’% [N AL (15)

Tagdl v, WIUANYDITDLATS
7, UNUATNEINTOL
n WUTUIUTEYARUNTUIAN
t Wugean Fadlrndeud 1 8 n

2) fmuneSudu

ANSAUAR IS UF VD IMNBIT LA FIAUASIINUSTVINTUNAINS sizepop = 50 FIUIUNTIUTOUG IR
maxgen = 100 wasAFILALASUFUYDIUNAIA (xo, Vo) ﬁLﬁmmﬂaﬁmmsLmLmLngﬁWas’u
3) MsUszUlaNg

3.1) Awsmasuidlrdvesuasiudazi X; Y;

3.2) MNUUYINITAWIUAITTEEN (Dist;) LazdiuAuIANINduTeInawe1ms (S;) Inglufitagli

v
a

S; WIUAINITIEMEINARINIT Felunnazdisinsidinesaedl 35 CD dwisdweshe B, uaz B, wayis HW il

WI5RIAD a B uay ¥ InglunsussanaAnisiinesvesds CD way HW Assaniiunisueniu ilesannunag

v
o

FBituneunsAnauaglanainmesuuiiaesiuandaiy

3.3) imsunuAdwesasiudiiuunensal wagiinsanuaAfienduingUssasdlaglidlsidu
Inquszasdfo RMSE wnuanduduvendu

3.4) ¥nsAumuaziiuaanududuvesndusasiia X, Y, maumaw"ﬁﬁﬁﬁqm Fagnleuadnsonnn
wuirdiardieniuadnsilldluadsdounth amadndluafsiountiriuasgnunuiidienadndlmifldosnun laoay
ymshautuiluFes o auniiendildnilduingUszadiiene
0) MsUszananat ey A NKAENS

ynsvindluded 3) sundtazasuausuiunisuseugegaie 100 soU uazvmadondn s, vl

HanduingUszasddiAndnfgaeenyn

6. nAsLuUsEaNSA N

] o

AsUsZLUTEANSNNYIN1 AN LU Y 2 d1usadl

v
Y o A

dufl 1 fe doyavailniu Uszidudszansamlaslisndinde RMSE aitgn loszyuuamlunisaiis
wuudiaes lngazidisulfisumandniigaves RMSE 1ugde 35 CD Wisuifisuiuis FOA-CD uag Grid-HW
Wisuiieuius FOA-HW el
de  n wiudwINeslayaynrnduy

Y, wnuAvTIvedayarniy

14 wuANneINsalvedeyaYarn
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dauil 2 Aeteyayavnaey Felidmivuszliuuszavsamuessuuulnglfinaminisysdiu 3 # loun
A1 RMSE (Root Mean Squared Error) fina1uAaInLAd ouduysailade (Mean Absolute Error: MAE) uagen
Wesidudanuamaindouduysaiiads (Mean Absolute Percentage Error: MAPE) anuiaunisii (16) & (18) viail
%ﬁwmitﬁaﬂﬁ’gLLUUﬁﬁﬂizﬁw%mWaﬁthsJﬁm'im'mmﬂmﬂﬁmsﬁmLﬁaﬂﬁuwuﬁaﬁqm 2 Tu 3 ielinsdndula
fAnuseUsu uavdauusug1u1ng U (Belton and Stewart, 2002) 1t et lUl4lun1snensalarendndu

SEeEIan 12 oy

13 (16)
RMSE = EZ(Yt AL
t=1
MAEZZ?leYt_?tl a7n
I Y -7 (18)
MAPE = 100><—Z |1y
n Y;
' t=1
gl Y, WIUA19TIRIUBYaYANIAZDY
1A wuAnensalvedeyayavaaeu
n WuIYelayaYnnAaey

HaN13ITBUAL I TAING
1. WisuWisuuszansawludayayasinady

Wisuifleulssansnindoyayafliniunedds FOA-CD uay FOA-HW lnaiUisuifisusufauuuiiugiufo
CD waw Grid-HW Tudegyatinuiiadeneieuludounmamievesssmalnediuu 8 deulfinasinisussdy

RMSE Nadnslanannsnai 1

M137991 1 wanaen RMSE Tudayagarnaluveusazion

fuuy  umtestiguau  famevsn  aaw nilwna a3h wime  wide uwslven
FOA-CD 140.216% 39.795%  18.175% 1585.435*  973.256*  39.998* 50.615* 19.850*
Cch 140.501 39.976 18.222  1608.668  974.762  41.867 52507  19.917
FOA-HW 98.182 18.317 11.878  669.960*  430.632* 19.364* 20.650* 11.624
Grid-HW 84.417* 16.970*  11.710*  795.823 484.464 32488 22932 11.587*

VeLe * AA1 RMSE 7IllAd7NgasenIn9ls FOA-CD fiu CD wag5enineds FOA-HW fiu Grid-HW

nsUssdiulsyavsnmuesniswensaideyayaiindunuin 38 FOA-CD uag FOA-HW $aafisanisusiugd
TumsuSuamsimesiivanzauiuteyadanalvisiauuy HW uag CD fseavsnmingetu Tnefiansanaind
RMSE flanas diaiuSeuiiiusswingds CD waz FOA-CD wu3n 35 FOA-CD aunsaana1 RMSE asdlawfieusu CD
atnsdinay Tuvasfinsisouiiousssning Grid-HW wag FOA-HW wuinsiiaesitanunsausudmnsiwmosdldogng
e warliuadwinisnennsaiffanuwiugilndifssiy Tnainasinsusvidy RMSE vesia 2 338A17u
wanensfuiindnifos WeRia1smnAn RMSE wesws 8 WWou wudn Grid-HW 1A RMSE faenin FOA-HW lu 4
\Wou uay FOA-HW 15a1 RMSE fasnin Grid-HW Tudn 4 iWeu f9usii133 Grid-HW waz FOA-HW 9z lnadnsiisl

Usgansamindifisadiu us FOA-HW danulanwulusesnsusuamanfiwesimnzauiudoyaldsinsini
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Grid-HW 88193110 Faganszezatlunisyszananaldegraiiulddn wazdsausntluuszgndldifetfinany

wiuglunsnensallaeg1aiusgdnsnm

2. \Wisuiisuussansnmludayayanagay
Wisuifleudssdnsamuasiuvunensallagliteyaganadeurioun 8 Wou dinusinsUsziduie

RMSE MAE uag MAPE Ingldinasinsdmdendauvuiiiian 2 lu 3 veanusidingn wemaiuisuliisuiansd

saal ]

P57 2 Bem5197t 4 91nnnsUssidiy WU’j’]L%@uLLﬁiaxLLﬁQﬁﬁ’JLLUUﬁIﬁNﬁﬁWﬁ@%Q@LLG]ﬂG]’Nﬁ"’LJ Tagyinsiaenda
LLUUﬁﬁﬂizﬁw%ﬂ’lwaﬁqm’mLﬂm%ﬁﬁ’mum Wielddmsunsnennsalansmithsiuiu 12 a1 Fawan1saadonsauuy
Fmnzauveuravidousiaad Lﬁ‘ﬁaul,lmﬁaaﬂﬁmmu WUIMIID FOA-CD azliAn MAPE ﬁwﬁqﬂ Fomnedmanis
wensaiinnulndidsatuaiasdunsazrananienarsanduledidus agaelsh audioRarsaiainng
AamAaeulngsI9INAT RMSE was MAE ndunuinia FOA-HW Tnadinin faufuiaden FOA-HW iushuuui

wnzaungadmsulounaivosungway Woaulinenudanldiikuu CD Wouiaudenlddwuy CD WWou-

a < o

inadenldduuu CD Waudihadenldiiuuy CD Wauuiinisgaus1sidanldfiiuuy FOA-HW 1Wauuslin
anysalvaidenldfiuuy FOA-HW waziWeuusitanidenldfiiuuy FOA-HW Amnsiiwesvasiinuuidentdluus

avilounandlumed 5 Fadunadnsannisusurmsfwesiinzauivdnuvasvestoyalunsaziou

A15197 2 WisuiguuseanSaniSnnsnensalniea RMSE 91nn153As1eiusSunaitntuilauyeed 8 wWeu Tu

1

Toyayanagey
fuvu  uedestigien  fomevan Ao niina A0 wime wifa wiuen
FOA-CD 127.667 31.054 13.427  2,319.26 374492 90.958 87.897  15.109
cDh 126.04 27.246*  11.572* 1,836.969* 334.039* 65745 61423 13.708
FOA-HW 124.737* 44.887 15294  6,067.00 641.95  39.241* 9.481* 13.170*
Grid-HW 208.971 46.199 18415  2,725.60  811.241  55.321 36.96 19.783

NUBWR * Aor1 RMSE NilAamianveusazian

AN5199 3 WSEUREUUSEANSAINATNNSNEINTAIAIEAT MAE 91nN153LAS1EMUS LU U auvednd 8 1Wau Ty

¥

JoyayanaaeU
fuvy  umtdostiguay  forevan  iaw nilwa AR wine wif wluen
FOA-CD 101.621 26.178  10.625  2,013.36 307.01 89.382  87.26 11.547
@) 97.143 22.034*  9.147* 1566.865* 279.126* 6342  61.025 11.27
FOA-HW 78.828* 39.564  14.085 4,966.28  519.787 30.589*  8.040*  10.312*
Grid-HW 163.29 42.408 16.38  2,255.74  704.795  46.638 30.866  18.338

e * fer1 MAE NidA1eiigavedudagiou
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AN5199 4 LWSguiguUseanSn1nisnisnensalnigan MAPE 91nn1536As1ziusunainluilauveania 8 Weau Tu

£

Joyayanadey
fuwvu  umtesthguau  Meevan  fdaw niina AR wime wiin uiiwen
FOA-CD 31.617* 20.515 12.71 21.97 6.071 49.454  39.936 17.156
ch 32.466 17.947*  11.389* 17.193*  5474* 35152  28.406 18.763
FOA-HW 33.096 44.459 20.49 63.72 10.723  17.505*  3.576* 17.046*
Grid-HW 68.944 48.87 25911 31.45 15.06 27898  16.271 39.92

MNewn* AaA MAPE fiflA1iignvesusiazivou

M15°99 5 ATMSERRSTIEaNTgAveddiuy FOA-CD CD FOA-HW uag Grid-HW 31nn153kAsngiusana

lulweuvesia 8 Weu ludeyayavaaeu

fuvy  wdiees  umtesthgueu  famevn e niiwa a3An winmie wide wiiuen
FOA-CD :80 436.342 103.847 62489 6215.324 5395230  77.151  140.290 43.133
Bl 0.441 0.006 0.031 2.19 -4.133 0.106 -0.029 0.098

@) :80 419.504 101.580 60.974 5906.892  5318.207  63.879 126912 40.393
Bl 0.661 0.065 0.062 8.568 -2.806 0.389 0.257 0.137

FOA-HW a 0.846 0.784 0.884 0.413 0.607 0.587 0.722 0.814
’B 0.000 0.000 0.000 0.370 0.000 0.000 0.000 0.000

Y 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Grid-HW a 0.840 0.830 0.870 0.540 0.680 0.560 0.730 0.820
'B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Y 1.000 0.853 1.000 1.000 1.000 1.000 1.000 1.000
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3. wensaladwin 12 oy
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———Training data Test data FOA-HW

Training data Test data co
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——Tiaining data Testdata FOA-HW Training data Test data

JUN 4 wennsalanani 12 e

a o
dyunan199e
nsdnwluasailidiaueBnisdadenduuunensaindanumnzaududeyalsunaiiadesemou

TusumawiovesUseindalngdiuiu 8 Weu ddldud Weuuaidosunziuau Weuiay Weutinevin Weugiina

aa

ToudsAn Weuwiniwgaus1s Wouwdinauysalva uwazdouwduen Mniulednsuvauseniu aausl w.e. 2552

4

f9¥ e, 2566 91w 144 Yadaya dnsunsadiedauuunensaivianua 4 35 lawn 35 FOA-CD 38 FOA-HW 3

I3

CD uazds HW Tuns@nunitliuszendldis FOA Jadumstiumdisafindunaunauiuisnisnenaleynsuia

'
11 a a

lunismamndwesimunzaunaalunisneinsal Fddvinadnsnaninisiauludeyayaindy Jeaenndeosiu

NI U150UMaEIgT (2567a, 2567b) Minsan and Minsan (2023, 2024) way Minsan et al. (2024) Puansly

a ada | ad a

wiuhnsliiBnaumanusgninsnisneinsaleunsuaiummgsafdaninisimu

a

lun1sidseuiisudsvaniamluganaaeulunisnen 2 8am15199 4 Ingldinaueinisusesdy RMSE MAE

waz MAPE 1agfiansane1fnanian 2 T 3 wuin dkuy FOA-HW Tinadnsiuiugnanlu 4 1WWau lown Wauwan

q q
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