
ว.วิทย. มข. 52(2) 157-169 (2567) KKU Sci. J. 52(2) 157-169 (2024)

__
*Corresponding Author, E-mail: tko@webmail.npru.ac.th

Received: date: 6 March 2024  Revised date: 15 May 2024  Accepted date: 19 May 2024

KKU SCIENCE JOURNAL

Journal Home Page : https://ph01.tci-thaijo.org/index.php/KKUSciJ

Published by the Faculty of Science, Khon Kaen University, Thailand

ดีไซน์แพตเทิร์นเพื่อเพิ่มความปลอดภัย
โดยการจัดเก็บรหัสผ่านที่เข้ารหัสด้วยฟังก์ชันแฮชหลายรูปแบบ

Design Patterns to Enhance Security
by Storing Passwords Encryption using Multiple Hashing Functions

นฤพล สุวรรณวิจิตร1 สมเกียรติ ช่อเหมือน1* และ วรเชษฐ์ อุทธา1
Naruapon Suwanwijit1, Somkiat Chormuan1* and Worachet Uttha1

1สาขาวิชาวิศวกรรมซอฟต์แวร์ คณะวิทยาศาสตร์และเทคโนโลย ีมหาวิทยาลัยราชภัฏนครปฐม จังหวัดนครปฐม 73000
1Software Engineering, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom,

73000, Thailand

บทคัดย่อ
การรักษาความปลอดภัยของข้อมูลส่วนบุคคลที่เก็บอยู่ในฐานข้อมูลของเว็บแอปพลิเคชันเป็นสิ่งที่ส าคัญ ในปัจจุบัน

การสร้างความปลอดภัยให้กับข้อมูลส่วนบุคคลโดยเฉพาะรหัสผ่านมีการน าฟังก์ชันแฮชมาใช้ ซึ่งฟังก์ชันแฮชเป็นอัลกอริทึม
ทางคณิตศาสตร์ที่ใช้ในการเข้ารหัสข้อมูลแบบทางเดยีวไมส่ามารถถอดรหัสกลับเป็นข้อมูลตน้ฉบับได ้แต่อาศัยการเปรียบเทยีบ
ในการตรวจสอบความถูกต้องของข้อมูล โดยทั่วไปแล้วแต่ละเว็บแอปพลิเคชันจะเลือกใช้ฟังก์ชันแฮชเพียงฟังก์ชันหรือ
อัลกอริทึมเดียวในการเข้ารหัสผ่านของผู้ใช้ ไม่ได้ออกแบบซอฟต์แวร์ให้มีความสามารถในการปรับเปลี่ยนอัลกอริทึมได้โดยง่าย
ผู้วิจัยเห็นว่าดีไซน์แพตเทิร์นนั้นถูกน ามาใช้ในการออกแบบซอฟต์แวร์ที่ดี ซึ่ง Strategy Pattern เป็นหนึ่งในแพตเทิร์นที่ส าคัญ
ของดีไซน์แพตเทิร์นที่สามารถน ามาประยุกต์ใช้ในการออกแบบซอฟต์แวร์ ที่มีอัลกอริทึมให้เลือกหลากหลายและรองรับ
การปรับเปลี่ยนอัลกอริทึมได้อย่างอิสระ เพื่อให้เหมาะสมในแต่ละสถานะการณ์ ในงานวิจัยนี้ผู้วิจัยจึงมีความสนใจที่จะน า
ดีไซน์แพตเทิร์น ทั้ง Strategy pattern และ Factory method pattern มาประยุกต์ในออกแบบและพัฒนาซอฟต์แวร์
ในส่วนของฟังก์ชันแฮชให้มีความหลากหลายในการเข้ารหัส และการเลือกสร้าง instance ของฟังก์ชันแฮช ผลจากการวิจัย
พบว่าระบบมีความยืดหยุ่นในการเปลี่ยนแปลงและเพิ่มเติมฟังก์ชันแฮชใหม่ๆ เพื่อจัดการกับการจัดเก็บรหัสผ่านผู้ใช้ด้วย
ฟังก์ชันแฮชหลายรูปแบบ และยังท าให้รหัสผ่านมีความปลอดภัยมากยิ่งขึ้นโดยการเพิ่มซับซ้อนในการเจาะระบบเมื่อเทียบกับ
ฟังก์ชันแฮชแบบเดียว

ABSTRACT
 The protection of personal information stored in the database of a web application is critical.
Currently, securing personal information, especially passwords, has been introduced with the hash function.
The hash function is a mathematical algorithm used to encrypt data in a single way that cannot be easily
decrypted into original data. However, comparisons are used to verify the correctness of the data. In general,

https://ph01.tci-thaijo.org/index.php/KKUSciJ

158 KKU Science Journal Volume 52 Number 2 Research

when encrypting a user's password, each web application will select a unique hash function or algorithm.
The software has not been designed to provide the ability to easily modify the algorithm. The researchers
found that the design pattern was used in good software design, with the " Strategy Pattern" being one of
the key patterns of design patterns that can be applied in software design with a wide range of algorithms
to choose from and support the freely modified algorithm to suit each situation. In this research, the
researchers were interested in applying design patterns, both " Strategy Pattern" and " Factory Method
Pattern," in the design and development of software in the section of hash functions, providing a wide range
of encryption and instance selection of the hash function. The research results indicated that the system
was flexible in changing and adding new hash functions to handle user password storage with multiple hash
functions and also made passwords much more secure by adding complexity to system penetration
compared to a single hash function.

ค าส าคัญ: การออกแบบซอฟต์แวร์ ดีไซน์แพตเทิร์น การพัฒนาซอฟต์แวร์ ความปลอดภัยเว็บ ฟังก์ชันแฮช
Keywords: Software Design, Design Patterns, Software Development, Web Security, Hash Function

บทน า
โดยทั่วไปวิธีการจัดการรหัสผ่านด้วยฟังก์ชันแฮชเป็นที่ยอมรับในการรักษาความปลอดภัยของข้อมูลและเครือข่าย

คอมพิวเตอร์ เนื่องจากสามารถเพิ่มความปลอดภัยในการเก็บรักษารหัสผ่าน ซึ่งเป็นวิธีการพื้นฐานที่ถูกใช้งานอย่างแพร่หลาย
ในการรักษาความปลอดภัยของข้อมูลและระบบต่างๆ ท าให้ได้รหัสผ่านที่มีประสิทธิภาพในการป้องกัน ส าหรับการจัดการ
รหัสผ่านท่ีดี อาทิเช่น การใช้ฟังก์ชันแฮชในการจัดเก็บรหัสผ่าน การตั้งรหัสผ่านท่ีซับซ้อน การเปลี่ยนรหัสผ่านเป็นประจ า และ
การไม่ใช้รหัสผ่านเดียวกันกับหลายบริการจึงมีจ าเป็นต้องในการใช้งานในปัจจุบัน หากจัดการรหัสผ่านได้ไม่ดีพอ อาจส่งผลต่อ
การรักษาความมั่นคงปลอดภัยของสารสนเทศ ทั้ง 3 ด้านประกอบด้วย 1) ด้านความลับ (Confidentiality) 2) ด้านความถูก
ต้องสมบูรณ์ (Integrity) และ 3) ด้านความพร้อมใช้งาน (Availability) ดังนั้นจึงควรให้ความส าคัญกับการจัดเก็บรหัสผ่านที่ดี
ซึ่งไม่ควรจัดเก็บในรูปแบบข้อความธรรมดา (Plain text) หรืออาจใช้วิธีการเข้ารหัสแบบย้อนกลับ ไม่ว่าจะเป็น การเข้ารหัส
แบบสมมาตร (Symmetric encryption) หรือการเข้ารหัสแบบอสมมาตร (Asymmetric encryption) ซึ่งเป็นวิธีการเข้ารหสั
แบบทางเดียว (One-way encryption) ที่ใช้การเข้ารหัสแบบแฮช (Hash value) ในการแปลงข้อมูลโดยใช้ฟังก์ชันแฮช
ที่ไม่สามารถถอดรหัสกลับไปยังรูปแบบเดิมได้ ช่วยให้รหัสผ่านมีความปลอดภัยเพิ่มขึ้น แต่ยังมีอีกหลายปัจจัยในการเลือกใช้
ฟังก์ชันแฮช อาทิเช่น ความซับซ้อนของฟังก์ชันแฮช ประสิทธิภาพของฮาร์ดแวร์ ขนาดของข้อมูล การใช้งานฟังก์ชันแฮชทั้ง
แบบมี SALT และไม่มี SALT รวมถึงการปรับแต่งแฮชอัลกอริทึม เป็นต้น ในการน าฟังก์ชันแฮชแบบมี SALT มาใช้งานจะช่วย
ให้รหัสผ่านมีค่าแฮชที่แตกต่างกัน จนท าให้การสุ่มหรือเดารหัสผ่านท าได้ยากขึ้น ส่วนการใช้เทคนิคในการโจมตีรหัสผ่านที่ถูก
แฮชด้วยการใช้ตารางที่เตรียมไว้ล่วงหน้า (Rainbow tables) จะไม่สามารถท าได้ แต่จ าเป็นต้องจัดก็บทั้ง SALT และ Hash
value และต้องใช้ระยะเวลาในการประมวลผลที่มากขึ้น แต่สามารถยอมรับได้เมื่อแลกกับความปลอดภัยที่เพิ่มขึ้นด้วยเช่นกัน
โดยทั่วไปแล้วนิยมใช้ฟังก์ชันแฮชเดียวท้ังระบบเนื่องจากง่ายในการจัดการ

Ntantogian et al. (2019) แสดงให้เห็นถึงระบบการจัดการเนื้อหาแบบโอเพนซอร์สที่นิยม ได้ใช้การเข้ารหัส
ฟังก์ชันแฮชท้ังแบบ SHA512 BCRYPT MD5 SHA1 เป็นต้น และยังมีปัจจัยอื่นๆ ที่ท าให้ระบบมีความปลอดภัย เช่น การสุ่ม
ข้อมูลเติมเข้าไปก่อนที่จะท าการแฮช (SALT) การก าหนดจ านวนรอบของขั้นตอนการแฮช และจ านวนขั้นต ่าของการตั้งค่า
รหัสผ่าน ซึ่งสามารถช่วยเพิ่มประสิทธิภาพในการป้องกันการโจมตีได้เพิ่มขึ้น และ Roman (2019) ได้เสนอแนวทางการรักษา

งานวิจัย วารสารวิทยาศาสตร์ มข. ปีที่ 52 เล่มที่ 2 159

ความปลอดภัยของรหัสผ่านด้วยการประยุกต์ใช้เทคนิคการเข้ารหัสที่มีประสิทธิภาพสูงร่วมกับกระบวนการสร้างข้อมูลสุ่ม
ที่ซับซอ้น ซึ่งจะช่วยเพิ่มระดับความปลอดภัยและลดความเสี่ยงจากการถูกเจาะระบบ
 การเลือกใช้ฟังก์ชันแฮช ควรค านึงถึงความต้องการและบริบทของการใช้งาน ซึ ่งในเวลานี้ฟังก์ชันแฮชถือว่า
มีความปลอดภัย แต่อาจจะไม่ปลอดภัยในอนาคต ดังนั้นจึงควรมีการตรวจสอบและปรับปรุงอัลกอริทึมอย่างสม ่าเสมอ ส าหรับ
การปรับปรุงอัลกอริทึมถือเป็นข้อจ ากัดในการพัฒนาซอฟต์แวร์ โดยทั่วไปแล้วจะไม่ได้ออกแบบให้รองรับในการเปลี่ยนแปลง
หรือปรับปรุงอัลกอริทึมในการเข้ารหัส แต่การน าดีไซน์แพตเทิร์นต่างๆ มาประยุกต์ใช้ในการออกแบบซอฟต์แวร์ จะช่วยให้
ระบบสามารถปรับปรุงหรือขยายได้ง่ายขึ้น โดยเฉพาะปัญหาในการเปลี่ยนแปลงหรือปรับปรุงอัลกอริทึมของฟังก์ชันแฮช จาก
การศึกษางานวิจัย Rashidi (2012) ที่ได้น าเสนอเกี่ยวกับการน า Strategy pattern มาใช้จัดการกับการเลือกอัลกอริทึมของ
ฟังก์ชันแฮชแบบไดนามิก แต่ยังขาดการประยุกต์ใช้ที่ชัดเจน และอาจเกิดปัญหาเมื่อน า Strategy pattern มาใช้งานจริงได้
ผู้วิจัยจึงมีแนวคิดในการประยุกต์ใช้ดีไซน์แพตเทิร์นอื่นๆ เข้ามาใช้ในการออกแบบซอฟต์แวร์ และน าเสนอรูปแบบการพัฒนา
เว็บแอปพลิเคชันท่ีมีคุณสมบัติเชิงฟังก์ชันในแง่ของการบ ารุงรักษาและความปลอดภัยของระบบ

ทฤษฎีและงานวิจัยท่ีเกี่ยวข้อง
1. การออกแบบซอฟต์แวร์ และหลักการออกแบบ
การออกแบบซอฟต์แวร์ เป็นกระบวนการในการสร้างแผนหรือแบบผังส าหรับโครงสร้างและการจัดระเบียบของ

ระบบซอฟต์แวร์ ซึ่งจะเกี่ยวข้องกับการตัดสินใจเกี่ยวกับสถาปัตยกรรมโดยรวม โมดูล อินเทอร์เฟซ และอัลกอริทึมที่จะถูกใช้
ในระบบ (Ramasamy et al., 2015)

การเขียนโปรแกรมเชิงวัตถุ (Object-oriented programming: OOP) เป็นวิธีการส าหรับการสร้างแบบจ าลองและ
ออกแบบระบบซอฟต์แวร์ ซึ ่งประกอบด้วยแนวคิดพื้นฐานของการหุ้มห่อข้อมูล (Encapsulation) การท าให้ข้อมูลเป็น
นามธรรม (Abstraction) การสืบทอด (Inheritance) และการหลายรูป (Polymorphism) วิธีการเหล่านี้ถือเป็นหลักการ
ออกแบบ (Design principles) และ การใช้กฎของดีมิเตอร์ (Law of Demeter: LoD) เป็นกฎแบบง่ายๆ ส าหรับการออกแบบ
ระบบที ่ เน ้นการเช่ือมโยงของวัตถุ (Zotos, 2007) และใช้ในการออกแบบโปรแกรมที ่ เน ้นการลดความขึ ้นต่อกัน
(Dependencies) ของอ็อบเจกต์หรือคลาสต่างๆ ในระบบซอฟต์แวร์ ซึ่งถูกน าเสนอในรูปของ "Principle of Least
Knowledge" ที่ควรปฏิบัติตามในการเขียนโค้ด โดยอ็อบเจกต์หนึ่งควรเรียกใช้เมธอดของอ็อบเจกต์อื่นที่ได้รับมาโดยตรงอย่าง
เดียว และไม่ควรไปเรียกใช้เมธอดของอ็อบเจกต์ที่เป็นผลลัพธ์จากการเรียกเมธอดของอ็อบเจกต์อื่น ซึ่งเป็นเป้าหมายของ LoD
คือการสร้างระบบท่ียืดหยุ่น ง่ายต่อการดูแลรักษา และเป็นโมดูลาร์ โดยลดความขึ้นต่อกันของคลาสหรืออ็อบเจกต์ในระบบ

Watts (2023) กล่าวถึงหลักการออกแบบ SOLID ท ี ่ ได ้ร ับความนิยมในการพัฒนาซอฟต ์แวร ์แบบวั ตถุ
(Object-oriented software development) ประกอบไปด้วย 5 ประการ ได้แก่ 1) หลักการความรับผิดชอบเดี่ ยว
(Single responsibility principle) 2) หลักการเปิด-ปิด (Open/Closed principle) 3) หลักการแทนท่ีของลิสคอฟ (Liskov
substitution principle) 4) หลักการแยกส่วนต่อประสาน (Interface segregation principle) และ 5) หลักการกลับด้าน
ของการขึ ้นต่อกัน (Dependency inversion principle) ซึ ่งถูกน าไปใช้โดยวิศวกรซอฟต์แวร์อย่างแพร่หลายและเกิด
ประโยชน์ต่อนักพัฒนาซอฟต์แวร์ โดยน าหลักการออกแบบ SOLID ไปใช้พัฒนาระบบท่ีมีคุณสมบัติที่ดีขึ้นในด้านต่างๆ ทั้งการ
บ ารุงรักษา การขยายความสามารถ การทดสอบ และการน ากลับมาใช้ใหม่ ช่วยให้การออกแบบการเชื่อมโยงของวัตถุ ลดการ
ขึ ้นต่อกันและเพิ่มความสามารถในการบ ารุงรักษา (Osman and Ömer, 2018) รวมถึงการเกาะติดและการเชื ่อมโยง
(Cohesion and coupling) ซึ่งมีบทบาทส าคัญในการก าหนดคุณภาพของระบบ ทั้งทางด้านความน่าเชื่อถือ ความสามารถใน
การบ ารุงรักษา และความพร้อมใช้งาน (Jha et al., 2014) ได้น าดีไซน์แพตเทิร์นเข้ามาร่วมในการออกแบบที่ดีและสามารถ

160 KKU Science Journal Volume 52 Number 2 Research

เข้ากันได้ ท าให้นักพัฒนาน าความรู้และประสบการณ์จากบุคคลอื่นมาใช้ในการแก้ไขปัญหาด้านการออกแบบที่คล้ายคลึงกันได้
(Bijlsma et al., 2022)

2. ดีไซน์แพตเทิร์น
ดีไซน์แพตเทิร์น (Design pattern) เป็นการแก้ปัญหาที่มีรูปแบบหรือแบบแผนของการออกแบบซอฟต์แวร์ ซึ่งเป็น

วิธีที่เรียบง่ายและสามารถปรับใช้ได้กับปัญหาที่เกิดขึ้นบ่อยๆ ในการพัฒนาซอฟต์แวร์ โดยการน าดีไซน์แพตเทิร์นไปใช้
ออกแบบ ช่วยให้อ่านโค้ดได้ง่าย และสามารถแก้ไขหรือขยายงานได้อย่างยืดหยุ่น ถือเป็นวิธี การแก้ปัญหาที่สามารถน าแบบ
แผนเดิมมาช่วยในการออกแบบซอฟต์แวร์ที่ได้รับการพิสูจน์ว่ามีประสิทธิภาพในทางปฏิบัติ วิธีในการแก้ไขปัญหาในการ
ออกแบบด้วยดีไซน์แพตเทิร์นท่ีเกิดขึ้นบ่อยๆ ถือเป็นการปรับปรุงคุณภาพและความสามารถในการบ ารุงรักษาระบบซอฟต์แวร์
ให้ดีขึ้นได้ ในการจัดระเบียบโค้ด ท าให้โค้ดมีโครงสร้างที่ชัดเจน ยืดหยุ่น และเข้าใจง่าย (Bijlsma et al., 2022) ท าให้การ
พัฒนาซอฟต์แวร์ตามดีไซน์แพตเทิร์นที่ออกแบบจ าลองโครงสร้างผ่านแผนภาพ UML ที่สามารถแปลงเป็นชุดค าสั่งด้วยการ
เขียนโปรแกรมเชิงวัตถุได้ตามความต้องการ ช่วยลดต้นทุนในการพัฒนาซอฟต์แวร์และบ ารุงรักษา เกิดความน่าเชื่อถือใน
กระบวนการผลิตซอฟต์แวร์ (Al-Hawari, 2022) ได้ในระยะเวลาที่สั้นลง ถือเป็นการเรียนรู้ในการออกแบบซอฟต์แวร์จาก
ประสบการณ์ของผู้เชี่ยวชาญที่มีแบบแผนชัดเจน (Ramasamy et al., 2015)

ดีไซน์แพตเทิร์นที่น ามาใช้ในงานวิจัยนี้ ประกอบด้วย Strategy pattern และ Factory method pattern ซึ่งมี
รายละเอียด โดยสังเขปดังนี้

2.1 Strategy Pattern
ดีไซน์แพตเทิร์นที่น ากลยุทธมาใช้ในการสร้างอ็อบเจกต์แทนที่อัลกอริทึมที่ต่างกัน ท าให้สามารถเปลี่ยนแปลง

อัลกอริทึมหรือการด าเนินการท างานได้โดยไม่ต้องแก้ไขโค้ดที่เรียกใช้งานอัลกอริทึมหรือการด าเนินการได้ดังรูปที่ 1

รูปที่ 1 UML class diagram for Strategy pattern (Khosravi and Guéhéneuc, 2017)

จากรูปที่ 1 แสดงแผนภาพคลาสไดอะแกรมของ Strategy design pattern ซึ ่งมีการก าหนดเมธอดภายใน
Interface ของคลาส Strategy ซึ่ งท าการ Implement อัลกอลิท ึมของเมธอดที ่ม ีความต ้องการแตกต่ างกันของ
AlgorithmInterface()

2.2 Factory Method Pattern
ดีไซน์แพตเทิร์นที่ใช้แยกส่วนของการสร้างอ็อบเจกต์ออกจากคลาสที่เรียกใช้อ็อบเจกต์ โดยมีเมธอดภายในคลาสท า

หน้าท่ีสร้างอ็อบเจกต์ใหม่ ท าให้การสร้างอ็อบเจกต์มีความซับซ้อน แต่สามารถซ่อนไว้ภายในเมธอดท่ีท าหน้าที่สร้างอ็อบเจกต์
และถูกเรียกใช้งานได้โดยที่ไม่ต้องทราบรายละเอียด สามารถใช้งานได้อย่างแพร่หลายและมีประสิทธิภาพ เช่นไลบรารีของ
ภาษา Java ช่วยให้การพัฒนาคลาสที่มีการผูกแน่นลดลง ซึ่งง่ายต่อการดูแลรักษาและปรับปรุงชุดค าสั่ง นอกจากนี้ยังท าให้

งานวิจัย วารสารวิทยาศาสตร์ มข. ปีที่ 52 เล่มที่ 2 161

การออกแบบเกิดความยืดหยุ่นและสามารถเพิ่มผลิตภัณฑ์ใหม่เข้าไปในโปรแกรมโดยไม่ท าลายชุดค าสั่งเดิม ด้วยการเพิ่ม
คลาสย่อย (Subclasses) จ านวนมาก และกล่าวถึงข้อดีและข้อเสียของดีไซน์แพตเทิร์นในการประยุกต์ใช้งาน (Temaj, 2020)

งานวิจัยนี้ได้น าดีไซต์แพทเทิร์นท้ัง 2 แบบมาประยุกต์ในการออกแบบกระบวนการจัดการรหัสผ่านโดยใช้ฟังชันแฮช
หลากหลายรูปแบบ ซึ่งช่วยให้การแก้ไขปรับปรุงซอฟต์แวร์มีความยืดหยุ่นส าหรับการรักษาความปลอดภัยด้วยรหัสผ่าน

3. ฟังก์ชันแฮช
ฟังก์ชันแฮช (Hash function) คือฟังก์ชันที่รับข้อมูลน าเข้าที่เป็นข้อความธรรมดา และสร้างข้อความของตัวอกัษร

ขนาดคงท่ี (ค่าแฮช) เป็นข้อมูลส่งออก ถูกใช้โดยทั่วไปในระบบการเข้ารหัสรหัสผ่านเพื่อแปลงรหัสผ่านเป็นรูปแบบที่ปลอดภัย
ขึ้นส าหรับการจัดเก็บและการเปรียบเทียบ ในบริบทของการจัดเก็บรหัสผ่ านประกอบด้วยสามพารามิเตอร์ ประกอบด้วย
ฟังก์ชันแฮช การวนซ ้า และ SALT เป็นพารามิเตอร์หลัก จ านวนการวนซ ้าระบุจ านวนของการด าเนินการฟังก์ชันแฮชต่อเนื่อง
เพื่อค านวณค่าแฮชถูกใช้เพื่อลดความเร็วของการโจมตีรหัสผ่าน ฟังก์ชันแฮชบางตัว เช่น PBKDF2 BCRYPT SCRYPT และ
Argon2 ใช้การวนซ ้าเป็นค่าเริ่มต้นเพื่อเพิ่มเวลาในการค านวณและเพิ่มความปลอดภัย ซึ่ง SCRYPT และ Argon2 เป็นฟังก์ชัน
แฮชที่ใช้หน่วยความจ าอย่างมาก ท าให้การใช้งานมีต้นทุนสูงขึ้นและจ ากัดจ านวนของการท างานแบบขนานที่ผู้โจมตีสามารถ
ใช้ได้ (Ntantogian et al., 2019)

การประยุกต์ใช้งานฟังก์ชันแฮชมีการใช้งานที่หลากหลาย เช่น การตรวจสอบความถูกต้องของข้อมูล (Data
integrity) การเข้ารหัสของรหัสผ่าน และลายเซ็นอิเล็กทรอนิกส์ เป็นต้น ฟังก์ชันแฮชที่นิยม เช่น MD5 SHA-1 SHA-256
SHA-512 และอื่นๆ ในการใช้งานควรเลือกใช้อัลกอริทึมท่ีมีความปลอดภัยตามความจ าเป็นและประเภทของงาน

BCRYPT เป็นฟังก์ชันแฮชเข้ารหัสที่มีความซับซ้อนอย่างมาก มีการน าไปใช้ส าหรับเก็บรหัสผ่าน และสามารถก าหนด
ค่าที่ใช้เพื่อก าหนดระดับความซับซ้อนของการแฮชพาสเวิร์ด (Cost) ได้ ยิ่งค่า Cost ที่สูง การค านวณจะยิ่งยุ่งยากและใช้เวลา
มากขึ้น ซึ่งค่า Cost สามารถปรับได้ให้เหมาะสมกับบริบทของระบบ ท าให้มีความปลอดภัยมากกว่าฟังก์ชันแฮชอื่นๆ เพราะ
การโจมตีด้วย Brute-Force Attack ต้องใช้เวลามากขึ้น

4. งานวิจัยท่ีเกี่ยวข้อง
งานวิจัย Verma and Liu (2003) ประยุกต์ใช้ดีไซน์แพตเทิร์น ในการน ามาปรับปรุงโค้ดเก่า (Legacy code)

กรณีศึกษาซอฟต์แวร์ที ่ใช้ในการสร้างโครงข่าย (Mesh generation software) พบว่าการน าดีไซน์แพตเทิร์น ช่วยเพิ่ม
ความยืดหยุ่น (Flexibility) ความสามารถในการขยาย (Extensibility) และความง่ายในการดูแลรักษา (Maintainability)
โดยที่ไม่ส่งผลกระทบต่อประสิทธิภาพการท างานของซอฟต์แวร์

งานวิจัย Vaghela and Pithva (2016) เน้นที่เฟรมเวิร์กที่ออกแบบอิงตามซอฟต์แวร์ดีไซน์แพตเทิร์น ส าหรับโมดูล
การตรวจสอบความถูกต้อง โดยใช้เฟรมเวิร ์กการเข้าสู ่ระบบที ่อิงตามดีไซน์แพตเทิร์น นักพัฒนาสามารถจัดการกั บ
ความต้องการในอนาคตได้ง่าย มีความยืดหยุ่นและความสามารถในการขยายตัวของแอปพลิเคชัน

ดีไซน์แพตเทิร์นถูกประเมินจากประสิทธิภาพในการแก้ปัญหาเฉพาะ และการปรับปรุงคุณภาพซอฟต์แวร์ และ
ถูกประเมินในเชิงของความยืดหยุ่น การน ากลับมาใช้ซ ้า ความสามารถในการบ ารุงรักษา และการขยายตัว การประเมิน
รูปแบบการออกแบบเกี่ยวข้องกับการวิเคราะห์ผลกระทบของดีไซน์แพตเทิรน์ ต่อความง่ายในการอ่านชุดค าสั่ง ความเป็นโมดลู
และการขยายตัว รวมไปถึงการพิจารณาความสามารถในการใช้ชุดค าสั่งซ ้าและลดเวลาในการพัฒนา (Bijlsma et al., 2022)
 หลักการ Open/Close ก าหนดให้ คลาส (Classes) โมดูล (Modules) และฟังก์ชัน (Functions) ควรจะเปิดให้
สามารถขยายความสามารถได้แต่ปิดไม่ให้แก้ไข องค์ประกอบหนึ่งๆ สามารถให้พฤติกรรมถูกขยายได้โดยไม่ต้องแก้ไข
ซอร์สโค้ดเดิม หรือคลาสควรจะสามารถขยายได้ง่ายๆ โดยไม่ต้องแก้ไขคลาสเอง ในกรณีที่ข้อก าหนดเปลี่ยนแปลง สามารถ
ขยายพฤติกรรมของโมดูลเหล่านั้นโดยการเพิ่มโค้ดใหม่ ไม่ใช่โดยการเปลี่ยนแปลงโค้ดเก่าที่ท างานได้แล้ว (Osman and
Ömer, 2018)

162 KKU Science Journal Volume 52 Number 2 Research

งานวิจัย Shri and Ravikumar (2018) ได้แสดงให้เห็นถึงความจ าเป็นของความปลอดภัยในระดับแอปพลิเคชันใน
สภาพแวดล้อมของคลาวด์สาธารณะ และเสนอการใช้ฟังก์ชันแฮช BCRYPT เพื่อเพิ่มความปลอดภัย ซึ ่ง BCRYPT มีการ
เข้ารหัสที่มีความซับซ้อนถูกน าไปใช้ในการเก็บรหัสผ่าน โดยที่ยังมีความยืดหยุ่นรองรับอนาคตและเพิ่มความปลอดภัย ด้วย
การอนุญาตให้ผู้ใช้เลือกจ านวนรอบส าหรับการสร้างข้อมูลสุ่ม
 ในงานวิจัยการเพิ่มแฮชฟังก์ชันชนิดใหม่เป็นการน าหลักการ SOLID มาใช้ เช่น หลักการ Open/Close ในการ
รองรับแฮชฟังก์ชันใหม่โดยที่ไม่ต้องแก้ไขคลาสฟังก์ชันแฮชเก่าท่ีมีอยู่แล้ว และประเมินประสิทธิภาพโดยท าการทดสอบฟังก์ชัน
การท างานทั้งในรูปแบบการทดสอบระดับหน่วย (Unit testing) และการทดสอบระบบ (System testing) ในการทดลอง
ผู้วิจัยได้ก าหนดการเข้ารหัสผา่น 2 แบบ คือ Type1 และ Type2 ซึ่ง Type1 คือ การเข้ารหัสแบบ BCRYPT และ Type2 การ
เข้ารหัสแบบ MD5 และได้ด าเนินการเพิ่ม Type3 ซึ่งมีการเข้ารหัสแบบ Argon2 เข้าไปเพื่อให้รองรับการเข้ารหัสรูปแบบใหม่

วิธีการด าเนินการวิจัย

1. แนวคิดและขั้นตอนในการด าเนินการวิจัย
ในงานวิจัยการได้ด าเนินการตาม SDLC Model ในการพัฒนาระบบ โมเดล SDLC เป็นแนวทางอย่างเป็นระบบใน

การพัฒนาซอฟต์แวร์จากเริ่มต้นไปจนจบ มีการรวมกันของหลายๆ ขั้นตอนที่แตกต่างกัน เช่น วิเคราะห์ ออกแบบ พัฒนา
ทดสอบและบ ารุงรักษาระบบ เพื่อให้มั่นใจว่าการพัฒนาและการใช้งานประสบความส าเร็จ ซึ่งโมเดล SDLC อาจแตกต่างกันไป
ตามโครงการและองค์กร (Patel, 2023)

รูปที่ 3 แนวคิดในการจัดเก็บรหัสผ่านให้มีความปลอดภัยด้วยการใช้ Design pattern

 จากรูปที่ 3 เป็นการเลือกฟังก์ชันแฮชที่เหมาะสมและการใช้ดีไซน์แพตเทิร์นเพื่อสร้างระบบที่มีความยืดหยุ่นและ
ปลอดภัยในการจัดเก็บรหัสผ่านที่มีความหลากหลายของแฮชฟังก์ชัน โดยที่ Factory Method Pattern ใช้ในการเลือกสร้าง
วัตถุของประเภทของแฮชฟังก์ชันจากพารามิเตอร์ที ่ผู ้ใช้เลือก ส่วน Strategy pattern ใช้ในการเข้ารหัสหรือตรวจสอบ
ความถูกต้องตามแฮชฟังก์ชันท่ีได้เลือกไว้

งานวิจัย วารสารวิทยาศาสตร์ มข. ปีที่ 52 เล่มที่ 2 163

 2. รายละเอียดการด าเนินการวิจัย
2.1 การวิเคราะห์ความต้องการของระบบ

ตารางที่ 1 ความต้องการทางด้านฟังก์ชัน
Function requirement ID Description Use-Case

FR-01 เพิ่มผู้ใช้และก าหนดประเภทความปลอดภัยของ Hash Add user and Select security
type

FR-02 ตรวจสอบผู้ใช้และรหัสผ่าน Check user validate
FR-03 เปลี่ยนรหัสผ่านและประเภทความปลอดภัยของ Hash Change password and

Security

2.2 การออกแบบคลาส ฐานข้อมูล และออกแบบหน้าเว็บ
ผู้วิจัยได้ด าเนินการออกแบบระบบด้วยคลาสไดอะแกรม ER-Diagram ซีเควนไดอะแกรม และออกแบบหน้าเว็บ

เบื้องต้นด้วย Wireframe โดยมีรายละเอียดของคลาส ดังรูปที่ 4

รูปที่ 4 คลาสไดอะแกรมของระบบ

2.3 การออกแบบฐานข้อมูล
 การออกแบบฐานข้อมูลได้สร้าง ER-Diagram เพื่อใช้ในการจัดเก็บข้อมูลผู้ใช้ ดังรูปที่ 5

รูปที่ 5 แผนภาพ ER-Diagram

164 KKU Science Journal Volume 52 Number 2 Research

2.4 การพัฒนาซอฟต์แวร์
 2.4.1 การติดตั้งเครื่องมือและสภาพแวดล้อม ผู้วิจัยได้ท าการติดตั้งสภาพแวดล้อมต่างๆ ภายใต้ระบบ

ปฏิบัติการ Windows 10 ตามที่ก าหนดไว้ในขั้นตอนของการวิจัย ประกอบด้วย ภาษา PHP ภาษา Python เว็บเซิร์ฟเวอร์
Apache เครื ่องมือในการเขียนชุดค าสั ่ง Visual studio code เครื ่องมือในการทดสอบระดับหน่วย PHPUnit โปรแกรม
การจัดการฐานข้อมูล MySQL Database และ เครื่องมือในการทดสอบระบบ (Selenium)

 2.4.2 การพัฒนาฐานข้อมูล โครงสร้างของตารางในฐานข้อมูล ที่มีรายละเอียดในการจัดเก็บข้อมูล
ประกอบด้วย รหัสผู ้ใช้ ชื ่อผู ้ใช้ อีเมล์ รหัสผ่านที่มี การเข้ารหัส ประเภทของแฮชฟังก์ชันซึ ่งแทนด้วยตัวเลขทั้งนี ้เพื่อ
ความปลอดภัย และ ค่า SALT เพื่อใช้ประกอบในการเข้ารหัสและการตรวจสอบความถูกต้อง ซึ่ง SALT ที่จัดเก็บมีลักษณะ
เป็นแบบพลวัตร (Dynamic) มีการสุ่มในการสร้างเข้ารหัสในครั้งแรกและมีการสุ่มขึ้นมาใหม่ทุกครั้งที่มีการเปลี่ยนแปลงวิธีการ
เข้ารหัสของผู้ใช้

รูปที่ 6 ข้อมูลในฐานข้อมูล

จากรูปที่ 6 จะเห็นได้ว่าในส่วนของรหัสผ่านมีการผ่านแฮชฟังก์ชันก่อนการจัดเก็บ และ SALT ที่ถูกสร้างขึ้นนั้น
ไม่ได้มีความซ ้าซ้อนกัน ท าให้กรณีที่ผู้ใช้ตั้งรหัสผ่านเดียวกันและใช้แฮชฟังก์ชันเดียวกัน แต่ผลลัพธ์ของรหัสที่มีการเข้ารหัส
จะไม่เหมือนกัน ซึ่งช่วยให้ระบบมีความปลอดภัยเพิ่มขึ้นอีกด้วย

 2.4.3 สร้างคลาสด้วยภาษา PHP ตามที่ออกแบบ คลาสที่ ในส่วนของการก าหนดฟังก ์ชันแฮช
ประกอบด้วย EncryptAlgorithm และ EncryptType1 และ EncryptType2 ทั้งสองประเภท มีการใช้แฮชฟังก ์ชันที่
แตกต่างกัน โดย EncryptType1 มีการใช้ฟังก์ชันแฮชแบบ BCRYPTส่วน EncryptType2 มีการใช้ฟังก์ชันแฮชแบบ MD5
รายละเอียดของชุดค าสั่งดังรายการชุดค าสั่งที่ 1 - 2

interface EncryptAlgorithm{
 public function encrypt($pwd,$salt);
 public function verify($pwd,$epwd,$salt);
}

รายการชุดค าสั่งที่ 1 Interface EncryptAlgorithm

งานวิจัย วารสารวิทยาศาสตร์ มข. ปีที่ 52 เล่มที่ 2 165

class EncryptType1 implements EncryptAlgorithm{
 public function encrypt($pwd,$salt){
 $pwd_encrypt = password_hash($pwd.$salt, PASSWORD_DEFAULT);
 return $pwd_encrypt;
 }
 public function verify($pwd,$epwd,$salt){
 if (password_verify($pwd.$salt,$epwd)){
 return true;
 } else {
 return false;
 }
 }
}

รายการชุดค าสั่งที่ 2 Class EncryptType1

Function verifyEncrypt
 Get the security type
 If the security type is "1"
 Set encryption strategy to EncryptType1
 Verify using EncryptType1 with password, encrypted password, and salt
 Return the verification result
 Else if the security type is "2"
 Set encryption strategy to EncryptType2
 Verify using EncryptType2 with password, encrypted password, and salt
 Return the verification result
 Else
 Return false (indicating failure or unsupported security type)
End Function

รหัสเทยีมที่ 1 การก าหนดกลยุทธ์การเข้ารหสัด้วย Factory Method

 จากรหัสเทียมที่ 1 เป็นการอธิบายการท างานของฟังก์ชันท่ีใช้ในการตรวจสอบและยืนยันการเข้ารหัสรหัสผ่าน โดยมี
การใช้กลยุทธ์การเข้ารหัสที่แตกต่างกันตามประเภทของความปลอดภัยที่ระบุไว้ ฟังก์ชันนี้จะตรวจสอบประเภทความปลอดภยั
และตามด้วยการตรวจสอบกลยุทธ์การเข้ารหัส (EncryptType1 หรือ EncryptType2) จากนั้นจะท าการยืนยันหรือตรวจสอบ
การเข้ารหัสรหัสผา่นโดยใช้ข้อมูลรหสัผา่น รหัสผ่านท่ีเข้ารหัสแลว้และ SALT หากไม่มีการระบุประเภทความปลอดภยัที่รองรบั
ฟังก์ชันนี้จะคืนค่า false หมายความว่า การตรวจสอบไม่ส าเร็จหรือไม่รองรับประเภทความปลอดภัยที่ก าหนด

166 KKU Science Journal Volume 52 Number 2 Research

 2.4.4 สร้างหน้าเว็บไซต์ตามที่ได้ออกแบบ หน้าจอต่างๆ ที่ได้พัฒนาตาม Wireframes ที่ได้ออกแบบไว้
ตามรูปที่ 7 และ รูปที่ 8

รูปที่ 7 หน้าเพิ่มผู้ใช้

รูปที่ 8 หน้าเปลี่ยนแปลงประเภทของความปลอดภัย

 2.4.5 การด าเนินการทดสอบระดับหน่วย หลังจากที่ได้ด าเนินการพัฒนาตามดีไซน์แพตเทิร์น แล้ว
จึงด าเนินการทดสอบการท างานระดับหน่วยโดยใช้ เฟรมเวิร ์ก PHPUnit ภายในคลาส Person ประกอบด้วยฟังก์ชัน
ดังต่อไปนี้

1. ฟังก์ชันตรวจสอบผู้ใช้ (checkLogin)
2. ฟังก์ชันการเพิ่มผู้ใช้ (setDataToInsertAccount)
3. ฟังก์ชันการเปลี่ยนรหัสผ่านและความปลอดภัย (switchEncryptTypeUpdatePassword)

 2.4.6 การด าเนินการปรับเปลี่ยนอัลกอริทึม ในการเพิ่มฟังก์ชันแฮชใหม่ๆ ท าได้โดยการสร้างคลาส
EncryptionType ที่ม ีการอิมพลีเมนต์อินเตอร์เฟซตามที่ก าหนดไว้ใน EncryptAlgorithm ประกอบด้วยการเข้ารหัส
(encrypt) และตรวจสอบความถูกต้องของรหัส (verify) เพื่อให้ระบบรองรับการเข้ารหัสโดยฟังก์ชันแฮชใหม่ได้ตามแบบแผน
โดยแก้ไขเพิ่มเติมในส่วนของ Factory method ให้เลือกสร้างอินสแตนท์ของฟังก์ชันแฮชใหม่ได้ และส่วนของ UI นัน้ ท าการ
ปรับแก้ให้สามารถเลือกประเภทการเข้ารหัสแบบใหม่ ผู้วิจัยได้ด าเนินการทดสอบซ ้า (Sanity testing) ซึ่งเป็นการทดสอบใน
ส่วนที่มีการแก้ไขในส่วนของการทดสอบระดับหน่วย และการทดสอบระบบ ส่วนของการทดสอบระบบได้ทดสอบฟังก์ชันใน
การเพิ่มผู้ใช้ ตรวจสอบสิทธิ์ และการปรับเปลี่ยนความปลอดภัย เพื่อให้เกิดความเชื่อมั่นในการใช้งานระบบ ในการวิจัยได้ท า
การสร้างฟังก์ชันแฮชใหม่ (EncryptType3) ที่เป็นฟังก์ชันแฮชแบบ Argon2 ดังรายการชุคค าสั่งท่ี 6

งานวิจัย วารสารวิทยาศาสตร์ มข. ปีที่ 52 เล่มที่ 2 167

class EncryptType3 implements EncryptAlgorithm{
 public function encrypt($pwd,$salt){
 $pwd_encrypt = password_hash($pwd.$salt, PASSWORD_ARGON2I);
 return $pwd_encrypt;
 }
 public function verify($pwd,$epwd,$salt){
 if (password_verify($pwd.$salt,$epwd)){
 return true;
 } else {
 return false;
 }
 }
}

รายการชุดค าสั่งที่ 6 Class EncryptType3 ฟังก์ชันแฮชแบบ Argon2

จาก Class EncryptType3 เป็นการด าเนินการสร้างรูปแบบการเข้ารหัสและการตรวจสอบความถูกต้อง โดยใช้
แฮชฟังก์ชันในรูปแบบของ Argon2 ท าให้การเพิ่มฟังก์ชันแฮชและเลือกใช้การเข้ารหัสแบบใหม่ได้ในระบบ

ผลการวิจัยและวิจารณ์ผล
 ผู้วิจัยได้ด าเนินการสร้างระบบและเพิ่มผู้ใช้เข้าไปในระบบทีละ 6 รายการ ตามชนิดของการเข้ารหัสทั้ง 3 และใน
กรณีที่ 4 ได้ด าเนินการเพิ่มผู้ใช้ที่มีการเข้ารหัสแต่ละประเภทอย่างละ 2 รายการ และด าเนินการทดสอบในการเข้าระบบโดย
ด าเนินการเขียนสคริปต์การทดสอบแบบอัตโนมัติด้วย Selenium โดยใช้ภาษา Python ในการทดสอบระบบ ตามรูปที่ 9
หน้าตรวจสอบผู้ใช้และรหัสผ่าน และได้บันทึกเวลาที่ใช้ในการเข้าระบบจ านวน 3 ครั้งและหาเฉลี่ยของเวลาที่ใช้ในการ
ประมวลผล

ตารางที่ 2 การประมวลผลการทดสอบระบบในการเข้าระบบ
Encryption Type

(Run 6 tests)
เวลาประมวลผล (วินาที)

ครั้งท่ี 1 ครั้งท่ี 2 ครั้งท่ี 3 ค่าเฉลี่ย

1. EncryptType1 45.456 45.587 45.966 45.669
2. EncryptType2 44.948 45.235 45.351 45.178
3. EncryptType3 47.980 47.612 47.768 47.786
4. EncryptType1,2,3 46.215 46.008 46.522 46.248

จากตารางที่ 2 พบว่า การเข้าระบบด้วยการเข้ารหัสแบบ MD5 ใช้เวลาน้อยที่สุด คือ มีค่าเฉลี่ยที่ 45.178 วินาที
และการเข้ารหัสแบบ Argon2 ใช้เวลามากที่สุด คือ มีค่าเฉลี่ยที่ 47.786 วินาที และการจัดเก็บรหัสผ่านท่ีมีความหลากหลาย
ของแฮชฟังก์ชัน ค่าเฉลี่ยที่ 46.248 วินาที ทั้งนี้เพราะว่า MD5 มีความซับซ้อนในการเข้ารหัสน้อยกว่าแบบ BCRYPT และ
ARGON2 ซึ่งมีความปลอดภัยมากกว่า แม้ว่า BCRYPT และ ARGON2 จะใช้เวลาในการท างานมากกว่าแต่ก็สามารถเพิ่ม
ความปลอดภัยให้กับรหัสผ่านได้ดีขึ้น เนื่องจากผู้ที่ไม่หวังดีก็ต้องใช้เวลาในการโจมตีมากขึ้นตามไปด้วยเช่นกัน

168 KKU Science Journal Volume 52 Number 2 Research

ตามหลักการออกแบบที่ด ีท าให้บ าร ุงรักษาซอฟต์แวร์ได้ง่าย โดยไม่ส่งผลกระทบในการแก้ไขหลายๆ จุด
ของโปรแกรม และซึ่งเป็นไปตามหลักการ SOLID ดังนี ้ หลักการ Single Responsibility ในคลาส EncryptType ต่างๆ
จะท าหน้าที่ในการเข้ารหัส และตรวจสอบความถูกต้องของรหัสผ่านเพียงแฮชฟังก์ชันเดียว หลักการ Open-Closed มี
ความยืดหยุ่นและรองรับการเพิ ่มแฮชฟังก์ชันประเภทอื่นๆ ได้ในอนาคต โดยการสร้างคลาสที่น า Interface encrypt
algorithm โดยที่ไม่ต้องไปแก้ไขรายละเอียดของชุดค าสั่งเดิมในคลาสก่อนหน้า ซึ่งเป็นไปตามหลักการที่ว่า โมดูลหรือฟังก์ชัน
ควรต้องเปิดให้ขยายได้แต่ปิดส าหรับการแก้ไข และหลักการ Interface segregation จะเห็นได้ว่าทั้ง 2 เมธอด เป็นเมธอดที่
ส าคัญในเข้ารหัสและตรวจสอบความถูกต้องรหัสผ่าน จากผลการวิจัยเห็นได้ว่าการออกแบบโดยใช้ Factory method และ
Strategy pattern ท าให้นักพัฒนาสามารถเพิ่มเติมฟังก์ชันเข้ารหัสและตรวจสอบความถูกต้องได้ง่าย และสอดคล้องกับวิธีการ
แก้ไขปัญหาที่ดีไซน์แพตเทิร์นนั้นถูกคิดขึ้นมา มีการยึดเหนี่ยวระหว่างคลาส Person และ อินเตอร์เฟส EncryptAlgorithm
ที่เป็นแบบ Loose coupling ในแง่ของความปลอดภัยจะเห็นได้ว่าในฐานข้อมูลของระบบไม่ได้จัดเก็บรหัสผ่านในรูปแบบของ
แฮชฟังก์ชันเพียงรูปแบบเดียว ซึ่งจะท าให้เกิดความซับซ้อนในการที่จะต้องใช้เวลาและความพยายามในการถอดรหัสมากข้ึน
กว่าการใช้แฮชเพียงแบบเดียว
 จากการวิจัยที่ได้ด าเนินการนั้นเป็นไปตามวัตถุประสงค์ของการวิจัยในแง่ของการบ ารุงรักษาระบบ เช่น การเพิ่ม
ฟังก์ชันแฮชใหม่ๆ และ Security การปรับเปลี่ยนรูปแบบของฟังก์ชันแฮชได้ตลอดเวลา และความปลอดภัยที่เพิ่มขึ้น
ในแง่ของการเพิ่มความซับซ้อนให้กับระบบ

สรุปผลการวิจัย
ดีไซน์แพตเทิร์นที่น ามาใช้ในงานวิจัยนี้เพื่อให้ซอฟต์แวร์มีความง่ายในการดูแลรักษาระบบ เช่น การเปลี่ยนฟังก์ชัน

แฮชและรองรับฟังก์ชันแฮชใหม่ๆ ที่จะน ามาใช้ สามารถท าความเข้าใจในการท างานของชุดค าสั่งได้ง่ายขึ้น เป็นต้น และ
การเพิ่มความปลอดภัย มุ่งเน้นไปที่การรักษาความปลอดภัยที่มีการเข้ารหัสโดยการใช้ฟั งก์ชันแฮชหลายรูปแบบเป็นหลัก
แต่การท าให้ระบบมีความปลอดภัย ยังมีประเด็นอื ่นๆ ที่ต้องน ามาประยุกต์ใช้เพื่อให้เกิดความปลอดภัยเพิ่มมากขึ้น
เช่น การก าหนดความยาวขั้นต ่าของรหัสผ่าน การตั้งรหัสผ่านให้มีความซับซ้อน การใช้ค่า SALT ที่มีจ านวนบิตที่สูงขึ้น
กระบวนการในการเข้ารหัสให้มีความซับซ้อนขึ้น หรือการใช้การประมวลผลภาพมาใช้ในการป้องกัน เช่น การให้ใส่ตัวอักษร
จากภาพท่ีสุ่มออกมา หรือการเลือกรูปภาพจากข้อความที่ก าหนดก็ยิ่งท าให้ระบบมีความปลอดภัยที่สูงข้ึน

ในการปรับปรุงชุดค าสั่งที่ผู้วิจัยได้ท าการทดลองนั้น ยังสามารถเพิ่มเติมดีไซน์แพตเทิร์นอื่นๆ มาใช้เพิ่มเติมได้
อาทิเช่น Singleton pattern factory pattern Proxy pattern Decorator pattern หรือ Observer pattern แต่ทั ้งนี้
ผู้พัฒนาจ าเป็นจะต้องมีความเข้าใจในดีไซน์แพตเทิร์นท่ีจะน ามาใช้เป็นอย่างดีซึ่งจะช่วยให้ซอฟต์แวร์ที่มีคุณภาพ

เอกสารอ้างอิง
Al- Hawari, F. (2022) . Software design patterns for data management features in web- based information

systems. Journal of King Saud University - Computer and Information Sciences 34(10) : 10028 –
10043. doi: 10.1016/j.jksuci.2022.10.003.

Bijlsma, L.A., Kok, A.J.F., Passier, H.J.M., Pootjes, H.J. and Stuurman, S. (2022). Evaluation of design pattern
alternatives in Java. Software: Practice and Experience 52(5): 1305 – 1315. doi: 10.1002/spe.3061.

Jha, P.C., Bali, V., Narula, S. and Kalra, M. (2014). Optimal component selection based on cohesion & coupling
for component based software system under build-or-buy scheme. Journal of Computational
Science 5(2): 233 – 242. doi: 10.1016/j.jocs.2013.07.003.

งานวิจัย วารสารวิทยาศาสตร์ มข. ปีที่ 52 เล่มที่ 2 169

Khosravi, K. and Guéhéneuc, Y-G. (2017). A Quality Model for Design Patterns. Source: https://www.research
gate.net/publication/249885094_A_Quality_Model_for_Design_Patterns. Retrieved from 28 October
2023.

Ntantogian, C., Malliaros, S. and Xenakis, C. (2019). Evaluation of password hashing schemes in open source
web platforms. Computers & Security 84(2): 206 – 224. doi: 10.1016/j.cose.2019.03.011.

Osman, T. and Ömer, T. (2018). An Experimental Evaluation of The Effect of SOLID Principles to Microsoft
vs Code Metrics. AJIT-e: Online Academic Journal of Information Technology 9(34): 7 - 24. doi: 10.58
24/1309-1581.2018.4.001.x.

Patel, H. (2023) . An insight on software development lifecycle (SDLC) process models. Advance doi:
10.31124/advance.22354453.v1.

Ramasamy, S. , Jekese, G. and Hwata, C. (2015) . Impact of Object Oriented Design Patterns on Software
Development. International Journal of Scientific and Engineering Research 3(2): 6.

Rashidi, H. (2 0 1 2) . Using the Strategy Pattern to select encryption algorithms dynamically in application
softwares. Source: https://www.semanticscholar.org/paper/890587e99f753ba42e510071e50e24
bd6ddce654. Retrieved from 28 October 2023.

Roman, A.L. (2019) . Ameliorating Password Security Authentication Using BCRYPT Algorithm with Dynamic
Salt Generation. Journal of Advanced Research in Dynamical and Control Systems 11. 1240 - 1245.
doi: 10.5373/JARDCS/V11SP12/20193331.

Shri, R. N. and Ravikumar, B. (2018) . Enhancement of public cloud, application security, using Bcrypt
algorithm. International Journal of Scientific Research in Computer Science, Engineering and
Information Technology 3(3): 1029 – 1032. doi: 10.32628/CSEIT1833362.

Temaj, G. (2020). Factory Design Pattern. Source: https://www.researchgate.net/publication/350611051_
Factory_Design_Pattern. Retrieved from 28 October 2023.

Vaghela, R.K. and Pithva, K.A. (2016). Software design pattern approach to develop login framework. In:
Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global
Development (INDIACom), New Delhi, India. 1013 – 1017.

Verma, C. and Liu, L. (2003). Re-engineering legacy code with design patterns : A case study in mesh
generation software. Source: https://www.semanticscholar.org/paper/1aa8ba2e3cd596f3c501e0966
530ab24c6bb190e. Retrieved from 28 October 2023.

Watts, S. (2023). The importance of SOLID design principles. BMC Blogs. Source: https://www.bmc.com/
blogs/solid-design-principles/. Retrieved from 27 October 2023.

Zotos, K. (2007). Object-oriented design principles in mathematics. Applied Mathematics and Computation
188(2): 1430 – 1436. doi: 10.1016/j.amc.2006.11.009.



https://www.semanticscholar.org/paper/890587e99f753ba42e510071e50e24%20bd6ddce654
https://www.semanticscholar.org/paper/890587e99f753ba42e510071e50e24%20bd6ddce654
https://www.semanticscholar.org/paper/1aa8ba2e3cd596f3c501e0966%20530ab24c6bb190e
https://www.semanticscholar.org/paper/1aa8ba2e3cd596f3c501e0966%20530ab24c6bb190e
https://www.bmc.com/%20blogs/solid-design-principles/
https://www.bmc.com/%20blogs/solid-design-principles/

