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ผลกระทบของสปินตอ่การมเีสถียรภาพของสสาร 
Effect of Spin on the Stability of Matter 

ชัยพจน ์มุทาพร1 
 

บทคัดย่อ 
ช่วงแรกของศตวรรษท่ี 20 เราคาดว่าหลักการกีดกันของเพาลีซึ่งว่าด้วยสถิติของสสารท่ีมีสปินครึ่งน้ัน 

เป็นสิ่งจําเป็นในการป้องกันไม่ใหส้สารเปลี่ยนแปลงเข้าสู่สถานะความหนาแน่นสูง และหลักการดังกล่าวเป็นสาเหตุ
ท่ีทําให้สสารมีเสถียรภาพอยู่ได้ แต่ก็ไม่มีผู้ท่ีสามารถพิสูจน์ถึงความจําเป็นของหลักการดังกล่าวได้ จนกระท่ังปี 
1967 ฟรีแมน ไดสัน เป็นบุคคลแรกท่ีสามารถแสดงให้เห็นว่าสสารท่ีละท้ิงหลักการกีดกันของเพาลีจะเป็นระบบ
สสารท่ีไม่มีเสถียรภาพ ในบทความน้ีเราจะกล่าวถึงภาพรวมของหลักการทางคณิตศาสตร์ท่ีไดสันใช้พิสูจน์ความ
จําเป็นของสปินต่อการมีเสถียรภาพของสสาร และเรายังได้พูดถึงความหมายของการมีเสถียรภาพของสสารพร้อม
ท้ังอธิบายหลักการสําคัญในการสรุปว่าระบบใดมีความเสถียรหรือไม่เสถียร สุดท้ายเราได้เปรียบเทียบให้เห็น
พลังงานท่ีปลดปล่อยออกมาอันเน่ืองมาจากการรวมกันของสสารสองระบบท่ีมีจํานวนอนุภาคพอ ๆ กันกับจํานวน
อนุภาคในหลอดทดลองน้ันมีค่ามหาศาล ซึ่งเป็นเครื่องบ่งช้ีได้เป็นอย่างดีว่าสสารท่ีปราศจากสปินจะไม่สามารถมี
เสถียรภาพอยู่ได้ สปินจึงจําเป็นต่อการมีเสถียรภาพของสสารเป็นอย่างยิ่ง 
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ABSTRACT 
It was already expected as early as the beginning of the 20th century that the Pauli 

exclusion principle, involved with spin ½ statistics, was necessary to prevent matter from making 
a high density phase transition and ensure its stability. The actual theoretical demonstration that 
matter would be unstable if the exclusion principle is abolished came much later through the 
rigorous study of Freeman Dyson in 1967. In this article, we review the elegant work of Dyson as 
well as subsequent mathematically rigorous studies carried out of such “bosonic matter” and, in 
the process, pin point the physical meaning of stability of matter. In particular, we investigate 
the enormous energy already released by bringing into contact two bosonic systems each 
containing a number of particles comparable to those found in a test tube, thus providing a 
clear cut explanation of the instability of matter without the exclusion principle. 
 
คําสําคัญ: เสถียรภาพของสสาร สสารชนิดโบซอน การยุบตัวของสสารโบซอน 
Keywords: Stability of matter, Bosonic matter, Collapse of bosonic matter 
 

บทนํา 
ช่วงเวลาก่อนท่ีเพาลีจะเสนอหลักการกีดกันเพาลีน้ัน เป็นช่วงเวลาเริ่มต้นของการพัฒนากลศาสตร์

ควอนตัม มีการค้นพบโดยรัทเทอร์ฟอร์ด (Rutherford) ว่าภายในอะตอมประกอบด้วยนิวเคลียสท่ีมีอนุภาคประจุ
บวก และรอบ ๆ นิวเคลียสเป็นอนุภาคประจุลบมีอันตรกิริยากันแบบคูลอมบ์ (Coulomb interaction) อนุภาค
ประจุบวกท่ีว่าก็คืออนุภาคโปรตอน ส่วนอนุภาคประจุลบคืออนุภาคอิเล็กตรอน ต่อมาในปี 1913 นีล บอห์ร (Niels 
Bohr) ได้เสนอโมเดลของอะตอมอันแรกท่ีประสบความสําเร็จเป็นอย่างมากในการอธิบายสเปกตรัมการแผ่รังสี
แม่เหล็กไฟฟ้าของอะตอมไฮโดรเจนในช่วงท่ีตามองเห็น (อนุกรม Balmer) เขาใช้ทฤษฎีของแมกซ์ พลังค์ (Max 
Planck) ซึ่งเป็นทฤษฎีท่ีใช้อธิบายสเปกตรัมการแผ่รังสีเชิงความร้อนของวัตถุด้วยการแบ่งระดับพลังงานออกเป็น
ข้ัน ๆ ไม่ต่อเน่ือง โดยอาศัยโมเดลอะตอมของรัทเทอร์ฟอร์ดท่ีมีประจุบวกเป็นนิวเคลียส บอห์รได้เสนอโมเดล
อะตอมท่ีมีลักษณะคล้ายกับการเคลื่อนของดาวเคราะห์ในระบบสุริยะโดยมีอิเล็กตรอนโคจรเป็นวงกลมรอบ
นิวเคลียส อันตรกิริยาระหว่างนิวเคลียสกับอิเล็กตรอนเป็นอันตรกิริยาแบบคูลอมบ์ และบอห์รได้ตั้งสมมติฐานท่ี
เป็นสิ่งแปลกใหม่อย่างมากในสมัยน้ันว่า โมเมนตัมเชิงมุมของอิเล็กตรอนในอะตอมมีค่าแน่นอนได้บางค่าเท่าน้ัน 
จากสมมติฐานข้อน้ีทําให้เราคํานวณหารัศมีของวงโคจรของอิเล็กตรอนได้แน่นอนบางค่าและไม่ต่อเน่ือง ซึ่งทําให้
เกิดข้อขัดแย้งกับฟิสิกสแ์บบดั้งเดิมซึ่งเห็นว่าแรงคูลอมบ์ระหว่างนิวเคลียสกับอิเล็กตรอนเป็นแรงดูด เมื่ออิเล็กตรอน
โคจรรอบนิวเคลียสเป็นวงกลมจะแผ่รังสีแม่เหล็กไฟฟ้าออกมาทําให้มีการสูญเสียพลังงาน ในท่ีสุดรัศมีวงโคจรของ
อิเล็กตรอนจะค่อย ๆ ลดลงเรื่อย ๆ (ทําให้รัศมีมีค่าต่อเน่ือง) และสุดท้ายจะถูกดูดเข้าสู่นิวเคลียสทําให้อะตอม
ไฮโดรเจนสูญสลายไป และแน่นอนว่าสมมติฐานของบอห์รน้ันถูกต้องและสามารถอธิบายการแผ่รังสีของอะตอม
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ไฮโดรเจนได้อย่างสมบูรณ์แบบ จึงเกิดคําถามว่าทําไมอิเล็กตรอนไม่ถูกดูดเข้าสู่นิวเคลียส และเมื่อเราเพ่ิมจํานวน
ของอิเล็กตรอนในระบบสสารแล้วทําไมก้อนสสารกลับมีปริมาตรหรือขนาดใหญ่ข้ึน (Ehrenfest, 1931, 1959) 
คําตอบของคําถามน้ีคือหลักการกีดกันของเพาลี (Pauli exclusion principle) น่ันเอง อิเล็กตรอนสองตัวไม่
สามารถครอบครองสถานะทางควอนตัมเดียวกันได ้ดังน้ันก้อนสสาร (bulk matter) ท่ีประกอบด้วยอะตอมจํานวน
มหาศาลจึงมีขนาดใหญ่เรื่อย ๆ ตามจํานวนของอะตอมท่ีประกอบเป็นก้อนสสารน้ัน หลักการกีดกันของเพาลีจึง
จําเป็นอยา่งยิ่งต่อการมีเสถียรภาพของสสาร คําตอบน้ีทําให้เกิดคําถามตามมาว่าหลักการกีดกันของเพาลีจําเป็นต่อ
การมีเสถียรภาพของสสารจริงไหม และเราจะพิสูจน์โดยใช้วิธีการทางคณิตศาสตร์ได้อย่างไรว่าหลักการกีดกันของ
เพาลีเป็นคําตอบจริง ๆ 

ปัจจุบันเรารู้จักหลักการกีดกันของเพาลีในนาม ทฤษฎีบทสปินเชิงสถิติ (spin-statistics theorem) 
(Stoner, 1924; Pauli, 1925; Pauli and Weisskopf, 1934; Pauli, 1936; Iwanenko and Sokolow, 1937; 
Fierz, 1939; Pauli and Belinfante, 1940; de Wet, 1940; Pauli, 1950; Wightman, 1956; Schwinger, 
1958a, 1958b; Burgoyne, 1958; Lüders and Zumino, 1958; Jost, 1960; Brown and Schwinger, 
1961) ซึ่งกล่าวไว้ว่าอนุภาค 2 อนุภาคท่ีเหมือนกันทุกประการและมีสปินเป็นเลขครึ่งจํานวนเต็ม (สสารประเภท
เฟอร์มิออน) จะไม่สามารถครอบครองสถานะทางควอนตัมเดียวกันได้ ส่วนอนุภาคท่ีเหมือนกันทุกประการและมี
สปินเป็นเลขจํานวนเต็ม (สสารประเภทโบซอน) จะสามารถครอบครองสถานะทางควอนตัมเดียวกันได้อย่างไม่
จํากัดจํานวน (Pauli, 1940) ในหนังสือ The Story of Spin ซึ่งแต่งโดย ซินอิชิโร โทโมนากะ (Sin-Itiro 
Tomonaga) (Tomonaga, 1997) แปลโดยทาเกชิ โอกะ (Takeshi Oka) ได้กล่าวถึงความสําคัญของสปินว่า “การ
ปรากฏของสปินและทฤษฎบีทสปินเชิงสถิติถือว่าเป็นการสร้างสรรค์อันชาญฉลาดของธรรมชาติ ถ้าสสารปราศจาก
สปินแล้ว เอกภพท้ังหมดจะไม่สามารถดํารงอยู่ได้และพังทลายลงในท่ีสุด” นอกจากน้ีฟรีแมน ไดสัน (Freeman 
Dyson) (Dyson, 1967) ยังได้กล่าวถึงก้อนสสารท่ีประกอบข้ึนมาจากอนุภาคท่ีไม่มีสปินเป็นเลขครึ่งจํานวนเต็มว่า 
“ก้อนสสารจะยุบตัวสู่สภาวะท่ีมีความหนาแน่นสูง เมื่อก้อนสสารสองก้อนใด ๆ รวมกันมันจะปลดปล่อยพลังงาน
มหาศาลเทียบเท่ากับระเบิดปรมาณอูอกมา” จะเห็นว่าทฤษฎีบทสปินเชิงสถิติมีความสําคัญต่อเราอย่างมาก เพราะ
สสารในโลกน้ีประกอบด้วยอนุภาคอิเล็กตรอน ซึ่งมีพฤติกรรมเป็นไปตามทฤษฎีบทสปินเชิงสถิติสําหรับอิเล็กตรอน 
หรือในอดีตเราเรียกว่า “หลักการกีดกันของเพาลี” ทําให้อิเล็กตรอน 2 ตัวท่ีอยู่ในอะตอมเดียวกันไม่สามารถ
ครอบครองสถานะทางควอนตัมเดียวกันได ้ดังน้ันการท่ีอิเล็กตรอนมีสปินจึงทําให้โลกเราคงอยู่ ถ้าสสารในโลกไม่มี
สปินหรือการหมุนรอบตัวเอง (สปินเท่ากับ 0) โลกเราคงไม่มีเสถียรภาพและคงไม่มีโลกปรากฏอยู่ดังเช่นทุกวันน้ี 
และท่ีสุดแล้วตัวเราเองก็คงไม่สามารถปรากฏอยู่ ณ ปัจจุบันน้ีด้วยเหมือนกัน ดังน้ันการศึกษาเก่ียวกับเสถียรภาพ
ของสสารจึงเป็นหัวข้อสําคัญมากหัวข้อหน่ึงของวงการฟิสิกส์ทฤษฎ ี

ในช่วงทศวรรษ 1920 หลังจากการเพาลีเสนอหลักการกีดกันของเพาลี ยังไม่มีงานวิจัยช้ินใดท่ีสามารถ
พิสูจน์ด้วยการคํานวณทางคณิตศาสตร์ได้อย่างแม่นตรงว่าหลักการกีดกันของเพาลีจําเป็นต่อการมีเสถียรภาพของ
สสาร จนกระท่ังในปี 1967 ไดม้นัีกฟิสิกส์คนแรกท่ีสามารถพิสูจน์ปัญหาดังกล่าวได้ นักฟิสิกส์คนน้ันคือ ฟรีแมน ได
สัน โดยเขาตั้งสมมติฐานว่าถ้าสปินจําเป็นต่อการมีเสถียรภาพของสสารจริงแล้ว ดังน้ันถ้าหากมีใครซักคนทําใหส้ปิน
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ของอิเล็กตรอนและโปรตอนในสสารเป็นศูนย์ แล้วทําให้สปินของอนุภาคท้ังหมดเท่ากับ 0 (เราเรียกสสารน้ีว่า 
“สสารประเภทโบซอน”) ระบบสสารอันน้ันจะไม่มีเสถียรภาพ ระบบท่ีไดสันพิจารณาเป็นระบบท่ีนิวเคลียสไม่
จําเป็นต้องถูกตรึงอยู่กับท่ี (อาจถือว่าเป็นระบบท่ีไม่มีนิวเคลียสก็ได้) และทุกอนุภาคมีมวลท่ีแน่นอน ระบบเป็น

กลางทางไฟฟ้า เขาสามารถคํานวณขอบเขตบนของพลังงานสถานะพ้ืนของระบบมีค่าข้ึนกับ 7/5
N  เมื่อ N  คือ

จํานวนอนุภาคประจุลบในระบบ งานวิจัยของไดสันได้ถูกปรับปรุงให้ค่าขอบเขตบนของพลังงานสถานะพ้ืนมีค่าเข้า
ใกล้เคียงค่าจริงมากยิ่งข้ึนโดยมานูเกียนและมุทาพร (Manoukian and Muthaporn, 2002) โดยได้ขอบเขตบน

ของพลังงานสถานะพ้ืนมีค่าข้ึนกับ 7/5
N  เหมือนกับผลการคํานวณของไดสัน นอกจากน้ีเราจะกล่าวถึงงานวิจัย

ของอีเลียต ลีบ (Elliott H. Lieb) (Lieb, 1979) ท่ีคํานวณหาขอบเขตบนของพลังงานสถานะพ้ืนของระบบในกรณี
ท่ีนิวเคลียสของระบบถูกตรึงกับท่ี และจํานวนอนุภาคประจุลบมีค่าเท่ากับ 8,64,216,...N =  กรณีเลขอะตอม
ของแต่ละนิวเคลียสเท่ากับ 1 โดยงานวิจัยของลีบได้ถูกปรับปรุงโดยมานูเกียนและมุทาพร (Manoukian and 
Muthaporn, 2003) ให้ใช้สําหรับกรณีท่ัวไปได้มากยิ่งข้ึน คือ 8,9,10,...N =  โดยท่ีขอบเขตบนของพลังงาน

สถานะพ้ืนท่ีคํานวณได้มีค่าข้ึนกับ 5/3
N  แสดงให้เห็นถึงความไม่มีเสถียรภาพของระบบก้อนสสารท่ีถูกหยุดสปิน 

เราจะอธิบายความหมายของขอบเขตบนของพลังงานสถานะพ้ืนของสสารต่อการมีเสถียรภาพของสสารในหัวข้อ
ถัดไป 

ส่วนคําถามว่าทําไมขนาดของก้อนสสารถึงได้เพ่ิมข้ึนเมื่อเราเพ่ิมจํานวนของอิเล็กตรอน คําตอบของ
คําถามน้ีได้รับการพิสูจน์อย่างแม่นตรงโดยมานูเกียนและสิรินิลกุล (Manoukian and Sirininlakul, 2005) พวก
เขาได้เสนอ ว่าเพ่ือให้ความน่าจะเป็นท่ีเราจะพบอิเล็กตรอนในทรงกลมรัศมี R  ท่ีครอบครองโดยสสารน้ันไม่เข้าสู่

อนันต์ (สามารถหาค่าได้) รัศมี R  ของทรงกลมจําเป็นต้องเพ่ิมข้ึนในสัดส่วนไม่น้อยกว่า 1 3
N  เมื่อ N  คือ

จํานวนอิเล็กตรอนในระบบและมีค่ามาก ๆ ดังน้ันยิ่งเพ่ิมจํานวนอิเล็กตรอน รัศมีของระบบยิ่งเพ่ิมข้ึน เราหวังว่าจะ
ได้กล่าวถึงรายละเอียดวิธีการคํานวณของงานวิจัยน้ีในบทความถัดไป สําหรับบทความน้ีจะกล่าวถึงการพิสูจน์ความ
จําเป็นของสปินต่อเสถียรภาพของสสารเท่าน้ัน 

 

เสถียรภาพและการไรเ้สถียรภาพของสสารกับพลังงานสถานะพ้ืนของระบบ 
การพิจารณาว่าระบบใดจะเสถียรหรือไม่เสถียรน้ันเราจะพิจารณาท่ีพลังงานสถานะพ้ืนของระบบ (Lieb, 

1991) ถ้าพลังงานสถานะพ้ืนเพ่ิมข้ึนในลักษณะเชิงเส้นกับจํานวนอนุภาค N  ในระบบ เราถือว่าระบบน้ันมี
เสถียรภาพ ยกตัวอย่างเช่น ถ้าให้ ( )E N  เป็นพลังงานสถานะพ้ืนของระบบ N  อนุภาค ถ้าระบบน้ีมีเสถียรภาพ
แสดงว่า lim ( ) /

N
E N N→∞  สามารถหาค่าได้ (Fisher and Ruelle, 1966) หรือพลังงานต่อจํานวนอนุภาค

เข้าสู่ค่าจํากัดค่าหน่ึงเมื่อจํานวนอนุภาคมีค่ามาก ๆ ในกรณีของอะตอมของสสารรอบ ๆ ตัวเราน้ันประกอบด้วย
อิเล็กตรอนและนิวเคลียส โดยมีอันตรกิริยาระหว่างอนุภาคคืออันตรกิริยาทางไฟฟ้า หรืออาจเป็นอันตรกิริยาโน้ม
ถ่วงร่วมด้วยก็ได ้(Dyson and Lenard, 1967) ดังน้ันถ้าระบบสสารมีประจุลบหรือประจุบวกเป็นสสารชนิดเฟอร์มิ
ออนท้ังหมดแล้ว พลังงานสถานะพ้ืนของระบบ ( )E N  เป็นฟังก์ชันเชิงเส้นของ N  และแน่นอนเราสามารถหา
ขีดจํากัดของ lim ( ) /

N
E N N→∞  ได้ แสดงให้เห็นถึงความมีเสถียรภาพของระบบน้ี แต่ถ้าระบบใดมีพลังงาน
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สถานะพ้ืน ( )E N  แปรตาม N
α  ท่ี 1>α  (Dyson, 1967) ระบบน้ีจะไม่มีเสถียรภาพ ท้ังน้ีเป็นเพราะเมื่อเรา

รวมระบบสองระบบโดยแต่ละระบบมีอนุภาคประจุลบ N  พลังงานสถานะพ้ืนเริ่มต้นของระบบจะข้ึนกับ α
N2  

หลังจากรวมแล้วระบบสุดท้ายจะมีอนุภาคประจุลบท้ังหมด 2N  อนุภาค พลังงานสถานะพ้ืนสุดท้ายของระบบ

รวมจึงมีค่าข้ึนกับ α)2( N  ทําให้พลังงานท่ีปลดปล่อยออกมามีค่าข้ึนกับ αα NN 2)2( −  ปกติเมื่อเรารวม

ระบบอนุภาคเข้าด้วยกัน จํานวนอนุภาคในหลอดทดลองของเราอยู่ในระดับ N  ประมาณ 2310  อนุภาค จะเห็น
ว่ากรณีท่ีจํานวนอนุภาคมีปริมาณมหาศาลเช่นน้ี  พลังงานท่ีปลดปล่อยออกมาจะมากมายมหาศาลเทียบเท่ากับ
พลังงานของระเบิดปรมาณูและคงไม่มีระบบใดท่ีคงอยู่ได้ในสภาวะน้ัน  แต่การคํานวณหาพลังงานสถานะพ้ืนของ
ระบบท่ีมีอนุภาคจํานวนมากแทบจะเป็นไปไม่ได้เลย เราจึงหาขอบเขตบนและขอบเขตล่างของพลังงานสถานะพ้ืน
แทน โดยมีหลักการพิจารณาแบ่งเป็น 4 กรณ ีดังน้ี 

1) เรากําหนด α  และ C  เป็นเลขจํานวนจริง โดยท่ี 1α >  ดังน้ัน CN CN
α− < −  เมื่อ 0C >  

ถ้าเราสามารถพิสูจน์ได้ว่าพลังงานสถานะพ้ืนของระบบ 
NE CN

α< −  แล้วจะได้ 
NE CN CN

α< − < −  จะ

เห็นว่าพลังงานสถานะพ้ืนของระบบน้ีมีค่าน้อยกว่า CN
α−  ค่าตรงน้ีคือขอบเขตบนของพลังงานสถานะพ้ืน ดังน้ัน

พลังงานสถานะพ้ืนไมม่ีสิทธ์ิแปรผันโดยตรงกับ CN−  ได้เลยเน่ืองจาก CN CN
α− < −  ดั้งน้ันเราสามารถสรุป

ได้ว่า ระบบน้ีไม่เสถียร 
2) กรณีท่ีเราสามารถพิสูจน์ได้ว่า 

N
E CN< −  แม้ว่าขอบเขตบนของพลังงานสถานะพ้ืนมีค่าแปรผัน

ตรงกับ N  ท่ีมีเลขช้ีกําลังเท่ากับ 1 ถ้าเราดูเฉพาะตรงน้ีเราอาจระบุว่าระบบน้ีมีเสถียรภาพ แต่ในความเป็นจริง
แล้วการพิสูจน์น้ีไม่สามารถบ่งช้ีว่าระบบท่ีเราพิจารณาเป็นระบบท่ีเสถียร ท้ังน้ีเน่ืองจากพลังงานสถานะพ้ืนยังมี

โอกาสแปรผันโดยตรงกับ N
α  โดยท่ี 1α >  น่ันคือ ��~� ��� แสดงให้เห็นถึงการไรเ้สถียรภาพของระบบ 

และยังคงทําให้  ��~� ���
� �	� ยังคงเป็นจริง ดัง น้ันจะเกิดข้อขัดแย้งกันเอง การพิสูจน์ว่า 

N
E CN< −  จึงไม่ให้ข้อสรุปท่ีแน่นอนกับเราว่าระบบท่ีเราพิจารณาเป็นระบบท่ีเสถียรหรือไม่เสถียรกันแน่ 

3) กรณีท่ีเราสามารถพิสูจน์ได้ว่า 
NE DN

α> −  แม้ว่าขอบเขตล่างของพลังงานสถานะพ้ืนจะข้ึนกับ 

N
α  ซึ่งแสดงให้เห็นถึงเสถียรภาพของระบบ แต่เน่ืองจากพลังงานสถานะพ้ืนยังมีโอกาสแปรผันตรงกับ N  ได้ 

และยังคงทําให้ ��~� 	� 
 ���
�  เป็นจริง ดังน้ันการพิสูจน์ว่า 

NE DN
α> −  จึงไม่ให้ข้อสรุปท่ี

แน่นอนกับเราว่าระบบท่ีเราพิจารณาเป็นระบบท่ีเสถียรหรือไม่เสถียรกันแน่ 
4) กรณีท่ีเราสามารถพิสูจน์ได้ว่า 

N
E CN> −  ในกรณีน้ีเราสามารถสรุปได้ทันทีว่า ระบบท่ีเรา

พิจารณาเป็นระบบท่ีเสถียร เน่ืองจาก 
NE CN DN

α> − > −  พลังงานสถานะพ้ืนไม่มีสิทธ์ิข้ึนกับ N
α  ได้เลย

เน่ืองจากขอบเขตล่างของพลังงานสถานะพ้ืนข้ึนกับ N  แล้ว 
จาก 4 กรณีข้างต้นเราสามารถสรุปได้ว่า การจะพิจารณาว่าระบบใดเป็นระบบท่ีเสถียรหรือไม่เสถียรน้ัน 

เราสามารถพิสูจน์ไดจ้ากเพียงแค่ 2 กรณีคือ การพิสูจน์ความไม่เสถียร (ไรเ้สถียรภาพ) ของระบบเราจะดูท่ีขอบเขต

บนของพลังงานสถานะพ้ืน น่ันคือระบบท่ีไม่มีเสถียรภาพจะมีขอบเขตบนของพลังงานสถานะพ้ืนมีค่าข้ึนกับ N
α , 

1α >  ส่วนการพิสูจน์ว่าระบบใดมีเสถียรภาพน้ัน เราจะดูท่ีขอบเขตล่างของพลังงานสถานะพ้ืน โดยระบบท่ีมี
เสถียรภาพจะมขีอบเขตล่างของพลังงานสถานะพ้ืนมีค่าข้ึนกับ N  
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กรณีระบบก้อนสสารประเภทโบซอนมีนิวเคลียสเคล่ือนท่ี และทุกอนุภาคมีมวลท่ีหาค่าได ้
ในปี 1967 ไดสันได้พิสูจน์ถึงความจําเป็นของสปินต่อการมีเสถียรภาพของสสารได้เป็นคนแรก โดยมี

หลักการพิสูจน์คือ “หากว่าสปินจําเป็นต่อการมีเสถียรภาพของสสารแล้ว ระบบสสารท่ีสปินของอิเล็กตรอนและ
โปรตอนถูกทําให้เท่ากับศูนย์ ระบบสสารน้ันจะไม่เสถียร น่ันคือขอบเขตบนของพลังงานสถานะพ้ืนของระบบมีค่า

ข้ึนกับ N
α  โดยท่ี 1α > ” และเขาสามารถพิสูจน์ได้ว่าขอบเขตบนของพลังงานสถานะพ้ืนมีค่าข้ึนกับ 5/7

N  
ระบบสสารท่ีพิจารณาเป็นระบบอย่างง่าย มีความเป็นกลางทางไฟฟ้า ประกอบอนุภาคประจุลบ N  อนุภาค และ
อนุภาคประจุบวก N  อนุภาค (จํานวนอนุภาครวมเท่ากับ N2 ) สปินเท่ากับ 0 มีอันตรกิริยาระหว่างอนุภาคแบบ
คูลอมบ์ โดยมีฮามิลโทเนียนของระบบคือ 

222 2

1 2

N N
i ji

i i j i j

ep
H

m x x

ε ε

= <

= +
−

∑ ∑
�

� �                                          (1) 

เมื่อ , 1i jε ε = ± , m  คือมวลท่ีน้อยท่ีสุดของอนุภาคในระบบ และ ,i jx x
� �  เป็นตําแหน่งของอนุภาคตัวท่ี i  

และ j  ตามลําดับ จะเห็นว่านิวเคลียสของระบบน้ีเคลื่อนท่ีได ้น่ันคือทุกอนุภาคมีพลังงานจลน์ได ้
ฟังก์ชันคลื่นท่ีไดสันใช้หาค่าคาดหวังของฮามิลโทเนียนน้ันเป็นฟังก์ชันคลื่นของระบบอนุภาคท่ี

ประกอบด้วยจํานวนอนุภาค 2N  (ประจุบวก N  อนุภาคและประจุลบ N  อนุภาค) กําหนดด้วยฟังก์ชันคลื่น 

2 N
Ψ  ซึ่งเป็นฟังก์ชันพ้ืนฐานของระบบ 2N  อนุภาค (Dyson, 1967) ฟังก์ชันน้ีมีรูปแบบคล้ายกับฟังก์ชันคลื่นใน
สถานะพ้ืนในทฤษฎีสารตัวนํายิ่งยวดของ Bardeen-Cooper-Schrieffer (BCS) (Bardeen et al., 1957) และ
เขียนได้ดังสมการด้านล่าง 

( ) ( )
2 1 2 1 2 22 1 1 2 2

1

, ,..., , , , ,
j j j j

N

N N N P P P P

P j

x u x u G x u x u
− −

=

Ψ =∑∏
� � � �

               (2) 

เมื่อ P  แทนการสลับท่ีใด ๆ ของเลขจํานวนเต็ม 1,..., 2N  โดย 
jx
�  เป็นเวกเตอร์ในพิกัด 3 มิติ และ 1ju = ±  

เป็นค่าท่ีกําหนดว่าอนุภาคท่ีพิจารณาเป็นอนุภาคประจุบวกหรือลบ ส่วนฟังก์ชัน G  เป็นฟังก์ชันคลื่นแบบสมมาตร
ของ 2 อนุภาคใด ๆ แทนด้วย 

( ) ( ) ( ) ( ) ( )1 1 2 2 0 0 1 0 2 1 2 1 2

0

, , ,G x u x u x x u u x xα α α
α

λψ ψ λ ψ ψ
>

= − ∑� � � � � �                 (3) 

โดย ( )xαψ
�  เป็นฟังก์ชันสถานะลําดับท่ี α ณ ตําแหน่ง x

�
 ซึ่งเราจะแทนฟังก์ชันน้ีด้วยฟังก์ชัน sine หากเรา

ต้องการฟังก์ชันคลื่นแบบ BCS เราเพียงแคแ่ทนฟังก์ชันคลื่นแบบสมมาตรด้วยฟังก์ชันคลื่นแบบอสมมาตร และแทน
ชนิดประจุ (

ju ) ด้วยพิกัดสปิน (spin coordinate) ฟังก์ชันคลื่น 2 N
Ψ  จะเป็นตัวแทนของสถานะของระบบ 

2N  อนุภาคท่ีอนุภาคหน่ึงจะถูกจับคู่กันกับอีกอนุภาคหน่ึง และแต่ละคู่อนุภาคมีรูปแบบฟังก์ชันคลื่นเหมือนกันคือ
ฟังก์ชัน G  เราอาจเรียกคู่ของอนุภาคเหล่าน้ีเรียกว่า “Bogoliubov pairs” (Bogoliubov, 1947) ซึ่งเทียบได้กับ 
“Cooper pairs” ในทฤษฎีสารตัวนํายิ่งยวด (Cooper, 1956; Dyson, 1967) เน่ืองจากฟังก์ชันคลื่น 2 N

Ψ  ไม่
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จําเป็นต้องเป็นฟังก์ชันคลื่นของระบบเมื่ออยู่สถานะพ้ืน ดังน้ันค่าคาดหวังของฮามิลโทเนียนของระบบน้ีจะมีค่า
มากกว่าหรือเท่ากับค่าพลังงานสถานะพ้ืนจริง ๆ ของระบบเสมอ และเขาสามารถพิสูจน์ได้ว่า 

2 2

2 ,2 22

2

N N

N N N

N

H
E H

Ψ Ψ
≤ ≡

Ψ
                                            (4) 

เมื่อ 
2 ,2N NE  คือพลังงานสถานะพ้ืนของระบบท่ีประกอบด้วยอนุภาคประจุบวก 2N  อนุภาคและอนุภาคประจุ

ลบ 2N อนุภาค และ 2 N
H  เป็นค่าคาดหวังของฮามิลโทเนียน โดยใช้คณิตศาสตร์ท่ีสลับซับซ้อน (complicated 

variational calculation) (Leib, 1979) ไดสันสามารถคํานวณค่าคาดหวังได้เท่ากับเท่ากับ 

( )2 0 0 0 0

1 1 1

1 1
2 2

3 3

k k k

N NH T kT k I N T Iα α α
α α α

β
= = =

   
= − + − + −   

   
∑ ∑ ∑                   (5) 

เมื่อ 
N

β  คือสัมประสิทธ์ิของไดสัน (Dyson coefficient) โดย 1
N

β <  0,T Tα  พลังงานจลน์ซึ่งมีค่าเป็นบวก 

0I α เป็นพลังงานศักย์ซึ่งเกิดจากอันตรกิริยาระหว่างอนุภาค และ k  เป็นค่าคงท่ีใด ๆ ท่ีแสดงจํานวนสถานะท่ี
เป็นไปได้ท้ังหมดของอนุภาคในระบบ เมื่อแทนค่า 2N  ด้วย N  และปรับแต่งสมการ (5) แล้วนําไปแทนค่าใน
อสมการ (4) เขาสามารถคํานวณขอบเขตบนของพลังงานสถานะพ้ืนของระบบได้ดังอสมการด้านล่าง 

4 7/5

Dyson 2 22 1944

me N
E

π
 

< − 
 �

                                                 (6) 

เน่ืองจากระบบน้ีเป็นระบบก้อนสสาร ดังน้ันถือว่า N  มีค่ามาก (อยู่ในข้ัน 2310  อนุภาค) จะเห็นว่าขอบเขตบน

ของพลังงานสถานะพ้ืนมีค่าข้ึนกับ 7/5
N  แสดงว่า 7 5α =  แสดงให้เห็นถึงการไร้เสถียรภาพของระบบ ทําให้

สรุปได้ว่าสปินมีความจําเป็นต่อการมีเสถียรภาพของสสารเป็นอย่างยิ่ง 
ต่อมามานูเกียนและมุทาพร (Manoukian and Muthaporn, 2002) ได้ปรับปรุงค่าขอบเขตบนของได

สันให้ดีข้ึนกว่าเดิม 31 เท่า โดยใช้เทคนิควิธีการทางฟังก์ชันของชวิงเงอร์ (Schwinger functional technique) 
(Schwinger, 1951a, 1951b, 1953, 1954, 1988) เพ่ือคํานวณค่าคาดหวังของฮามิลโทเนียน (expectation 

value of Hamiltonian) โดยขอบเขตท่ีแม่นยําของสัมประสิทธ์ิไดสันคือ 
1 1

,
3 2

Nβ≤ ≤ 2,N ≥ 2k N<  

(Manoukian and Muthaporn, 2002) เมื่อเราแทนคา่ 
N

β  ในสมการ (5) เราได ้

( )2 0 0

1 1

1 1 1
2 2 2

2 3 3 2

k k

N

k
H T N T N k Iα α

α α= =

    < + − + − − −         
∑ ∑                   (7) 

เมื่อเราแทน 2N  ด้วย N  เราได้ขอบเขตบนของพลังงานสถานะพ้ืนของระบบท่ีประกอบด้วยอนุภาคประจุบวก 
N  อนุภาคและอนุภาคประจุลบ N  อนุภาคดังอสมการด้านล่าง 
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( ), 0 0

1 1

1 1 1
2

2 3 3 2

k k

N N

k
E T N T N k Iα α

α α= =

    < + − + − − −         
∑ ∑                     (8) 

เมื่อ k N<  และสัมประสิทธ์ิของ 0

1

k

I α
α=

 
− 

 
∑  ในอสมการด้านบนต้องมีค่าเป็นบวกเสมอ โดย 

( ) ( )
2 2

3 *d , 0,1,..., ,
2

T x x x k
m

α α αψ ψ α
 ∇

= − = 
 

∫
�
�� � �

                        (9) 

( ) ( ) ( ) ( )
2

3 3 * *

0 0 0d d , 1,...,
e

I x x x x x x k
x x

α α αψ ψ ψ ψ α′ ′ ′= =
′−∫

� � � � � �
� �          (10) 

เพ่ือหาค่าทางด้านขวามือของอสมการด้านบน สถานะของอนุภาคถูกกําหนดด้วยเลขจํานวนเต็มบวก 3 ตัวคือ 

( )1 2 3, ,n n n  ซึ่งเปรียบเสมือนตําแหน่งของปลายลูกศรของเวกเตอร์ ( )1 2 3, ,n n n n=
�  การกําหนดสถานะท่ี

แตกต่างกันกําหนดโดยการสลับตําแหน่งของตัวเลขท้ังสาม เช่น สถานะ ( ) ( )1,1, 2 , 1, 2,1  และ ( )2,1,1  เป็น

สถานะท่ีแตกต่างกันท่ีมีเง่ือนไขบังคับคือ 2 2 2 2

1 2 3 6n n n n= + + =  เป็นต้น ดังน้ันจํานวนสถานะ k  ท้ังหมดของ

ระบบสําหรับเง่ือนไขบังคับ 2
n  ใดๆ จะเป็นการนับสถานะท่ีเป็นไปได้ท้ังหมดของเวกเตอร์ n′

�
 ท่ีมี 2

n′ น้อยกว่า

หรือเท่ากับ 2
n  ไม่นับสถานะ ( )1,1,1  เน่ืองจาก 1 2 3, , 1,2,...n n n′ ′ ′ =  ดังน้ัน k  คือจํานวนสถานะท่ีระบุด้วย

ปลายลูกศรท่ีช้ีอยู่ภายในหรืออยู่บนผิวของ 
1

8
 ของทรงกลมท่ีมีรัศมีเท่ากับ 2

n  น่ันเอง ยกตัวอย่างเช่น ถ้ากําหนด 

2 6n =  เราได้สถานะท้ังหมดคือ ( ) ( ) ( )1,1,2 , 1,2,1 , 2,1,1  น่ันคือ 3k =  ถ้า 2 9n =  เราได้สถานะ

ท้ังหมดคือ ( ) ( ) ( )1,1,2 , 1,2,1 , 2,1,1 , ( ) ( ) ( )1, 2,2 , 2,1,1 , 2,2,1  ดั้งน้ัน 6k =  ฟังก์ชันสถานะท่ีใช้ใน

การคํานวณขอบเขตบนเป็นฟังก์ชันท่ีอยู่ในรูป Sine (Dyson, 1967) ดังแสดงในสมการด้านล่าง 

( )
2

33

1

2
sin i i

n

i

n x
x

L L

π
ψ

=

  =    
   

∏�
�

                                         (11) 

สําหรับ 0
i

x L< <  และให้ 0
n

ψ =�  ถ้า 
i

x  มีค่านอกเหนือจากช่วงท่ีกําหนด ตัวเลขแสดงลําดับของแต่ละ

สถานะกําหนดด้วย α  โดย 0α =  สําหรับสถานะ ( )0 1,1,1n =
�  1,2,3α =  สําหรับสถานะ ( )1,1, 2 ,  

( )1,2,1 , ( )2,1,1  ตามลําดับ และทําการนับลักษณะน้ีไปเรื่อย ๆ จนกว่าจะได้จํานวนสถานะท้ังหมด k  โดย

อาศัยวิธีการดังกล่าวพร้อมท้ังการปรับแต่งค่าคาดหวังท่ีข้ึนกับ L  เราสามารถคํานวณหาขอบเขตบนของพลังงาน
สถานะพ้ืนของระบบสสารประเภทโบซอนในกรณีคือ 

4 7/5

, 2 42 62
N N

me N
E

π
 

< − 
 �

                                                (12) 
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เมื่อเปรียบเทียบกับผลการคํานวณของไดสันในอสมการ (6) จะเห็นว่าขอบเขตบนท่ีคํานวณได้ในอสมการท่ี (12) 
ได้รับการปรับปรุงให้มีค่าเข้าใกล้พลังงานสถานะพ้ืนจริง ๆ ของระบบดีกว่าค่าขอบเขตบนของไดสันอยู่ 31 เท่า 
และตัวเลขช้ีกําลังของ N  แสดงให้เห็นอย่างชัดเจนว่าสปินมีความจําเป็นต่อเสถียรภาพของสสาร ระบบสสารท่ีเรา
คํานวณในหัวข้อน้ีเป็นระบบท่ีถือว่ามีนิวเคลียสท่ีเคลื่อนท่ีได้ อนุภาคโบซอนทุกอนุภาคสามารถมีพลังงานจลน์ และ
เราถือว่าทุก ๆ อนุภาคมีมวลท่ีหาค่าได้ โดย m  เป็นมวลท่ีน้อยท่ีสุดในระบบ สําหรับในกรณีท่ีนิวเคลียสถูกตรึง 

(fixed nucleus) เราสามารถพิสูจน์ได้ว่าขอบเขตบนของพลังงานสถานะพ้ืนมีค่าข้ึนกับ 5/3
N  โดยมีรายละเอียด

ในหัวข้อถัดไป 
 

กรณีระบบก้อนสสารประเภทโบซอนท่ีนิวเคลียสท่ีถูกตรึง 
สําหรับในกรณีท่ีนิวเคลียสถูกตรึงน้ันเราสามารถพิสูจน์ได้ว่าขอบเขตบนของพลังงานสถานะพ้ืนของระบบ

สสารประเภทโบซอนมีค่าข้ึนกับ 5/3
N  (Lieb, 1979) โดยถือว่าอนุภาคประจุบวกมีมวลได้ไม่จํากัด และเลข

อะตอม z  มีค่ามากกว่า 0  โดยเพ่ือใหฮ้ามิลโทเนียนของระบบมีความเรียบง่าย ลีบได้กําหนดให้มวลของอนุภาค

ประจุลบท้ังหมดเท่ากับ 1 2  มีประจุ 1−  และให้ 2 1=�  ดังน้ันพลังงาน 1 Rydberg เท่ากับ 1 4  ระบบท่ี
พิจารณาประกอบด้วยนิวเคลียส K  นิวเคลียส แต่ละนิวเคลียสมีมวลไม่จํากัดและมีประจุ 0z >  โดยท่ี 

38K n=  เมื่อ n  เป็นเลขจํานวนเต็มบวก ระบบมีความเป็นกลางทางไฟฟ้า ดังน้ัน N Kz=  เมื่อ N  เป็น
จํานวนของอนุภาคประจุลบในระบบ จะเห็นว่าระบบท่ีลีบศึกษาน้ันมีจํานวนนิวเคลียสเป็นค่าเฉพาะบางค่าคือ 

8,64,216,...K =  และในกรณี 1z =  เราได้ 8,64,216,...N =  ฮามิลโทเนียนสําหรับอนุภาคประจุลบ
ของระบบน้ีสามารถเขียนได้เป็น 

1 11
2 2

,

1 1

N K

N R i i j i j i j

i j i i j N i i j K

H z x R x x z R R
− −−

= = ≤ < ≤ ≤ < ≤

 
= − ∇ + − + − + − 

 
∑ ∑ ∑ ∑
� � � �� � �

        (13) 

เมื่อ { }1,..., KR R R=
� � �

 เป็นตําแหน่งของท่ีตรึงของอนุภาคประจุบวก ฟังก์ชันคลื่นของระบบกําหนดให้เป็น 

( ) ( )1

1

,...,
N

N i

i

x x xλφ
=

Ψ =∏
� � �                                                 (14) 

เมื่อ ( ) ( )3/2
x g xλφ λ λ=
� �  และ ( )g x

�  เป็นฟังก์ชันปกติ (normalized) โดยอยู่ในรูปดังแสดงในสมการ

ด้านล่าง 

( ) ( ) ( ) ( ) ( )1 2 3 1 2 3, , ,g x f x f x f x x x x x= =
� �                                (15) 

โดยกําหนดให ้

                                 ( ) 3 2 1 , 1f x x x = − ≤   

                                0, 1x= >                          (16) 
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โดยใช้เง่ือนไขความเป็นปกติและความไม่ข้ึนต่อกัน (orthonormal) ของฟังก์ชันและการคํานวณท่ียืดยาว ขอบเขต
บนของค่าคาดหวังของฮามิลโทเนียนสามารถเขียนได้ดังสมการด้านล่าง 

( )2

, ,N RH NT W N Rλ λΨ Ψ ≤ +                                    (17) 

เมื่อ ( )
2

3d 9T g x x= ∇ =∫
� � �  และ 

( ) ( ) ( )2 2 2 3 31 1
, d d

2
W N R N g x g x x x

x x
′ ′=

′−∫∫
� � � � �

� �  

( )2 3 2

1 1

1 1
d

K

j i j Nj i j

Nz g x x z
x R R R= ≤ < ≤

− +
− −

∑ ∑∫
� �

� � ��                                   (18) 

สิ่งท่ีเป็นหัวใจของงานวิจัยน้ีคือ ลีบสามารถหาขอบเขตบนของสมการด้านบนได้โดยใช้วิธีท่ีชาญฉลาดเป็น
อย่างยิ่ง และวิธีการน้ีได้ถูกนํามาใช้อีกครั้งโดยมานูเกียนและมุทาพร (Manoukian and Muthaporn, 2003) ใน
การศึกษาระบบก้อนสสารท่ีมี 8N ≥  ใน 3 มิติ และ ในมิติ ν  ใดๆ (Muthaporn and Manoukian, 2004) 
 

 

รูปท่ี 1 กล่องใหญ่ถูกแบ่งออกเป็นกล่องเล็กๆ ท้ังหมด K  กล่อง รูปน้ีเป็นการแบ่งกล่องในกรณี 2n =  โดยท่ี 
38 64K n= =  กล่อง 

 

การพิสูจน์หาขอบเขตบนของค่าในสมการท่ี (18) น้ัน ลีบได้แบ่งช่วงระยะทางจาก 0 1−  ออกเป็น
ท้ั งหมด  n  ช่ ว ง  โ ดย ให้  0 (0) (1) ... ( ) 1a a a n= < < < =  แล ะ นิ ย าม ให้ ช่ ว ง ท่ี  j  มี ค ว ามย า ว 

( ) ( ) ( ), 1L j a j a j = +   สําหรับ 0 1j n≤ ≤ −  และให้ ( ) [ ]( ), ( 1)L j a j a j= − − − − −  สําหรับ 

1n j− ≤ ≤ −   รูปท่ี 1 เป็นตัวอย่างการแบ่งกล่องในกรณี 2n =  ซึ่งเราสามารถแบ่งได้ 64 กล่อง กําหนดให้

นิวเคลียส 1 นิวเคลียสอยู่ภายในกล่องสี่เหลี่ยมมุมฉาก ( ) ( ) ( ) ( ), ,i j k L i L j L kΓ = × ×  เมื่อ 
, ,n i j k n− ≤ ≤  เป็นไปตามเง่ือนไขคือ 

( )
( )

2 3

, ,

1
d

i j k

g x x
KΓ

=∫
� �       (19) 
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จากน้ันลีบใช้วิธีหาค่าเฉลี่ยแบบถ่วงนํ้าหนักของ ( ),W N R
�

 รอบตําแหน่ง iR
�
 ของแต่ละนิวเคลียส โดยมีนํ้าหนัก

สัมพัทธ์คือ ( ) ( )2 3

1 Kg R g R
� �
�  ทําให้ได้ค่าเฉลี่ยแบบถ่วงนํ้าหนักของ ( ),W N R

�
 มีค่าเป็น 

( ) ( ) ( )
( )( )

2 2 3 2 2

, , , ,

1 1
d d

2 i j k i j k

W N N x x g x g x
x xΓ

′ ′= −
′−∑ ∫∫

� � � �
� �                   (20) 

เน่ืองจากฟังก์ชันนํ้าหนักท่ีนํามาถ่วงมีค่าเป็นบวก และเราต้องการหาขอบเขตบนของ ( ),W N R
�

 

ดังน้ันมีความเป็นไปได้แน่นอนว่าต้องมีบางเซ็ตของ { }1,..., KR R R=
� � �

 ท่ีทําให้ค่า ( ) ( ),W N R W N≤
�

 จะ

เห็นว่าอินทีเกรตสองช้ันในสมการ (20) เป็นรูปแบบการอินทีเกรตเพ่ือหาพลังงานศักย์ไฟฟ้าของประจุ 1 K  ท่ีถูก

กักอยู่ภายในกล่อง ( ), ,i j kΓ  และเป็นท่ีทราบกันดีว่าพลังงานศักย์ไฟฟ้าของประจุท่ีอยู่ภายในกล่องมีค่า

มากกว่าพลังงานศักย์ไฟฟ้าของประจุท่ีกระจายบนผิวทรงกลมท่ีคลุมกล่องน้ันพอดี โดยใช้วิธี convexity ลีบ

สามารถคํานวณหาขอบเขตล่างของพลังงานศักย์ไฟฟ้ามีค่าข้ึนกับรัศมีเฉลี่ยของทรงกลม ( )1/2
3 n  และเมื่อคูณลบ

เข้าไปเราสามารถหาขอบเขตบนของค่าเฉลี่ย ( )W N  ได้ดังน้ี 

( )
2 4/3

2

3 12

n z K
W N z K≤ − = −                                          (21) 

เมื่อแทนค่าขอบเขตบนของ ( )W N  ในอสมการ (17) และหลังจากทําการปรับแต่งเทียบกับ λ  สิ่งท่ีได้คือ

ขอบเขตบนของพลังงานสถานะพ้ืนมีค่าเท่ากับ 

5/3 4/3

0

1
, Ry

108
E CN C z≤ − ≥                                       (22) 

จะเห็นว่าระบบสสารท่ีลีบศึกษาในงานวิจัยช้ินน้ีมีจํานวนนิวเคลียส 38K n=  และทุกนิวเคลียสมีเลข
อะตอม z  เท่ากัน โดยท่ี 0z >  โดยท่ีจํานวนอนุภาคประจุลบ N Kz=  ในกรณีท่ี n  มีค่ามากๆ ช่องว่างของ
จํานวนนิวเคลียสในแต่ละ n  ยิง่มีค่าแตกต่างกันมาก เพ่ือเติมเต็มช่องว่างตรงน้ีจึงมีงานวิจัยท่ีปรับปรุงงานของลีบ
โดยมานูเกียนและมุทาพร (Manoukian and Muthaporn, 2003) สําหรับกรณีท่ี 8,9,10,...N = โดย
กําหนดให้แต่ละนิวเคลียสของระบบสสารประเภทโบซอนมีเลขอะตอม 1z =  ระบบท่ีพิจารณาเป็นระบบก้อน
สสารโบซอนท่ีเป็นกลางทางไฟฟ้า มี N  นิวเคลียส และอนุภาคประจุลบ N  อนุภาค กําหนดให้นิวเคลียส K  

ก้อนแรกอยู่ในกล่องลูกบาศก์แต่ละด้านยาว L โดย 38K n=  เมื่อ 1,2,...n =  และภายในกล่องน้ีมีอนุภาค
ประจุลบ K  อนุภาคอาศัยอยู่ด้วย ส่วนนิวเคลียสท่ีเหลืออีก N K−  นิวเคลียสและอนุภาคประจุลบท่ีเหลืออีก 
N K−  อนุภาค จะถูกกําหนดให้อยู่ภายในกล่องท่ีแต่ละด้านยาว 0L  จํานวน N K−  กล่อง ให้แต่ละกล่องมี
นิวเคลียส 1 นิวเคลียสและมีอนุภาคประจุลบ 1 อนุภาค ดังรูปท่ี 2 เป็นตัวอย่างในกรณี 1n =  และ 9N =  
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รูปท่ี 2 แสดงตัวอย่างการแบ่งกล่องในกรณี 1, 9n N= =  กล่อง L L L× ×  ถูกแบ่งออกเป็น 38 8K n= =  
กล่อง และกล่องท่ีเหลืออีก 1N K− =  กล่องมีขนาด 0 0 0L L L× ×  โดยท่ี 0L L≥  

 

ฮามลิโทเนียนของระบบท่ีกล่าวมาเขียนไดด้ังน้ี 

2 2 2 2

,

1 1 12

N N N N N
i

N R

i j i i j i ji i ji j i j

p e e e
H

m x xx R R R= = = < <

= − + +
−− −

∑ ∑∑ ∑ ∑
�

� � �� ��                   (23) 

เมื่อ ix
�  แทนตําแหน่งของอนุภาคประจุลบ iR

�
 แทนตําแหน่งของอนุภาคประจุบวก im  คือมวลของแต่ละอนุภาค

ประจุลบ ซึ่งเราจะแทนค่ามวลน้ีด้วยมวลของประจุลบท่ีน้อยท่ีสุดคือ m  เราได้เง่ือนไขของจํานวนอนุภาคคือ 

3

1N K
n

ε = + 
 

                                                       (24) 

เมื่อ 0 1ε≤ <  ฟังก์ชันคลื่นท่ีพิจารณาประกอบด้วยฟังก์ชันคลื่นของอนุภาคประจุลบท่ีอยู่ในกล่องแต่ละด้านยาว 
L  ท้ังหมด K  อนุภาค และฟังก์ชันคลื่นของอนุภาคประจุลบท่ีอยู่ในกล่องยาว 0L  อีก N K−  กล่อง โดย
อาศัยคุณสมบัติความเป็นปกติและไม่ข้ึนต่อกันของฟังก์ชันคลื่นและการใช้วิธีการแบ่งกล่องแบบเดียวกันกับท่ีลีบใช้ 
เราสามารถหาขอบเขตบนของค่าคาดหวังของพลังงานรวมของระบบได้เป็น 

( ) ( )22 2 2 3/2 2 2 2

, 2 2

0 0 0

1

4 8 4 2
N R

e N KK e K e
H N K

mL L mL L L

π π
χ

 + −
Ψ Ψ ≤ − + − + − 

 

� �       (25) 

เมื่อ 8χ ≥  และ 0L L≥  โดยเทอม 
2 3/2

8

e K

L
−  ค่าเฉลี่ยของพลังงาน ( )W N  ของอนุภาคท่ีอยู่ในกล่องยาว 

L  และได้มาจากวิธีการเดียวกันกับของลีบ สิ่งท่ีแตกต่างกันของเทอมน้ีคือฟังก์ชันคลื่นของลีบจะอยู่ภายในกล่อง 
1 1 1× ×  และมี λ  เป็นตัวแปรสําหรับเพ่ือหาค่าสูงสุดหรือต่ําสุด ส่วนในงานวิจัยของมานูเกียนและมุทาพรน้ัน 
ฟังก์ชันคลื่นของ K  อนุภาคจะอยู่ภายในกล่องแต่ละด้านยาว L  โดยให้ตัวแปรตัวน้ีเป็นตัวแปรท่ีใช้ปรับแต่งหา
ค่าสูงสุดหรือต่ําสุด และสิ่งท่ีแตกต่างอีกประการหน่ึงคือค่าขอบเขตบนของลีบได้จากวิธี convexity ส่วนของมานู
เกียนและมุทาพรได้จากอสมการของโคชี-ชวารตซ์ (Cauchy-Schwarz inequality) ซึ่งเขียนดังได้ดังน้ี 
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จากน้ันทําการหาค่า L  และ 0L  แล้วแทนค่าในอสมการ (25) ทําให้ขอบเขตบนของพลังงานสถานะพ้ืนมีค่าตาม
อสมการด้านล่าง 

4 5/3

, 2 22 10
N N

me N
E

π
 

< − 
 �                                                  (27) 

สําหรับ 610N ≥  จะเห็นว่าขอบเขตบนท่ีได้มีค่าข้ึนกับ 5/3
N  แสดงให้เห็นความไม่มีเสถียรภาพของ

ก้อนสสารประเภทโบซอน และระบบท่ีพิจารณาเป็นระบบท่ีมีอนุภาคประจุลบ 8,9,10,...N =  ดังน้ันจํานวน
อนุภาคในระบบของมานูเกียนและมุทาพรจึงมีค่าใกล้เคียงกับความเป็นจริงมากกว่าในกรณีของลีบ เพ่ือให้เห็นภาพ
ท่ีชัดเจนว่าพลังงานท่ีปลดปล่อยออกมาจากการรวมสสารสองหลอดทดลองเข้าด้วยกันมีค่ามากขนาดไหน เราให้แต่

ละหลอดมีจํานวนอนุภาค 2310  อนุภาคโดยคิดเฉพาะท่ีขอบเขตบนของพลังงานสถานะพ้ืนท่ีเราคํานวณได ้

พลั ง งาน ท่ีปลดปล่อยออกมามีค่ า เ ท่ า กับ  ( ) ( )
4

5/3 5/323 6

2 2

1
2 10 2 10 1.33 10

2 10

me

π
   × − = ×     �

 

kilotons of TNT ซึ่งเมื่อเปรียบเทียบกับพลังงานของระเบิดปรมาณูลิตเทิลบอย (Little Boy atomic bomb) ท่ี
ท้ิงท่ีเมืองฮิโรชิมาในวันท่ี 6 สิงหาคม พ.ศ. 2488 โดยพลังงานท่ีปลดปล่อยออกมาของลิตเทิลบอยเท่ากับ 15 
kilotons of TNT จะเห็นว่าพลังงานของการรวมสารจากหลอดทดลองมีค่ามากมายมหาศาลยิ่งกว่าพลังงานจาก
ระเบิดปรมาณ ูดังน้ันเราคงไม่อยากให้มีสสารประเภทน้ีอยู่ใกล้ ๆ ตัวเรา และเราก็โชคดีเป็นอย่างยิ่งท่ีตอนน้ีเรายัง
ไม่เจอสสารประเภทน้ีเลยในชีวิตจริงของเรา 
 

สรุปและวิจารณ ์
ทฤษฎบีทสปินเชิงสถิติซึ่งกล่าวไว้ว่า “อนุภาคสองตัวท่ีเหมือนกันทุกประการท่ีมีสปินครึ่งจํานวนเต็ม จะ

ไม่สามารถครอบครองสถานะทางควอนตัมเดียวกันได้ ส่วนอนุภาคท่ีเหมือนกันทุกประการท่ีมีสปินเป็นเลขจํานวน
เต็มสามารถครอบครองสถานะทางควอนตัมเดียวกันได้ไม่จํากัดจํานวน” น้ัน มีความสําคัญต่อเสถียรภาพของสสาร
เป็นอย่างยิ่ง การนําก้อนสสารสองก้อนท่ีไม่มีสปินมารวมกันจะทําให้เกิดการปลดปล่อยพลังงานมหาศาลระดับ
ระเบิดปรมาณู เราจึงไม่สามารถพบเห็นสสารประเภทดังกล่าวรอบ ๆ ตัวของเรา ถือเป็นความโชคดีท่ีธรรมชาติได้
สร้างให้อนุภาคท่ีประกอบกันเป็นสสารหลังการกําเนิดเอกภพให้เป็นอนุภาคท่ีมีสปินเป็นจํานวนเต็มครึ่ง จึงทําให้มี
เอกภพท่ีเราอาศัยอยูป่รากฏดังเช่นท่ีเห็นทุกวันน้ีและทําให้เราดํารงอยู่ ณ ปัจจุบันน้ี การพิสูจน์ถึงความจําเป็นของ
สปินต่อการมีเสถียรภาพของสสารจึงเป็นหัวข้อวิจัยท่ีสําคัญมากหัวข้อหน่ึงในวงการฟิสิกส์ทฤษฎี (Manoukian, 
2006) ในบทความน้ีได้กล่าวถึงงานวิจัยท่ีศึกษาระบบก้อนสสารท่ีมีจํานวนอนุภาคอยู่ในข้ันของเลขอาโวกาโดรและ
มีอันตรกิริยาแบบคูลอมบ์ แต่ยังมีงานวิจัยอ่ืน ๆ อีกหลายงานท่ีทําการศึกษาระบบขนาดใหญ่ขนาดดวงดาว ซึ่ง
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แน่นอนว่าจํานวนอนุภาคในระบบน้ีมีมากมายมหาศาล โดยในกรณีน้ีอันตรกิริยาแบบโน้มถ่วงและทฤษฎีสัมพัทธ-
ภาพจะเข้ามามีบทบาทสําคัญพร้อม ๆ กับอันตรกิริยาแบบคูลอมบ์ ในบทความต่อ ๆ ไปผู้เขียนคาดว่าจะได้กล่าวถึง
งานวิจัยในสาขาน้ีได้ครอบคลุมมากยิ่งข้ึน 
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