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from Sky view and zenith angle

a330Wa FRUTEAYY
A Angnaansuardinueans unInendeysn Inenunaseuil snneduuiuas Jminassui 27106
Auttapon Sripradit’
1Faculty of Science and Social science, Burapha University Sakaeo campus, Watthana Nakhon, Sakaeo, 27160, Thailand

E-mail: auttapon@buu.ac.th
Received: 8 March 2021 | Revised: 16 June 2021 | Accepted: 30 June 2021
o/ 1
unanga

TuauAdedazyseunuanuusidnleorindlugisanuennaunnsldduasieinaaneisiasaieUssamiieoy

(ANN) TnglddayausinauusiAmimnamieanimwiiesihmedsnmslaseedssamuuunauligdu (CNN) wagsuigils

Y

& a

Y9301909Ing Toyananualdandeyanisinly 4 giinananvesUsenalng launaawmiiengudantisninginiamile

Jariadedl MangTusendesnilenaudanenineinianyiveenidewniledwminguasivsill manansinadgidnd

v
s a 1Y [ @ o

AMEINeIMEnT I Inedefaling daniauasugy waznald Haudenienineinialdiineiueen Jwinaswan anuy

Q9

ihdeyasindnunairsuuuiiasswneilassneuszamiion ludrudeyanismaaeunuuiraecazlddeyanians fusoni
uivedoysmn Ineamaszui daiudeyanisaiussnadeuuuuiaesidifinnufedesiuuiuszmsla lunisads
wuudaesd msuAwINyI ML InIslaswgystamiisuwuuaeullaty wulwuudnaesliidiannuuduglunis
3w (leaming rate) gefiaUsznas 87% wazilethdoyauSunamedldnnuuuiaswazyueisvomenindumaaey

LUUINADIF IS UUSEUUANULTUTIFN90 1R luY19mugIndunNsldduaseinaan1838laseneUsya ey wun

aa

TnsiwnlTinaalegiinislasiglssamiieniuuneuligdulinaingaiia

q

o

yUsvansanduius (RY) wiiu 0.80

A1 RMSE 111U 19.3% wazaA1 MBE windu 1.18%

ABSTRACT
In this study, the photosynthetically active radiation was estimated by using the artificial neural network
(ANN) method based on the cloud index data which was calculated from sky view images by using convolutional
neural network (CNN) method and zenith angle. All data in this study was collected from 4 main regions of Thailand
including the northern region, Chiang Mai Meteorological Station, the north-eastern region, Ubon Ratchathani

Meteorological Station, the central region, Department of Physics Faculty of Science Silpakorn University Nakhon
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Pathom, and the southern region, Meteorological Station in the south, east coast, Songkhla Province. The data was
then created a model by using the ANN method. For the model testing, the data from the eastern region, Burapha
University, Sakaeo Campus, was used. Therefore, the data for model construction and testing were not actually
related. In the model construction for calculating of the cloud index, it was found that the accuracy of the model
in learning rate was approximately of 87%. The could index and zenith angle data were then tested for the model
in estimation of photosynthetic active radiation by using ANN method. The results showed that the cloud index
calculation method by using CNN was the best method with the R2 of 0.80, the root square mean error (RMSE) of
19.3 %, and the mean bias error (MBE) of 1.18 %.
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