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บทคัดย่อ 
งานวิจัยนี้ได้ศึกษาสมการพลวัตสองมิติของก๊าซที่มีอุณหภูมิแตกต่างกันสองค่า ภายใต้แนวคิดจากสมการลานดาว-เทลเลอร์ 

โดยการประยุกต์ใช้วิธีการวิเคราะห์กลุ่มในการแก้ปัญหาของระบบสมการดังกล่าว จากการศึกษาเราได้กลุ่มแอดมิทเทดลีหนึ่งกลุ่มและ
ระบบเหมาะที่สุดของพีชคณิตย่อยสองมิติหนึ่งระบบ จากระบบเหมาะสมที่สุดนี้ ทำให้เราได้รูปแบบของผลเฉลยที่ไม่สมมูลกันทุก
รูปแบบที่เป็นไปได้ ซึ่งสามารถช่วยในการลดรูประบบสมการเชิงอนุพันธ์ย่อยพลวัตไปสู่ระบบสมการเชิงอนุพันธ์สามัญได้ และจากการ
วิเคราะห์เชิงลึกทำให้เราทราบผลเฉลยยืนยงของระบบสมการที่เราศึกษา ยิ่งไปกว่านั้นงานวิจัยนี้ยังได้ศึกษาถึงผลการเปรียบเทียบ
ระหว่างผลเฉลยในงานวิจัยกับผลเฉลยแบบด้ังเดิมของสมการพลวัตก๊าซอีกด้วย 
 

ABSTRACT 
 The two-  temperature gas 2D dynamics equations with the Landau- Teller equation are considered in the 
paper. The group analysis method is applied to the study these equations. An admitted Lie group is found and an 
optimal system of two- dimensional subalgebras is constructed.  Using the optimal system all representations of 
nonequivalent solutions reducing to a system of ordinary differential equations can be obtained. A detailed analysis 
of two sets of invariant solutions is given. Comparison of these solutions with solutions of the classical gas dynamics 
equations is performed in the paper. 
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INTRODUCTION 
 Phenomena behind strong shock waves include excitation of vibrational modes of the molecules, 
dissociation, ionization, radiation heat transfer, and other processes.  In these flow regions, the translational, 
rotational and vibrational temperatures of molecules are different and gas is in non-  equilibrium state.  The 
relaxation region size can be comparable with the characteristic scale of the problem being solved; therefore, the 
flow structure is significantly affected by non-  equilibrium phenomena.  To describe the behavior of gas in the 
relaxation region, a gas dynamics model involving a system of equations of two- temperature relaxation is used in 
which vibrational relaxation is described by the inhomogeneous Landau-Teller equation.  In the two- dimensional 
case, the equations describing the mass, momentum and energy balances are (Grigoryev and Ershov, 2017) 

 

  𝜌௧ ൅ 𝑢𝜌௫ ൅ 𝑣𝜌௬ ൅ 𝜌൫𝑢௫ ൅ 𝑣௬൯ ൌ 0, 
𝜌൫𝑢௧ ൅ 𝑢𝑢௫ ൅ 𝑣𝑢௬൯ ൅ 𝑝௫ ൌ 0, 
𝜌൫𝑣௧ ൅ 𝑢𝑣௫ ൅ 𝑣𝑣௬൯ ൅ 𝑝௬ ൌ 0, 

𝑇௧ ൅ 𝑢𝑇௫ ൅ 𝑣𝑇௬ ൅ ሺ𝛾 െ 1ሻ𝑇൫𝑢௫ ൅ 𝑣௬൯ െ 𝛾௩
ሺ𝑇 െ 𝑇ఔሻ

𝜏
ൌ 0, 

  𝑇ఔ ൅ 𝑢𝑇ఔ௫ ൅ 𝑣𝑇ఔ௬ ൌ
ሺ்ି ഌ்ሻ

ఛ
          (1) 

 

where 𝑡 is time, 𝑢 and 𝑣 are the gas velocities, 𝜌 is the density, 𝑇 is the static ( translational rotational) 
temperature, 𝑇ఔ  is the vibrational temperature, 𝜏 is the relaxation time, 𝛾  is the adiabatic exponent, 𝛾ఔ  is the 
exponent of vibrational excitation, the thermodynamic pressure 𝑝 is given by the state equation 
 

gp R T  
 

where 𝑅௚ is the gas constant. 
 The present research is devoted to a comparison of solutions of equations ( 1)  and the classical gas 
dynamics equations.  It should be noted that the analysis of two- dimensional solutions of the studied equations 
with three independent variables is complicated not only analytically, but also numerically. This is connected with 
both, the application of numerical schemes and with the variety of initial and boundary conditions.  In this sense, 
ordinary differential equations have several advantages. First, it is easier to derive initial data for a Cauchy problem 
which can be used in both models.  Second, for solving ordinary differential equations without singularities there 
are well- developed numerical schemes.  In particular, in the present paper we apply the sixth- order Runge- Kutta 
scheme.  The comparison is considered using invariant solutions which can be reduced to a system of ordinary 
differential equations for equations (1) and the two-dimensional gas dynamics equations.  
 The paper is organized as follows.  In the next section, the admitted Lie group of the studied equations is 
presented.  Invariant solutions of the equations are considered in the third section, where numerical solutions are 
analyzed and compared with corresponding solutions of the classical gas dynamic equations. 
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ADMITTED LIE GROUP OF EQUATIONS (1) 
 The classical gas dynamics equations can be considered as a particular case of equations ( 1)  with 𝛾ఔ ൌ 0 
and 𝑇 ൌ 𝑇ఔ  for the functions 𝜌,𝑢 and 𝑇.  Complete group analysis of the gas dynamics equations was performed in 
Ovsiannikov (1978). Analysis of invariant solutions of these equations is given in Ovsiannikov (1994). 
 For finding invariant solutions of equations (1)  one needs to obtain an admitted Lie group.  The admitted 
Lie group can be found by solving the system of determining equations.  Calculations show that the admitted Lie 
group of equations (1) corresponds to the Lie algebra 𝐿଻ with the basis generators 
 

  1 2 3 4 5

6 7

,  ,  , , , 

, 2 2 .

x y x u y V u v x y

t T T v u y x

X X X t X t X v u y x

X X T T v u y x
 

               

              
     (2) 

 

 The set of all substantially different invariant solutions of system (1) can be obtained by using an optimal 
system of subalgebras (Ovsiannikov, 1993). Our goal is to consider those invariant solutions which can be reduced 
to the analysis of ordinary differential equations. Such solutions of the two-dimensional equations can be obtained 
on the basis of two-dimensional subalgebras. The set of all two-dimensional subalgebras of the optimal system of 
subalgebras of the Lie algebra 𝐿଻was obtained. It consists of the subalgebras 
 

5 6 7 6 6 7 5 4 1 7 2 7 6 5 6

2 6 3 4 3 1 2 4 1 4 1 2 4 1 2

{ , },  { , },  { , },  { , },  { , },
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X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X

    
      

    

      
     (3) 

 

INVARIANT SOLUTIONS 
 Analysis of the Lie algebra 𝐿଻ gives that the generators (2) are also admitted by the classical gas dynamics 
equations.  This property allows us to use the two- dimensional subalgebras ( 3)  also for constructing invariant 
solutions of the classical gas dynamics equations (Ovsiannikov, 2003; Landau and Lifshitz, 1987).  Notice that the 
invariant solutions corresponding to the subalgebras ( 3)  are reduced to solving systems of ordinary differential 
equations.  For comparison of the solutions of these two models we choose the same initial data for the density, 
as well as for the velocity.  The values of the static temperature and vibrational temperature are variated.  For 
solving the Cauchy problem of the derived systems of ordinary differential equations we apply the sixth- order 
Runge-Kutta numerical scheme.  In this section we only present some of the invariant solutions. 
1. The subalgebra ሼ𝑿𝟔,𝑿𝟕 ൅ 𝜶𝑿𝟓ሽ 
 Analysis of an invariant solution corresponding to this subalgebra depends on 𝛼. 
Let 𝛼 ൌ 0. The representation of an invariant solution is 

𝜌 ൌ
ଵ

௫
𝑅ሺ𝑧ሻ,  𝑈 ൌ 𝑥𝑈෩ሺ𝑧ሻ,  𝑉 ൌ 𝑥𝑉෨ሺ𝑧ሻ,  𝑇 ൌ 𝑥ଶ𝑇෨ሺ𝑧ሻ,  𝑇ఔ ൌ 𝑥ଶ𝑇෨ఔሺ𝑧ሻ . 

This solution of the classical gas dynamics depending on the invariant variable x
z

y
  is called a conic flow. 

 Substituting this representation of a solution into equations ( 1) , we obtain the system of the reduced 
equations  
 

𝑅ᇱ𝑉𝑧 ൅ ሺ𝑅𝑈ሻᇱ  െ 𝑉ᇱ𝑅𝑧 ൌ 0, 
𝑅ᇱ𝑇෨𝑧 ൅ 𝑇෨ ᇱ𝑅𝑧 െ 𝑈෩ᇱ൫𝑉෨𝑅𝑧ଶ ൅ 𝑅𝑈෩𝑧൯ ൅ 𝑅൫𝑇෨ ൅ 𝑈෩ଶ൯ ൌ 0, 
െ𝑅ᇱ𝑇෨𝑧ଶ െ 𝑅𝑧ଶ൫𝑇′෩ ൅ 𝑉෨ ᇱ𝑉෨൯ ൅ 𝑅𝑈෩൫𝑉෨ ᇱ𝑧 ൅ 𝑉෨൯ ൌ 0, 
𝑇෨ ᇱ𝜏൫𝑉෨𝑧ଶ ൅ 𝑈෩𝑧൯ ൅ 𝑈෩ᇱ𝜏𝑇𝑧ሺ𝛾 െ 1ሻ ൅ 𝑉෨ ᇱ𝜏𝑇෨𝑧ଶሺ1 െ 𝛾ሻ ൅ 𝛾𝜏𝑇෨𝑈෩ ൅ 𝛾௩൫𝑇෨ െ 𝑇௩෩ ൯ ൅  𝜏𝑇෨𝑈෩ ൌ 0, 
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െ𝑇௩෩
ᇱ
𝑉෨𝜏𝑧ଶ ൅ 𝑇௩෩

ᇱ
𝜏𝑈෩𝑧 ൅ 2𝜏𝑇෨௩𝑈෩ െ 𝑇෨ െ 𝑇෨௩ ൌ 0.       (4) 

Results of numerical calculations of equations (4) and the gas dynamics equations are presented in Figure 
1, where the bold curves correspond to the solution of the classical gas dynamics equations; the dashed curve is 
the vibrational temperature, and the continuous curves correspond to the solution of equations (4). On the graphs 
of temperatures, it is seen that because of energy storage in the vibrational mode, the static ( translational) 
temperature evolves more slowly than the temperature in an ideal gas. Corresponding to the higher temperature, 
the density in vibrationaly excited gas is lower than that one in an ideal gas.  
 

 
 

Figure 1. The left figure corresponds to the temperatures 𝑇෨ఔ and 𝑇෨ of the classical gas dynamics equations and of 
system ( 1) .  The right figure corresponds to the density.  Initial data are 𝑅ሺ0.5ሻ ൌ 2,𝑈෩ሺ0.5ሻ ൌ 1,𝑉 ෩ ሺ0.5ሻ ൌ

0,𝑇෨ሺ0.5ሻ ൌ 10,𝑇෨ఔሺ0.5ሻ ൌ 10. 
 

 Consider the second case when 𝜶 ് 𝟎. In this case it is more convenient to rewrite equations (1)  in polar 
coordinate system.  A representation of the invariant solutions becomes 𝜌 ൌ ଵ

௥
𝑅ሺ𝑧ሻ,  𝑈 ൌ 𝑟𝑈෩ሺ𝑧ሻ,  𝑉 ൌ 𝑟𝑉෨ሺ𝑧ሻ,  𝑇 ൌ

𝑟ଶ𝑇෨ሺ𝑧ሻ,     𝑇ఔ ൌ 𝑟ଶ𝑇෨ఔሺ𝑧ሻ, z re




 . 
 

 Substitution of the latter representation of a solution into equations ( 1)  leads to the system of reduced 
equations 

𝑅ᇱ ൌ  
െ𝛼𝑅𝑈෩ᇱ𝑧 ൅ 𝑅𝑉ᇱ𝑧 െ 𝛼𝑅𝑈෩

𝑧ሺ𝛼𝑈෩ െ 𝑉෨ሻ
,𝑇෨௩

ᇱ
ൌ  

𝛼ሺ𝑇෨ െ 2𝑇௩෩𝑈෩ െ 𝑇௩෩ ሻ

𝑧ሺ𝛼𝑈෩ െ 𝑉෨ሻ
 

𝑇෨ ᇱ ൌ
 𝛼𝑇෨𝑈෩ᇱ𝑧ሺ1 െ 𝛾ሻ ൅ 𝑇෨𝑉෨′𝑧ሺ𝛾 െ 1ሻ ൅ 𝛼ሺെ2𝛾𝑇෨𝑈෩ െ 𝛾௩ሺ𝑇෨ ൅ 𝑇௩෩ ሻሻ

𝑧ሺ𝛼𝑈෩ െ 𝑉෨ሻ
 

𝑈෩ᇱ𝑧൫𝑅𝛼ଶ𝛾𝑇෨ ൅ 𝛼ଶ𝑈෩ଶ െ 2𝛼𝑈෩𝑉෨ ൅ 𝑉ଶ෪൯ ൅ 𝛼𝑅𝛾𝑇෨𝑉෨ ᇱ𝑧

൅ 𝛼𝑅 ቀെ2𝛼𝛾𝑇෨𝑈෩ െ 𝛼𝛾௩൫𝑇෨ ൅ 𝑇௩෩ ൯ െ 𝑇෨𝑉෨ ൅ 𝛼൫𝛼𝑈෩ଷ െ 𝛼𝑈෩𝑉෨ଶ െ 𝑉෨𝑈෩ଶ ൅ 𝑉෨ଷ൯ቁ ൌ 0 

𝛼𝛾𝑅𝑇෨𝑈෩ᇱ𝑧 െ 𝛾𝑅𝑇෨𝑉෨ ᇱ𝑧 ൅ 𝑉෨ ᇱ𝑧൫𝛼ଶ𝑈෩ଶ െ 2𝛼𝑈෩𝑉෨ ൅ 𝑉෨ଶ൯ ൅ 𝛼𝑅൫2𝛾𝑇෨𝑈෩൯ ൅ 𝛾௩൫𝑇෨ ൅ 𝑇෨௩൯ ൅ 𝑇෨𝑈෩ሻ 

൅2𝛼𝑈෩𝑉෨ሺ𝛼𝑈෩ െ 𝑉෨ሻ ൌ 0.       (5) 
 The results of numerical calculations of equations ( 5)  and the gas dynamics equations are presented in 
Figure 2, where the notations are similar to in Figure 1.  It should be mentioned here that the presented solutions 
are substantially two-dimensional. 
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Figure 2. The left figure corresponds to the temperatures 𝑇෨ఔ and 𝑇෨ of the gas and of system (1). 
 

 The right figure corresponds to density.  Initial data are 𝑅ሺ0.5ሻ ൌ 2,𝑈෩ሺ0.5ሻ ൌ 1,𝑉෨ሺ0.5ሻ ൌ 0,𝑇෨ሺ0.5ሻ ൌ

10,𝑇෨ఔሺ0.5ሻ ൌ 10,𝛼ൌ1. 
 

2. The subalgebra ሼ𝑿𝟓 ൅ 𝜷𝑿𝟔,𝑿𝟕 ൅ 𝜶𝑿𝟔ሽ  
 The analysis of invariant solutions corresponding to this subalgebra has to be separated into two cases: 
𝛼 ് 0 and 𝛼 ൌ 0. 
 Let 𝛼 ് 0. The representation of an invariant solution is 

𝜌 ൌ 𝑟ିଵ𝑅ሺ𝑧ሻ,  𝑈 ൌ 𝑟𝑈෩ሺ𝑧ሻ,  𝑉 ൌ 𝑟𝑉෨ሺ𝑧ሻ,  𝑇 ൌ 𝑟ଶ𝑇෨ሺ𝑧ሻ,  𝑇ఔ ൌ 𝑟ଶ𝑇෨ఔሺ𝑧ሻ, 
t

z re




 . 

 The system of reduced equations becomes 
െ𝑅𝛽𝑉෨𝑧 ൅ 𝑅′𝛼𝑧൫𝑈෩ ൅ 1൯ ൅ 𝑅𝑧൫𝛼𝑈෩ െ  𝛽𝑉 ′෩ ൯ ൅  𝛼𝑅𝑈෩ ൌ 0, 

𝛼𝑅𝑧൫𝑅𝑇෨൯
ᇱ
൅  𝛽𝑅𝑈′ ෪𝑉෨𝑧 ൅  𝛼𝑅𝑈′ ෪𝑧൫𝑈෩ ൅ 1൯ ൅ 𝛼𝑅൫𝑉෨ ଶ െ 𝑅𝑇෨ െ 𝑈෩ ଶ൯ ൌ 0, 

𝛽𝑅𝑧ሺ൫𝑅𝑇෨൯
ᇱ
െ  𝛽𝑅𝑉෨ ᇱ𝑉෨𝑧 ൅  𝛼𝑅𝑉෨ ᇱ𝑧൫𝑈෩ ൅ 1൯ ൅ 2𝛼𝑅𝑈෩𝑉෨ ൌ 0, 

െ𝛽𝑇෨ ᇱ𝑉෨𝑧 ൅  𝛼𝑇෨ ᇱ𝑧൫𝑈෩ ൅ 1൯ ൅  𝛼𝑇෨𝑈෩ᇱ𝑧ሺ𝛾 െ 1ሻ ൅  𝛽𝑇෨𝑉෨ ᇱ𝑧ሺ1 െ  𝛾ሻ ൅  𝛼 ቀ2𝛾𝑇෨𝑈෩ ൅  𝛾௩൫𝑇෨ െ 𝑇௩෩ ൯ቁ ൌ 0, 
െ𝛽𝑇௩෩

ᇱ
𝑉෨𝑧 ൅  𝛼𝑇௩′෪𝑧൫𝑈෩ ൅ 1൯ ൅  𝛼൫െ𝑇෨ ൅ 2𝑇෨ ᇱ௩𝑈 ൅ 𝑇௩෩ ൯ ൌ 0. 

 Results of the numerical calculations are presented in Figure 3. 

 
 

Figure 3. The left figure corresponds to the temperatures 𝑇෨ఔ and 𝑇෨ in gas and system (1). 
 The right figure corresponds density initial data are 𝑅ሺ0.5ሻ ൌ 2,𝑈෩ሺ0.5ሻ ൌ 1,𝑉෨ሺ0.5ሻ ൌ 0,𝑇෨ሺ0.5ሻ ൌ 10,𝑇෨ఔሺ0.5ሻ ൌ

10,𝛼ൌ1, 𝛽ൌ1. 
 Consider 𝛼 ൌ 0. The representation of an invariant solution has the form 𝜌 ൌ 𝑟ିଵ𝑅ሺ𝑧ሻ,  𝑈 ൌ 𝑟𝑈෩ሺ𝑧ሻ,  𝑉 ൌ

𝑟𝑉෨ሺ𝑧ሻ,  𝑇 ൌ 𝑟ଶ𝑇෨ሺ𝑧ሻ,  𝑇ఔ ൌ 𝑟ଶ𝑇෨ఔሺ𝑧ሻ, 𝑧 ൌ 𝑡 െ 𝛽𝜃. Substituting this representation into equations (1) , we obtain the system 
of reduced equations 
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𝑅′൫1 െ 𝛽𝑉෨൯ െ 𝑅൫𝛽𝑉෨′ െ 𝑈෩൯ ൌ 0, 
𝑈෩ᇱ൫1 െ 𝛽𝑉෨൯ െ 𝑉෨ ൅ 𝑅𝑇෨ ൅ 𝑈෩ ൌ 0, 

𝛽𝑅൫𝑅𝑇෨൯
ᇱ
െ 𝑅𝑉෨ ᇱ൫𝛽𝑉෨ െ 1൯ ൅ 2𝑅𝑈෩𝑉෨ ൌ  0, 

𝑇෨ ᇱ൫𝛽𝑉෨ ൅ 1൯ ൅ 𝛽𝑇෨𝑉෨ ᇱሺ1 െ 𝛾ሻ ൅ 2𝛾𝑇෨𝑈෩ ൅ 𝛾௩൫𝑇෨ െ 𝑇෨௩൯ ൌ 0, 
𝑇′෩ ௩ሺ𝛽𝑉෨ ൅ 1ሻ ൅ 𝑇෨ ൅ 𝑇෨ఔሺ2𝑈෩ ൅ 1ሻ ൌ 0. 

 

 Results of the numerical calculations are presented in Figure 4. 

 
 

Figure 4. The left figure corresponds to the temperatures 𝑇෨ఔ and 𝑇෨ of the gas and of system (1). 
 The right figure corresponds density. Initial data are 𝑅ሺ0ሻ ൌ 20,𝑈෩ሺ0ሻ ൌ 0,𝑉෨ሺ0ሻ ൌ 2,𝑇෨ሺ0ሻ ൌ 10,𝑇෨ఔሺ0ሻ ൌ 20,𝛽ൌ1.  
 

CONCLUSIONS 
 A comparison of solutions of two models is presented in the paper. The classical gas dynamics equations 
and the gas dynamics equations with the Landau- Teller equation were considered.  The reduction of the studied 
equations to a system of ordinary differential equations allows us to make comparisons of these two models for 
different parameters.  The numerical experiments show that, at least for the invariant solutions considered here, 
the relaxation process (1) affects the gas evolution in an essential manner when compared with an ideal gas under 
the same initial data. 
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