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ABSTRACT
The two- temperature gas 2D dynamics equations with the Landau- Teller equation are considered in the
paper. The group analysis method is applied to the study these equations. An admitted Lie group is found and an
optimal system of two-dimensional subalgebras is constructed. Using the optimal system all representations of
nonequivalent solutions reducing to a system of ordinary differential equations can be obtained. A detailed analysis
of two sets of invariant solutions is given. Comparison of these solutions with solutions of the classical gas dynamics

equations is performed in the paper.
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INTRODUCTION

Phenomena behind strong shock waves include excitation of vibrational modes of the molecules,
dissociation, ionization, radiation heat transfer, and other processes. In these flow regions, the translational,
rotational and vibrational temperatures of molecules are different and gas is in non- equilibrium state. The
relaxation region size can be comparable with the characteristic scale of the problem being solved; therefore, the
flow structure is significantly affected by non- equilibrium phenomena. To describe the behavior of gas in the
relaxation region, a gas dynamics model involving a system of equations of two-temperature relaxation is used in
which vibrational relaxation is described by the inhomogeneous Landau-Teller equation. In the two-dimensional
case, the equations describing the mass, momentum and energy balances are (Grigoryev and Ershov, 2017)

pe +upy +vpy + p(uy +v,) =0,

p(ut + uu, + vuy) +p, =0,
p(vt +uv, + vvy) +p, =0,

T —T,
Tt+uTx+va+(y—1)T(ux+vy)—y,,( v) =0,

T
T, +uTyy +vT,, = 2 (1)

where t is time, u and v are the gas velocities, p is the density, T is the static (translational rotational)
temperature, T, is the vibrational temperature, 7 is the relaxation time, y is the adiabatic exponent, y, is the

exponent of vibrational excitation, the thermodynamic pressure p is given by the state equation
p=pRT

where R, is the gas constant.

The present research is devoted to a comparison of solutions of equations (1) and the classical gas
dynamics equations. It should be noted that the analysis of two-dimensional solutions of the studied equations
with three independent variables is complicated not only analytically, but also numerically. This is connected with
both, the application of numerical schemes and with the variety of initial and boundary conditions. In this sense,
ordinary differential equations have several advantages. First, it is easier to derive initial data for a Cauchy problem
which can be used in both models. Second, for solving ordinary differential equations without singularities there
are well-developed numerical schemes. In particular, in the present paper we apply the sixth-order Runge-Kutta
scheme. The comparison is considered using invariant solutions which can be reduced to a system of ordinary
differential equations for equations (1) and the two-dimensional gas dynamics equations.

The paper is organized as follows. In the next section, the admitted Lie group of the studied equations is
presented. Invariant solutions of the equations are considered in the third section, where numerical solutions are

analyzed and compared with corresponding solutions of the classical gas dynamic equations.
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ADMITTED LIE GROUP OF EQUATIONS (1)

The classical gas dynamics equations can be considered as a particular case of equations (1) with y, =0
and T =T, for the functions p,u and T. Complete group analysis of the gas dynamics equations was performed in
Ovsiannikov (1978). Analysis of invariant solutions of these equations is given in Ovsiannikov (1994).

For finding invariant solutions of equations (1) one needs to obtain an admitted Lie group. The admitted
Lie group can be found by solving the system of determining equations. Calculations show that the admitted Lie

group of equations (1) corresponds to the Lie algebra L, with the basis generators

)(1 :ax’ )g :av’ /\/3 :lex +au’ )(4 :lay +8V’)g :"au _uav +y6x _Xay’
)% :a[’ )(7 :27;67; +ZT8T —’[13 P _Hav +w9u +)’6y +'X6x'

2)

The set of all substantially different invariant solutions of system (1) can be obtained by using an optimal
system of subalgebras (Ovsiannikov, 1993). Our goal is to consider those invariant solutions which can be reduced
to the analysis of ordinary differential equations. Such solutions of the two-dimensional equations can be obtained
on the basis of two-dimensional subalgebras. The set of all two-dimensional subalgebras of the optimal system of

subalgebras of the Lie algebra L,was obtained. It consists of the subalgebras

ALY X +aX, WX XX, X+aX, X, X0, X +eX, WXGXG, (3)
0, X+aX AAX), X AaX +AX, X X, XX aX), X X, X))

INVARIANT SOLUTIONS

Analysis of the Lie algebra L, gives that the generators (2) are also admitted by the classical gas dynamics
equations. This property allows us to use the two-dimensional subalgebras (3) also for constructing invariant
solutions of the classical gas dynamics equations (Ovsiannikov, 2003; Landau and Lifshitz, 1987). Notice that the
invariant solutions corresponding to the subalgebras (3) are reduced to solving systems of ordinary differential
equations. For comparison of the solutions of these two models we choose the same initial data for the density,
as well as for the velocity. The values of the static temperature and vibrational temperature are variated. For
solving the Cauchy problem of the derived systems of ordinary differential equations we apply the sixth-order
Runge-Kutta numerical scheme. In this section we only present some of the invariant solutions.
1. The subalgebra {X¢, X7 + aX5}

Analysis of an invariant solution corresponding to this subalgebra depends on a.
Let @ = 0. The representation of an invariant solution is

p==R(@), U=xU(z), V=xV(2), T =x*T(2), T, = x*T,(2) .

X is called a conic flow.

y
Substituting this representation of a solution into equations (1), we obtain the system of the reduced

This solution of the classical gas dynamics depending on the invariant variable , _

equations

R'Vz+ (RU) —V'Rz = 0,

R'Tz+T'Rz—U'(VRz* + RUz) + R(T + U?) = 0,

—R'Tz2 —Rz*(T'+V'V) + RU(V'z+ V) = 0,

T't(Vz2+Uz) + U'tTz(y — 1) + V'iTz2(1 —y) + yrTU + (T - T,) + 7TU =0,



MUY MIANTINANERNS 1. TN 49 Laud 1 105

—T, V122 + T, 10z + 21T,0 - T - T, = 0. (4)
Results of numerical calculations of equations (4) and the gas dynamics equations are presented in Figure
1, where the bold curves correspond to the solution of the classical gas dynamics equations; the dashed curve is
the vibrational temperature, and the continuous curves correspond to the solution of equations (4). On the graphs
of temperatures, it is seen that because of energy storage in the vibrational mode, the static (translational)
temperature evolves more slowly than the temperature in an ideal gas. Corresponding to the higher temperature,

the density in vibrationaly excited gas is lower than that one in an ideal gas.

T = R

Figure 1. The left figure corresponds to the temperatures T, and T of the classical gas dynamics equations and of
system (1). The right figure corresponds to the density. Initial data are R(0.5) = 2,U(0.5) = 1,V (0.5) =

0,7(0.5) = 10,7,(0.5) = 10.
Consider the second case when a # 0. In this case it is more convenient to rewrite equations (1) in polar

coordinate system. A representation of the invariant solutions becomes p =%R(z), U=10(), V=rV(z),T=
-0
r?T(z), T,=71*T,(2),z=re” .

Substitution of the latter representation of a solution into equations (1) leads to the system of reduced

equations
R = —aRU'z+RV'z — aRU P a(T-2T,U-T)
__z@U-=V) v 20 -V)
7 aTU'z(L—y) +TV'z(y —~1) +~a(—2yTU —v,(T+T,))
z(aU =V)

U'z(Ra?yT + a?0? — 220V + V2) + aRyTV'z
+aR (—2ayT0 — ay,(T +T,) = TV + a(a0® - all7? - 772 + 7%)) = 0
ayRTU'z —yRTV'z + V'z(a?U? — 2aU0V + V?) + aR(2yT0) + v,(T + T,,) + TD)
+2a0V(al - V) =0. (5)
The results of numerical calculations of equations (5) and the gas dynamics equations are presented in

Figure 2, where the notations are similar to in Figure 1. It should be mentioned here that the presented solutions

are substantially two-dimensional.
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Figure 2. The left figure corresponds to the temperatures T, and T of the gas and of system (1).

The right figure corresponds to density. Initial data are R(0.5) =2,0(0.5) = 1,7(0.5) = 0,7(0.5) =
10,7,(0.5) = 10, a=1.

2. The subalgebra {X5 + BX¢, X7 + aXe}
The analysis of invariant solutions corresponding to this subalgebra has to be separated into two cases:
a+0and a =0.

Let @ = 0. The representation of an invariant solution is

-0
p=71"1R(2), U=rU(2), V=1V(2), T=r*T(2), T, =r*T,(2), z=re ¢ .

The system of reduced equations becomes
—RBVz+ R'az(U + 1) + Rz(al — BV) + aRT =0,
aRz(RT) + BRU Vz+ aRU z(U +1) + aR(V? - RT - T 2) = 0,
BRz((RT) — BRV'Vz+ aRV'z(T + 1) + 2aRTV = 0,
—pT'Vz+ oT'z(U +1) + afU'2(y = 1) + pTV'z(1 - ) + a(2TT + v, (T - T,)) = 0,
—BT, Vz+ aT,z(0 + 1) + a(~T + 27", U+ T,) = 0.
Results of the numerical calculations are presented in Figure 3.

T R

Figure 3. The left figure corresponds to the temperatures T, and T in gas and system (1).

The right figure corresponds density initial data are R(0.5) = 2,0(0.5) = 1,7(0.5) = 0,T(0.5) = 10,7, (0.5) =
10,a=1, =1.
Consider a = 0. The representation of an invariant solution has the form p=r"1R(2), U=rU(2), V =

r7(2), T =r?T(2), T, = r*T,(2),z = t — B6. Substituting this representation into equations (1), we obtain the system

of reduced equations
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R(1-BV)—R(pV' =T) =0,
U(1-pV)-V+RT+U=0,

BR(RT) — RV'(BV — 1) + 2RTV = 0,
T'BV+1)+pTV'A -V +2yTU+y,(T-T,) =0,
T,V +1)+T+T,20+1)=0.

Results of the numerical calculations are presented in Figure 4.

T. R

Figure 4. The left figure corresponds to the temperatures T, and T of the gas and of system (1).

The right figure corresponds density. Initial data are R(0) = 20, T(0) = 0,7 (0) = 2,T(0) = 10,7, (0) = 20, 8=1.

CONCLUSIONS

A comparison of solutions of two models is presented in the paper. The classical gas dynamics equations
and the gas dynamics equations with the Landau-Teller equation were considered. The reduction of the studied
equations to a system of ordinary differential equations allows us to make comparisons of these two models for
different parameters. The numerical experiments show that, at least for the invariant solutions considered here,
the relaxation process (1) affects the gas evolution in an essential manner when compared with an ideal gas under

the same initial data.
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