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บทคัดยอ 

 แกรฟนควอนตัมดอท (Graphene Quantum Dots) เปนหนึ่งในวัสดุนาโนที ่ไดรับความสนใจเปนอยางมากในปจจุบัน 

เนื่องจากมีคุณสมบัติที ่เปนเอกลักษณและนาสนใจ มีขนาดเล็ก สามารถดูดกลืนแสงไดทั้งในชวงยูวีและวิสิเบิล สามารถคายแสง 

ฟลูออเรสเซนตไดเปนอยางดี มีชวงของการกระตุนแสงที่กวาง และแสงฟลูออเรสเซนตที่คายออกมายังขึ้นอยูกับขนาดของอนุภาคของ

ควอนตัมดอท มีความเสถียรทางความรอนสูง มีความเปนพิษต่ำและสามารถเขากันไดกับสิ่งมีชีวิต โดยแกรฟนควอนตัมดอทสามารถ

สังเคราะหไดสองวิธี คือการสังเคราะหจากใหญไปเลก็และจากเล็กไปใหญ ซึ่งการสังเคราะหแตละวิธีก็จะทำใหไดแกรฟนควอนตัมดอทท่ี

มีลักษณะและขนาดที่แตกตางกันสงผลใหมีสมบัติแตกตางกันดวย ทำใหสามารถนำเอาแกรฟนควอนตัมดอทมาประยุกตใชงานได

หลากหลายทั้งทางกายภาพ เชน เซนเซอร ตัวเรงเชิงแสง เปนสวนประกอบในเซลลแสงอาทิตย และทางดานชีวภาพ เชน การถายภาพ

เซลล และตัวขนสงยา บทความนี้จึงไดมุงเนนการนำเสนอคุณสมบัติ การสังเคราะห และการนำไปประยุกตใชงานทางดานตาง ๆ ของ

แกรฟนควอนตัมดอท  
 

ABSTRACT 

 In recent years, graphene quantum dots (GQDs) have rapidly emerged as a prominent class of novel 

nanomaterials. They exhibit some unique and advantageous properties such as small size, absorption in both the 

ultraviolet and visible regions, strong and tunable photoluminescence, high photostability, and low toxicity thus 

high biocompatibility. GQDs can be synthesized through either “top-down” or “bottom-up” approaches which 

affect to their size, shape, and properties. They show enormous potential for many applications, for instance in 

sensing, photocatalysis, photovoltaics, bioimaging, and drug delivery. This review summarizes recent progress in the 

field, covering the properties of GQDs, methods for their fabrication, and their applications in many fields. 
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1. บทนำ 

 ในชวงทศวรรษที่ผานมาไดมีการพัฒนาอยางรวดเร็ว

ของวัสดุนาโน (Nanomaterials) ทำใหเทคโนโลยีทางดานนาโน

เขามามีบทบาทตอชีวิตประจำวันของมนุษยมากยิ ่งขึ ้น เชน 

ทางดานเครื่องนุงหม ไดมีการนำเทคโนโลยีทางดานนาโนมาใชใน

การทำใหเครื่องนุงหมมีคุณสมบัติพิเศษขึ้น เชน กันน้ำและกำจัด

แบคทีเรีย ดานที่อยูอาศัย ไดนำเอาวัสดุนาโนมาผสมในสีทาบาน

เพื่อกำจัดแบคทีเรียและสามารถทำความสะอาดตัวเองได และ

นำมาเปนสวนประกอบในสิ่งของตาง ๆ เพื่อเพิ่มคุณสมบัติพิเศษ 

เชน ในไมเทนนิส เพื่อใหเบา แข็งแรงและยืดหยุนมากขึ้น เปนตน 

โดยวสัดุนาโน หมายถึงวสัดุที่มีขนาดในชวง 1-100 นาโนเมตร ซึ่ง

สามารถประยุกตใชไดกับทุกสาขาวิชาทั้งทางดานวิทยาศาสตร 

เชน เคมี ชีววิทยา ฟสิกส และวัสดุศาสตร ดานวิทยาศาสตร

การแพทย วิทยาศาสตรสิ่งแวดลอมและทางดานวิศวกรรมศาสตร 

และในปจจุบันการศึกษาเก่ียวกับวัสดุนาโนไดรับความสนใจอยาง

มากในหมู นักวิทยาศาสตร และหนึ่งในวัสดุนาโนที่ไดรับความ

สนใจอยางมากในปจจุบันก็คือ “แกรฟนควอนตัมดอท (Graphene 

Quantum Dots, GQDs)” 

แกรฟนควอนตัมดอทถูกพัฒนามาจากแกรฟนซึ ่งถูก

คนพบขึ ้นเปนครั ้งแรกในป ค.ศ. 2003 โดย ศ.ดร.อังเดร ไกม 

(Andre Geim) ศ.ดร.คอนสแตนติน โนโวเซลอฟ (Konstantin 

Novoselov) และคณะที่มหาวิทยาลัยแมนเซสเตอร (Novoselov 

et al., 2004) โดยการเอาสกอตเทปทาบลงบนแกรไฟตแลวดึง

ออกจนกระทั่งไดชั้นที่บางที่สุดเพียงชั้นเดียวที่เรียงตัวตอกันเปน

วงหกเหลี่ยม (hexagonal) ที่เรียกวา “แกรฟน” และเนื่องจาก

แกรฟนประกอบดวยธาตุคารบอนเรียงตัวตอกันเปนวงหกเหลี่ยม

ดวยพันธะโคเวเลนตที ่แข็งแรงและเชื ่อมตอกันเปนโครงราง

ลักษณะเหมือนกับรังผึ้ง ทำใหแกรฟนมีความแข็งแรงมากและมี

สมบัติท่ีโดดเดน เชน มีความแข็งแรงเชิงกลสูง มีความยืดหยุนที่ดี 

มีเสถียรภาพทางความรอนสูง และนำไฟฟาไดดี (Geim, 2014) 

และดวยสมบัติเหลานี้ทำใหแกรฟนถูกนำไปพัฒนาเปนอุปกรณ

ต าง ๆ มากมาย เชน ใชเปนเกราะกันกระสุนแทนเคฟลาร 

(Kevlar) (Lee et al., 2014) ทำหนาจอแบบสัมผัสที ่โคงงอได 

(Park et al., 2017) และนำมาเปนขั้วไฟฟาในแบตเตอรี่ (Cai et 

al., 2017) เปนตน  

 แตอยางไรก็ตาม แตละชั้นของแกรฟนจะมีแรงดึงดูด

ระหวางกันที่เรียกวา แรงแวนเดอวาลส (Van der Waals) ทำให

เกิดปญหาเรื่องการยึดเกาะกันเปนชั้นขนาดใหญ ทำใหมีพื้นที่ผิว

ลดลงและมีสมบัติที่เปลี่ยนแปลงไป ทำใหเกิดขอจำกัดในการใช

งาน นักวิทยาศาสตรจึงไดพัฒนาแกรฟนใหมีขนาดเล็กลงจนได

ว ัสด ุนาโนศ ูนย ม ิต ิท ี ่ม ีล ักษณะเป นจ ุด เร ียกว า แกรฟน

ควอนตัมดอท ซึ่งถูกสังเคราะหขึ้นเปนครั้งแรกโดย Dengyu Pan 

และคณะ ในป ค.ศ. 2010 (Pan et al., 2010) โดยใชกระบวนการ

ไฮโดรเทอรมอลในการตัดแผนแกรฟน (Graphene Sheets, 

GSs) ที่มีขนาดในระดับไมโครเมตรใหไดเปนแกรฟนควอนตัมดอท

ที่มีขนาดในระดับนาโนเมตร  
 

2. คุณสมบัติของแกรฟนควอนตัมดอท 

2.1 โครงสราง (Structure) 
 โดยทั ่วไปแกรฟนควอนตัมดอทจะมีขนาดเสนผาน

ศูนยกลางนอยกวา 10 นาโนเมตร (Liu et al., 2011) มีรูปราง

เปนทรงกลม (circular) หรือทรงคลายไข (elliptical) ดังแสดงใน

ร ูปที ่  1 และเปนโครงสร างนาโนแบบศูนย มิต ิ โดยแกรฟน

ควอนตัมดอทจะประกอบไปดวยแผนแกรฟนตั้งแต 1 ถึง 10 ช้ัน 

โดยม ีระยะหางภายในระนาบ (graphitic in-plane lattice 

spacing) อยูในชวง 0.18 ถึง 0.24 นาโนเมตร และมีระยะหาง

ระหว างระนาบ (graphitic inter-layer spacing) 0.33 นาโน

เมตร ซึ ่งสามารถหาไดจากเทคนิคกลองจุลทรรศนอิเล็กตรอน

ความละเอียดสูงแบบสองผาน (High-resolution transmission 

electron microscopy, HRTEM) และเทคน ิคการเล ี ้ ยวเบน 

รังสีเอกซ (X-ray Diffraction, XRD) (Zheng et al., 2015) 
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รูปที่ 1 (a) ภาพถายจาก TEM และ (b) ภาพถายจาก HRTEM ของ GQDs (Tang et al., 2012) 
 

2.2 สมบัตเิชิงแสง (Optical properties) 

 เนื่องจากแกรฟนควอนตัมดอทเปนอนุภาคที่มีขนาดใน

ระดับนาโนเมตร ทำใหแกรฟนควอนตัมดอทแสดงสมบัติเชิงแสง

ที่เปนเอกลักษณ โดยจะมีการดูดกลืนแสงที่ความยาวคลื่นต่ำ ซึ่ง

จะแสดงการดูดกลืนแสงที่เดนชัดในชวงยูวี ชวงความยาวคลื่น 

260-320 นาโนเมตร ซึ่งเปนการทรานซิชันของอิเล็กตรอนจากไพ

ไปยังไพสตาร (*) ของพันธะคู ระหวางคารบอนกับ

คารบอน (C=C) (Li et al., 2013) และสวนใหญจะปรากฏไหล

พีค (shoulder peak) ในชวง 270-390 นาโนเมตร ซึ่งเปนการท

รานซิชันของอิเล็กตรอนจากเอ็นไปยังไพสตาร (n*) ของ

พันธะคูระหวางคารบอนกับออกซิเจน (C=O) (Eda et al., 2010) 

นอกจากนี ้แกรฟนควอนตัมดอทยังสามารถคายแสง

ฟลูออเรสเซนตไดเปนอยางดีเนื่องจากมีผลการกักกันเชิงควอนตมั 

(quantum confinement effect) ซึ่งเปนคุณสมบัติเฉพาะของ

อนุภาคที่มีขนาดในระดับนาโนเมตร และมีสีที่แตกตางกันขึ้นกับ

ขนาดและวิธีที่ใชในการสังเคราะห (Zheng et al., 2015) ทำให

สามารถนำเอาแกรฟ นคอนต ัมดอทไปประยุกตใช งานได

หลากหลาย 

2.3 สมบัตเิชิงไฟฟาเคมี (Electrochemical Properties) 

 สมบัติเชิงไฟฟาเคมีหรือการถายโอนอิเล็กตรอนของ 

แกรฟนควอนตัมดอทขึ ้นอยู ก ับการจัดเรียงตัวของอะตอม

คารบอนที่เปนโครงสรางหลัก หมูฟงกชันที่อยูบนพื้นผิวของแก

รฟนควอนตัมดอท และอะตอมที ่เจ ือลงไป เชน ไนโตนเจน 

ซัลเฟอร หรือโบรอน (Ambrosi et al., 2014) นอกจากนี้อะตอม

ที่เจือลงไปในแกรฟนควอนตัมดอทยังชวยเพิ่มประสิทธิภาพใน

การคายแสงฟล ูออเรสเซนต และเพิ ่มสมบ ัต ิการถ ายโอน

อิเล็กตรอนของแกรฟนควอนตัมดอทดวย (Li et al., 2012) 

การถายโอนอิเล็กตรอนของแกรฟนควอนตัมดอท 

มีประสิทธิภาพสูงเน่ืองจากมีขนาดเล็ก ทำใหมีพื้นที่ผิวมาก อีกท้ัง

ย ังม ีพ ื ้นท ี ่บร ิ เวณขอบ (edge site) มาก โดยการถ ายโอน

อิเล็กตรอนระหวางแกรฟนควอนควอนตัมดอทกับโมเลกุลตาง ๆ 

สวนใหญจะเกิดการถายโอนอิเล็กตรอนที่บริเวณขอบของแกรฟน

ควอนตัมดอท (Shinde and Pillai., 2013) ดังนั้นการที ่มีพื ้นที่

บริเวณขอบมากจึงทำใหเกิดการถายโอนอิเล็กตรอนไดดี จึง

สามารถนำไปประยุกตใชงานทางดานตัวเรงปฏิก ิร ิยาและ

เซนเซอรไดดี 

2.4 ความเปนพิษตอเซลล (Cytotoxicity) 

 แกรฟนควอนตัมดอทมีองคประกอบหลักเปนธาตุ

คารบอนซึ่งเปนหนึ่งในธาตุที่สำคัญและเปนองคประกอบหลักของ

โลก ทำใหมีความเปนพิษตอเซลลต่ำ อีกทั ้งยังสามารถเขากับ

สิ่งมีชีวิตได (biocompatibility) เมื่อเปรียบเทียบกับวัสดุนาโน

ควอนตัมดอทตัวอื ่น ๆ เชน แคดเมียมซัลไฟดควอนตัมดอท  

(CdS QDs) โดยมีหลายงานวิจัยที่ไดทำการทดสอบความเปนพิษ

ของแกรฟนควอนตัมดอทตอเซลลสิ่งมีชีวิตโดยใช methylthia-

zolyldiphenyl-tetrazoliumbromide (MTT) assay เ ช น 

Weihu Shang และคณะ (Shang et al., 2014) ไดทดสอบความ

เปนพิษของแกรฟนควอนตัมดอทตอเซลลตนกำเนิด (stem cell) 

และพบวาการอยูรอด (viability) การเพ่ิมจำนวน (Proliferation) 

อัตราเมตาบอลิซึม (metabolic activity) และความสามารถใน

การเปลี่ยนแปลงไปเปนเซลลชนิดอื่น (self-renewal ability) 

ของเซลลตนกำเนิดไมมีการเปลี่ยนแปลงอยางมีนัยสำคัญหลังจาก

เติมแกรฟนควอนตัมดอท ดวยเหตุนี้แกรฟนควอนตัมดอทจึง

สามารถนำมาประยุกตใชงานทางดานชีวภาพได เชน การ

ถายภาพเซลล และตัวขนสงยา เปนตน 
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3. การสังเคราะหแกรฟนควอนตัมดอท 

 ในปจจุบันการสังเคราะหแกรฟนควอนตัมดอทสามารถ

แบงออกไดเปน 2 วิธีใหญๆ คือ จากใหญไปเล็ก (top-down 

approaches) และจากเล็กไปใหญ (bottom-up approaches) 

(Tian et al., 2018) ดังแสดงในรูปที่ 2 

3.1 การสังเคราะหจากใหญไปเล็ก (top-down approaches) 

 เปนวิธีการสังเคราะหโดยใชเทคนิคทางกายภาพและ

ทางเคมี แตโดยสวนใหญแลวจะนิยมใชเทคนิคทางเคมีในการ

ทำลายหรือยอยสลายสารตั้งตนที่มีขนาดใหญเพื่อใหไดเปนสาร

ผลิตภัณฑที่เปนควอนตัมดอทที่มีขนาดเล็กในระดับนาโน โดยการ

สังเคราะหดวยวิธ ีน ี ้จะเร ิ ่มจากสารตั ้งต นที่ม ีคาร บอนเปน

องคประกอบ โดยสารตั้งตนที่นำมาใชในการสังเคราะหจะตอง

ประกอบไปดวยวงอะโรมาติกที่มีการจัดเรียงตัวแบบเอสพีสอง 

(sp2 ) เชน แกรฟน แกรฟนออกไซด (graphene oxide) เสนใย

ค า ร  บ อน  (carbon fibers) ท  อน า โ น ค า ร  บ อน  (carbon 

nanotubes) และคารบอนแบล็ค (carbon black) แลวนำมา

ผานกระบวนการทางเคมีเพื่อทำใหมีขนาดเล็กลง เชน ปฏิกิริยา

ออกซิเดชันโดยใชกรด (acidic oxidation) กระบวนการไฮโดร-

เทอร มอล (hydrothermal) กระบวนการโซลโวเทอร มอล 

(solvothermal) กระบวนการทางไฟฟาเคมี (electrochemical 

strategies) และการใชคลื่นอัลตราโซนิคและคลื่นไมโครเวฟชวย

ในการส ั ง เ ค ร าะห   (sonication and microwave assisted 

method) เปนตน การสังเคราะหจากใหญไปเล็กนั้นมีขอดคืีอเปน

วิธีที่งาย สามารถเลือกใชสารตั้งตนไดหลากหลายและสามารถ

สังเคราะหสารในปริมาณมากได นอกจากนี้การสังเคราะหจาก

ใหญไปเล็กสวนใหญจะปรากฏหมูฟงกชันที่เปนองคประกอบที่

พื้นผิวของแกรฟนควอนตัมดอท ทำใหกระจายตัวในน้ำไดดี แต

อยางไรก็ตาม วิธีการนี้ยังมีขอเสียคือมีรอยละผลได (yield) ที่ต่ำ 

และตองใชสารเคมีชวยในการสลายสารตั้งตนจากขนาดใหญใหมี

ขนาดเล็กซึ ่งควบคุมไดยาก สงผลใหมีความจำเพาะเจาะจง 

(selectivity) ของสารผลิตภัณฑต่ำจึงไมสามารถควบคุมลักษณะ

พื ้นผ ิว (morphology) และการกระจายต ัวของขนาด (size 

distribution) ของแกรฟนควอนตัมดอทที่สังเคราะหได (Li et 

al., 2013; Zheng et al., 2015) 

 

 

 

 

 

 

 

 

 

 

 

 
 

รูปที่ 2 แผนผังแสดงวธิกีารสังเคราะห GQDs 
 

3.1.1 ปฏ ิก ิร ิยาออกซ ิเดช ันโดยใช กรด (acidic 

oxidation) เปนการใชกรดแกในการลอก (exfoliate) สารตั้ง

ตนคารบอน เชน แกรฟนออกไซด เสนใยคารบอนและทอนาโน

คารบอนใหไดเปนแกรฟนควอนตัมดอท จากนั้นกรดที่เหลือจะถูก

กำจัดโดยทำใหเปนกลางและนำมาผานกระบวนการไดอะไลซิส 

ซึ ่งวิธีนี ้สามารถนำไปใชในสังเคราะหแกรฟนควอนตัมดอทใน

ปริมาณมากไดโดยใชสารตั้งตนคารบอนที่มีราคาถูกและหาไดงาย 

แตวิธีการนี้ก็ยังมีขอเสียตรงที่การกำจัดตัวออกซิไดสหรือกรด

สวนเกิน เชน กรดไนตริก นั้นสามารถทำไดยาก 

ในป ค.ศ. 2016 Tang และคณะ (Tang et al., 2016) 

ไดรายงานวิธีการสังเคราะหแกรฟนควอนตัมดอทผานปฏิกิริยา

ออกซิเดชันโดยใชกรด โดยใชแกรฟนออกไซดเปนสารตั้งตนและ
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ใชสารละลายผสมระหวางกรดไนตริกและกรดซัลฟวริกเปนตัว

ออกซิไดสเพื ่อลอกและตัดแผนแกรฟนออกไซดใหบางจนได 

แกรฟนควอนตัมดอท จากนั้นแกรฟนควอนตัมดอทที่สังเคราะห

ได จะถูกแยกเปนแกรฟนควอนตัมดอทที่เปลงแสงสีฟา (blue-

photoluminescent GQDs; b-GQDs) และแกรฟนควอนตัมดอทที่

เปล  งแสงส ี เข ียว (green-photoluminescent GQDs; g-GQDs) ดั ง

แสดงในรูปที่ 3 

 

 

 

 

 

 

 

 

 

 

 

รูปที่ 3 แผนภาพแสดงการสังเคราะหและการแยก b-GQDs และ g-GQDs (Tang et al., 2016) 
 

3.1.2 กระบวนการไฮโดรเทอรมอล (hydrothermal) และ

กระบวนการโซลโวเทอรมอล (solvothermal) เปนการสังเคราะห

แกรฟนควอนตัมดอทที่อุณหภูมิและความดันสูง ซึ่งเปนวิธีที่งาย

และสะดวก โดยกระบวนการไฮโดรเทอรมอลจะใชน้ำเปนตัวทำ

ละลาย สวนกระบวนการโซลโวเทอรมอลจะใชเปนตัวทำละลาย

อินทรีย โดยทั่วไปแลวกระบวนการไฮโดรเทอรมอลและกระบวน

การโซลโวเทอรมอลจะตองมีการเติมสารท่ีมีความเปนเบสสูง เชน 

โซเดียมไฮดรอกไซด (NaOH) หรือแอมโมเนีย (NH3) ซึ ่งสาร

เหลานี้จะทำหนาที่เปนเหมือนกรรไกรที่ตัดสารตั้งตนที่มีขนาด

ใหญใหมีขนาดเล็กลงและปองกันการเกิดปฏิกิริยาออกซิเดชัน 

(Li et al., 2013; Zheng et al., 2015) 

 ใ น ป   ค .ศ . 2012 Hiroyuki Tetsuka แ ล ะ ค ณ ะ 

(Tetsuka et al., 2012) ได รายงานการส ัง เคราะห แกรฟน

ควอนต ัมดอทที ่ปร ับปร ุงพ ื ้นผ ิวด วยกรดอะม ิโน (amino-

functionalized graphene quantum dots; af-GQDs) ผ  า น

กระบวนการไฮโดรเทอรมอลที่อุณหภูมิ 70-150 C เปนเวลา 5 

ชั่วโมง โดยใชแผนแกรฟนที่ถูกออกซิไดส (oxidized graphene 

sheet; OGS) เปนสารตั้งตนและใชแอมโมเนียเปนสารเคมีที่ทำ

หนาที่ในการตัดแผนแกรฟนที่ถูกออกซิไดส ดังแสดงในรูปที่ 4 

หลังจากนั้นนำมาอบใหความรอนที่อุณหภูมิ 100 C เปนเวลา  

1 ชั่วโมงเพื่อกำจัดแอมโมเนียสวนเกินและพิสูจนเอกลักษณของ

แกรฟนควอนตัมดอทที่สังเคราะหไดโดยใชเทคนิคเอ็กซเรย 

โฟโตอ ิ เ ล ็ กตรอนสเปกโทรสโกป   (X-ray Photoelectron 

Spectroscopy; XPS) และเทคนิคอินฟราเรดสเปกโทรสโกป 

(Infrared spectroscopy) โดยผลการทดลองยืนยันวาสามารถ

สังเคราะหแกรฟนควอนตัมดอทไดสำเร็จและมีรอยละผลไดสูงถึง 

19-29% 

 ในป  ค.ศ. 2016 Renbing Tian และคณะ (Tian et 

al., 2016) ได ทำการสังเคราะหแกรฟนควอนตัมดอทโดยใช

แกรไฟตเปนสารตั้งตนผานกระบวนการโซลโวเทอรมอลโดยใช 

ไดเมทิลฟอรมาไมดเปนตัวทำละลายดังแสดงในรูปที ่ 5 โดย

เริ่มแรกมีการใหความรอนที่อุณหภูมิ 800 C เปนเวลา 5 ช่ัวโมง

เพ่ือทำใหระยะหางระหวางระนาบของแกรฟนเกิดการขยาย แลว

ทำการเติมกรดกรดซัลฟวริกและกรดไนตริกซึ่งกรดจะเกิดการ

สลายตัวและเขาไปแทรกอยูระหวางชั้นของแกรไฟต จากนั้นทำ

การเติมไดเมทิลฟอรมาไมดและทำการโซลโวเทอรมอลที่อุณหภูมิ 

170 C เปนเวลา 5 ช ั ่วโมงก็จะไดสารละลายของแกรฟน

ควอนตัมดอท จากนั้นทำใหแกรฟนควอนตัมดอทที่สังเคราะหได

บริสุทธิ์โดยการระเหยตัวทำลายลายแลวละลายน้ำกลับตามดวย

การกรอง ซึ่งแกรฟนควอนตัมดอทท่ีสังเคราะหไดนี้มีความเสถียร

สูงในหลากหลายชวงพีเอช 
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รูปที่ 4 (a) แผนภาพการสังเคราะห af-GQDs (b) ผล XPS แสดง C1s และ N1s สเปกตราของ af-GQDs ที ่ไดจากการเตรียม  

ที่อุณหภูมิ 90 C (เสนสีเขียว) และ OGS (เสนสีเทา) (c) อินฟราเรดสเปกตราของ af-GQDs ที่ไดจากการเตรียมที่อุณหภูมิ 

90 C (เสนสีเขียว) และ OGS (เสนสีเทา) (Tetsuka et al., 2012) 
 

 
 

รูปที่ 5 แผนภาพการสังเคราะห GQDs ดวยกระบวนการโซลโวเทอรมอล (Tian et al., 2016) 
 

 3.1.3 กระบวนการทางไฟฟ าเคม ี  (electrochemical 

method) เป นการสังเคราะหแกรฟ นควอนต ัมดอทโดยใช

หลักการทางไฟฟาเคมีในการแยกชั ้นของคารบอนที่เปนสาร

เริ่มตนในการสังเคราะห เชน ทอนาโนคารบอน (Shinde and 

Pillai., 2012) แท งแกรไฟต  (Ahirwar et al., 2017; Deng et 

al., 2015) และแผนฟลมแกรฟนออกไซด (Hu et al., 2010) โดย

มีการเสนอกลไกในการแยกชั ้นของคารบอนวาเกิดจากอนุมูล

อิสระของไฮดรอกซิล (OH) และอนุมูลอิสระของออกซิเจน (O) 

ซึ ่งเกิดจากปฏิกิร ิยาออกซิเดชันของน้ำและพันธะเดี ่ยวของ

คารบอนที่ขั้วแอโนด ทำหนาที่เปนเหมือนกรรไกรในการตัดสาร

เริ่มตนที่ใชสังเคราะหใหไดเปนแกรฟนควอนตัมดอท (Lu et al., 

2009) นอกจากนี้สารละลายอิเล็กโทรไลตเก้ือหนุน (supporting 

electrolyte) ยังสามารถแตกตัวและเขาไปแทรกอยู ในชั้นของ

คารบอนทำใหเกิดการแยกออกของชั้นคารบอนจนมีขนาดเล็กลง

และเกิดเปนแกรฟนควอนตัมดอท (Li et al., 2013; Zheng et 

al., 2015) 

 ในป   ค .ศ . 2017 Satyaprakash Ahirwar และคณะ 

(Ahirwar et al., 2017) ไ ด  เ ส นอกา ร ส ั ง เ ค ร า ะห  แ ก รฟ น
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ควอนตัมดอทโดยวิธีทางไฟฟาเคมีอยางงายโดยใชแทงแกรไฟต

เปนขั้วอิเล็กโทรด และใชกรดซิตริกและโซเดียมไฮดรอกไซดเปน

สารละลายอิเล็กโทรไลต ดังแสดงในรูปที่ 6 โดยเริ่มแรกจะมีการ

ใหความรอนที่อุณหภูมิสูงแกแทงแกรไฟตเพื่อทำใหเกิดความ

บกพร อง (defects) ท ี ่พ ื ้นผ ิวของข ั ้ วอ ิ เล ็กโทรด จากนั้น 

ไฮดรอกไซดไอออน (OH-) ที่อยูในสารละลายอิเล็กโทรไลตจะเขา

ไปแทรกอยูในชั้นของแกรไฟต จากนั้นโมเลกุลออกซิเจนที่เกิด

จากปฏิกิริยาทางไฟฟาเคมีจะเขาไปในระนาบของแกรไฟตทำให

เกิดการลอก (exfoliation) ของระนาบแกรไฟตและมีการสราง

แกรฟนควอนตัมดอทเกิดข้ึน ซึ่งแกรฟนควอนตัมดอทที่เกิดข้ึนนี้มี

ชวงการกระจายตัวของขนาดที่แคบ ซึ ่งแสดงถึงความเปนเนื้อ

เดียวกันของสารผลิตภัณฑที่ได 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

รูปที่ 6 แผนภาพการสังเคราะห GQDs ดวยกระบวนการทางไฟฟาเคมีโดยการเหนี่ยวนำใหเกิดความบกพรองที่พื้นผิวของแกรไฟต 

(Ahirwar et al., 2017) 
 

 3.1.4 กระบวนการทางกายภาพ (physical routes) เ ป น

การใชคลื่นอัลตราโซนิคและคลื่นไมโครเวฟชวยในการสังเคราะห 

(sonication and microwave assisted method) โดยการใช

คลื่นไมโครเวฟจะเปนวิธีที่รวดเร็วและมีการกระจายความรอน

ของตัวกลางท่ีทั่วถึง ทำใหไดสารผลิตภัณฑท่ีมีรอยละผลไดที่ดี (Li 

et al., 2012) โดยในป ค.ศ. 2018 Weitao Li และคณะ (Li et 

al., 2018) ไดนำเสนอกระบวนการที่งายและรวดเร็วโดยการใช

คลื ่นรังสีไมโครเวฟเพียงแค 3 นาทีในการสังเคราะหแกรฟน

ควอนตัมดอทโดยใช 1,3,6-ไตรไนโตรไพรีนเปนสารตัง้ตนดังแสดง

ในรูปที่ 7 

 สำหรับการใชคลื่นอัลตราโซนิคในการสังเคราะหน้ัน

สามารถสรางคลื่นความดันสูง-ต่ำในของเหลวได โดยคลื่นอัลตรา-

โซนิคจะทำใหเกิดการสรางฟองอากาศของตัวทำละลายและ

จากนั้นจะมีการโตของฟองอากาศจนกระทั่งฟองอากาศนั ้นแตก

แลวใหความดันและอุณหภูมิสูง ณ สภาวะนั้น จนทำใหเกิดการ

แยกออกของชั ้นคารบอนอยางต อเน ื ่องจนไดเปนแกรฟน

ควอนตัมดอท (Li et al., 2013; Zheng et al., 2015) เชน ใน

งานวิจัยของ Raji V. Nair และคณะ (Nair et al., 2017) ที ่ได

รายงานกระบวนการสังเคราะหแกรฟนควอนตัมดอทที ่ง าย 

รวดเร็ว เปนมิตรตอสิ ่งแวดลอมและสามารถปรับขนาดของ 

แกรฟนควอนตัมดอทไดโดยใชคลื ่นอัลตราโซนิคและใชคลื่น

ไมโครเวฟในการใหความรอนเปนระยะ โดยใชแกรฟนออกไซด

เปนสารตั้งตนและโพแทสเซียมเปอรแมงกาเนสเปนตัวออกซไิดส

เพื่อตัดระนาบของแกรฟนออกไซดใหมีขนาดเล็กลงจนไดแกรฟน

ควอนตัมดอทดังแสดงในรูปที่ 8 โดยแกรฟนควอนตัมดอทที่ได

จากการสังเคราะหดวยวิธีนี้มีการคายแสงฟลูออเรสเซนตที่ดีและ

มีความเปนพิษตอเซลลต่ำและสามารถนำไปประยุกตใชเปน

เซนเซอรในการตรวจวัดไอออนโลหะเหล็กและถายภาพเซลล

สิ่งมีชีวิตได 
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รูปที่ 7 แผนภาพการสังเคราะห GQDs โดยคลื่นไมโครเวฟ (Li et al., 2018) 
 

รูปท่ี 8 แผนภาพกระบวนการสังเคราะหแกรฟนควอนตัมดอทโดยใชคลื่นอัลตราโซนิคและใชคลื่นไมโครเวฟในการใหความรอนเปนระยะ 

(Nair et al., 2017) 
 

3.2 การสังเคราะหจากเล็กไปใหญ (bottom-up approaches) 

 เปนการสังเคราะหแกรฟนควอนตัมดอทโดยใชปฏิกิรยิา

ไพโรไลซิส (pyrolysis) หรือปฏิกิริยาการรวมตัวของคารบอน 

(carbonization) ที่มาจากโมเลกุลอินทรียขนาดเล็กหรือปฏิกิริยา

การรวมตัวของสารเคมีอยางตอเนื ่อง (step-wise chemical 

fusion) ของโมเลก ุลอะโรมาติกขนาดเล ็ก (Li et al., 2013; 

Zheng et al., 2015) 

 3.2.1 ปฏิกิริยาการรวมตัวของสารเคมีอยางตอเนื่อง 

( stepwise organic synthesis) ก า ร ส ั ง เ ค ร า ะ ห  แ กรฟ น

ควอนตัมดอทดวยวิธีนี้ โดยทั่วไปจะใชโมเลกุลอินทรียที่มีวงอะโร

มาติกเปนสารตั้งตน โดยแกรฟนควอนตัมดอทที่ไดสวนใหญจะมี

ชวงการกระจายตัวของขนาดที ่แคบ แตอยางไรก็ตาม การ

สังเคราะหดวยวิธีนี้ก็ยังมีขอเสียอยูตรงที่วาสามารถปองกันการ

รวมตัวกันของสารผลิตภัณฑ (aggregation) ไดยาก เนื่องจากมี

อันตรกิริยาแบบไพ-ไพ (- interaction) ทำใหสารผลิตภัณฑ

เกิดการรวมตัวกันไดงาย (Zheng et al., 2015) 

 โดยในป ค.ศ. 2010 ไดมีรายงานการสังเคราะหแกรฟน

ควอนตัมดอทดวยปฏิกิริยาการรวมตัวของสารเคมีอยางตอเนื่อง

โดย Xin Yan และคณะ (Yan et al., 2010) ไดทำการสังเคราะห

แกรฟนควอนตัมดอทที่ประกอบไปดวยคารบอนคอนจูเกต 168 

132 และ 170 อะตอม ซึ่งแทนดวย GQDs 1 2 และ 3 ตามลำดบั 

โดย GQDs ที่ไดสังเคราะหจากปฏิกิริยาควบแนนแบบออกซเิดชัน 

(oxidative condensation) ของพอลิฟนิลลีนตรงตำแหนงเอริล 

โดยใช 3-iodo-4-bromoaniline เปนสารตั้งตนผานการรวมตัว

ของสารเคมีอยางตอเน ื ่องจนไดแกรฟนควอนตัมดอทเปน

ผลิตภัณฑดังแสดงในรูปที่ 9
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รูปที่ 9 (a-b) แผนภาพการสังเคราะห GQDs (1-3) จาก 3-iodo-4-bromoaniline (4) ผานปฏิกิริยาการรวมตัวของสารเคมีอยาง

ตอเนื่อง (Yan et al., 2010) 
 

 3.2.2 ไพโรไลซิส (pyrolysis) หร ือปฏิก ิร ิยาการ

รวมตัวของคารบอน (carbonization) ของสารอินทรีย ใน

ปจจุบันการสังเคราะห GQDs ดวยวิธีไพโรไลซิส (pyrolys is )  

หรื อปฏิกิ ริ ย าการรวมตั วของคาร บอน  (carbonization) 

ของสารอินทรียไดรับความสนใจเปนอยางมากและมีการรายงาน

อยางแพรหลาย เนื่องจากการสังเคราะหดวยวิธีนี้สามารถทำได

งายและใหประสิทธิภาพสูง อีกทั้งยังเปนมิตรตอสิ่งแวดลอม 

เน่ืองจากสามารถใชโมเลกุลอินทรียที่มีในธรรมชาติเปนสารตั้งตน

ในการสังเคราะหได (Li et al., 2013) โดยการสังเคราะหดวยวีธี

การนี้เปนการใหความรอนสูงกวาจุดเดือดของสารอินทรียที่ใช

เปนสารตั้งตนในการสังเคราะห โดยการเผาที่อุณหภูมิสูง การใช

กระบวนการไฮโดรเทอรมอลหรือใชคลื่นไมโครเวฟ เพ่ือใหสารตั้ง

ตนนั ้นเกิดการสลายตัว จากนั ้นอะตอมจะเกิดการควบแนน  

การกอนิวเคลียสผลึกและเกิดการรวมตัวกันจนมีขนาดใหญขึ้น

และเก ิดเป นแกรฟ นควอนต ัมดอท (Zheng et al., 2015) 

โดยสารตั้งตนที่ใชในการสังเคราะหแกรฟนควอนตัมดอทดวยวิธีนี้

สวนใหญจะเปนโมเลกุลอินทรียหรือเกลือของสารอินทรย เชน 

กากกาแฟ (Hsu et al., 2012) กลีเซอรอล (Lai et al., 2012) 

กรดแอสคอบิก (Jia et al., 2012) กรดซ ิตร ิก (Dong et al., 

2012a) และเกลือของเอทิลลีนไดเอมีนเตตระอะซิตริกแอซิด 

(EDTA) (Deng et al., 2013) เปนตน ซึ ่งการสังเคราะหผ าน

วิธีการนี้เปนการสังเคราะหที่งาย คุมคา สามารถปรับปริมาณสาร

ในการสังเคราะหไดและสามารถเจืออะตอมไดตามที ่ตองการ 

(Zheng et al., 2015) 

 ในป   ค.ศ. 2017 H. Mahmood Kashani และคณะ 

(Kashani et al., 2017) ได รายงานการส ัง เคราะห แกรฟน

ควอนต ัมดอทที ่ เจ ือด วยอะตอมไนโตรเจน (N-GQDs) ผ าน

กระบวนการไพโรไลซิสโดยใชกรดซิตริกเปนแหลงของคารบอน

และใช   tris(hydroxymethyl)aminomethane (THMA) เปน

แหลงของไนโตรเจน และทำใหเปนกลางโดยการเติมโซเดียมไฮ-

ดรอกไซด ดังแสดงในรูปที่ 10 ซึ่ง N-GQDs ที่สังคราะหไดมีความ

เปนพิษต่ำและมีความเสถียรเชิงแสงสูง 
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รูปที่ 10 แผนภาพการสังเคราะห N-GQDs ดวยกระบวนการไพโรไลซิสและการนำไปประยุกตใชเปนเซนเซอรในการตรวจวัดยา 

ซูนิทินิบ (Sunitinib) (Kashani et al., 2017) 
 

 ในสวนของตัวอยางการสังเคราะห GQDs ดวยปฏิกิริยา

การรวมตัวของคารบอน (carbonization) ของสารอินทรียไดมี

รายงานในป ค.ศ. 2018 โดย Jia Hui Liu และคณะ (Liu et al., 

2018) ที่ไดสาธิตการเตรียมแกรฟนควอนตัมดอทที่มีความหนา

เพียงหนึ่งชั้น (s-GQDs) โดยวิธีไฮโดรเทอรมอลที่อุณภูม ิ180 C 

เปนเวลา 24 ชั่วโมง  เพ่ือใหเกิดการยอยสลายของสารตั้งตนคือ 

perylene t e t r a ca rboxy l i c  anhyd r i de  (PTCDA )  

และ  polyethylenimine (PEI) แลวเกิดการควบแนนใหม

อีกครั้งเกิดเปน s-GQDs ดังแสดงในรูปที่ 11 ซึ่ง s-GQDs ที่

สังเคราะหไดสามารถนำไปประยุกตใชในการตรวจวัด ATP 

โดยการเกิดอันตรกิริยาทางไฟฟา (electrostatic interac-

t ion) และอันตรกิร ิยาแบบไพ-ไพ (- interact ion) 

ระหวาง s-GQDs และ ATP นอกจากนี้ยังสามารถนำไปใชใน

การถายภาพ ATP ในเซลลของสิ่งมีชีวิตไดดวย  

จะเห็นไดว าการสังเคราะหแกรฟนควอนตัมดอท

สามารถสังเคราะหไดหลายวีธีและสามารถเลือกใชสารตั้งตนและ

สภาวะในการสังเคราะหไดหลากหลายดังที่กลาวมาขางตนและ

ดังที่แสดงในตารางที่ 1 ทำใหไดแกรฟนควอนตัมดอทที่มีขนาด

และสมบัติที่แตกตางกัน ซึ ่งสามารถนำไปประยุกตใชงานได

หลากหลาย 
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รูปที่ 11 แผนภาพการสังเคราะห s-GQDs ผานปฏิกิร ิยาการรวมตัวของคารบอน (carbonization) ของสารอินทรียโดยใช

กระบวนการไฮโดรเทอรมอลและกลไกในการตรวจวัด ATP (Liu et al., 2018) 
 

4. การประยุกตใช 

 เนื ่องจากแกรฟนควอนตัมดอทมีสมบัติเฉพาะตัวที่

นาสนใจและสามารถสังคราะหไดหลากหลายวิธี จึงมีการนำเอา

แกรฟนควอนตัมดอทไปประยุกตมากมายทั้งทางกายภาพและ

ชีวภาพ เชน ใชในการถายภาพทางชีวภาพ ใชเปนตัวขนสงยา ใช

เปนตัวแยกดีเอ็นเอ ใชเปนเซนเซอรในการตรวจวัดโลหะและ

โมเลกุลชีวภาพ ใชเปนตัวเรงเชิงแสง และประยุกตใชทางดาน

พลังงาน เปนตน (Li et al., 2013) 

4.1 ถายภาพทางชีวภาพ (Bioimaging) 

 แกรฟนควอนตัมดอทมีสมบัติเชิงแสงที่เปนเอกลักษณ

และสามารถคายแสงฟลูออเรสเซนตที ่ม ีความเขมสูง ทำให

สามารถนำไปประยุกตใชงานไดจริง และที ่สำคัญคือแกรฟน

ควอนตัมดอทนั้นมีความเปนพิษตอเซลลต่ำเนื่องจากสามารถ

เลือกใชสารตั้งตนในการสังเคราะหท่ีเปนมิตรตอสิ่งแวดลอมและมี

ความเปนพิษต่ำได จึงสามารถนำมาประยุกตใชในการถายภาพ

เซลล (cellular imaging) ในสิ ่งมีชีวิตได เชน ในป ค.ศ. 2012 

Juan Peng และคณะ (Ge et al., 2012) ไดรายงานการถายภาพ

เซลลมะเร็งเตานมมนุษย T47D (human breast cancer cell 

lines T47D) โดยใชแกรฟนควอนตัมดอทที่เปลงแสงที่เขียวซึ่งได

จากการสังเคราะหดวยวิธีออกซิเดชันโดยใชกรด โดยใชเสนใย

คารบอน (carbon fibers, CF) เปนสารตั้งตน 

โดยแกรฟนควอนตัมดอทที่ทำการสังเคราะหไดนี้มีการ

เปลงแสงสีเขียว ซึ่งสามารถนำไปประยุกตใชในการถายภาพ

เซลลมะเร็งเตานมมนุษย T47D ได โดยไดทำการยอมสีนิวเคลียส

ของเซลลดวยสียอม DAPI ซึ่งแสดงสีน้ำเงินเมื่อทำการถายภาพ

โดยใชกลองที่มีฟลูออเรสเซนตเปนแหลงกำเนิดแสง จากนั้นทำ

การบมเซลลมะเร็งนี้กับแกรฟนควอนตัมดอทที่สังเคราะหไดเปน

เวลา 4 ช ั ่วโมง และผลการทดลองแสดงใหเห ็นวาแกรฟน

ควอนตัมดอทสามารถนำไปใชในการถายภาพเซลลมะเร็งเตานม

มนุษย T47D ไดและมีความคมชัดของภาพสูงดังแสดงในรูปที่ 12 

ซึ่งสามารถนำไปประยุกตใชในทางการแพทยตอไปได 
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ตารางที่ 1 ตัวอยางการสังเคราะหแกรฟนควอนตัมดอทดวยวธิตีาง ๆ 

วิธีหลัก วิธียอย สารตั้งตนท่ีใช 
ขนาด 

(nm) 

ความสูง 

(nm) 

สี 
อางอิง 

ใหญไป

เล็ก 

ปฏิกิรยิาออกซิเดชัน 

โดยใชกรด 

แกรฟนออกไซด 5-19 - น้ำเงนิ (Shen et al., 2011) 

คารบอนแบล็ค 15 0.5 เขียว (Dong et al., 2012) 

แกรไฟต 17 0.84 น้ำเงนิ (Ciesielski et al., 

2016) 

อนุภาคนาโนแกรไฟต 3-4 1 น้ำเงนิ (Nguyen and Kim., 

2018) 

ไฮโดรเทอรมอล แกรฟนออกไซด 5-13 1-2 น้ำเงนิ (Pan et al., 2010) 

รีดิวซแกรฟนออกไซด 2-5 - น้ำเงนิ (Yang et al., 2012) 

แกรฟนออกไซด 3-10 0.5–2.5 น้ำเงิน (Sun et al., 2015) 

โซลโวเทอรมอล แกรฟนออกไซด 5.3 12 เขียว (Zhu et al., 2011) 

แกรฟนออกไซด 3-5 0.95 น้ำเงนิ 

ถึงเขียว 

(Zhu et al., 2012) 

ไมโครเวฟ แกรฟนออกไซด 2-7 0.5-2 เขียวและนำ้

เงนิ 

(Li et al., 2012) 

ไมโครเวฟและไฮโดรเทอรมอล แกรฟนออกไซด 3 <0.7 น้ำเงนิ (Chen et al., 2012) 

อัลตราโซนิค แกรฟน 3-5 - น้ำเงิน (Zhuo et al., 2012) 

กระบวนการทางไฟฟาเคมี แกรฟน 3-5 1-2 เขียว (Hu et al., 2010) 

แทงแกรไฟต 5-10 <0.5 เหลือง (Zhang et al., 2012) 

ปฏิกิรยิาโฟโตเฟนตัน (Photo-Fenton 

reaction) 

แกรฟนออกไซด 40 1.2 น้ำเงนิ (Zhou et al., 2012) 

การกัดผิวดวยออกซิเจนพลาสมา 

(Oxygen plasma etching) 

แกรฟน 11  4.3 4.5 - (Kim et al., 2012) 

เล็กไป

ใหญ 

ปฏิกิรยิาการรวมตัวของสารเคมีอยาง

ตอเนื่อง 

อะโรมาติก

ไฮโดรคารบอน 

- - - (Mueller et al., 

2010) 

ไพโรไลซิส กรดมาเลอิก 

และกรดโฟลิค 

2-8 <0.6 เขียว (Li et al., 2018) 

ไตรโซเดียมซเตรต 1.3  

0.5 

0.6 น้ำเงนิ (Hong et al., 2018) 

กรดซิตรกิ 1.0-4.0 0.5-2.0 - (Xu et al., 2019) 

ไฮโดรเทอรมอล กลูโคส แอมโมเนยี 4.34 - เขียว (Tam and Choi., 

2018) 

กากนำ้ตาล 3.5  

1.25 

0.9-1.1 น้ำเงิน (Sangam et al., 

2018) 

เอทิลลีนไดเอมีน 3.2 - น้ำเงนิ (Zhang et al., 2019) 

เรงการเปดวง  

(Catalyzed cage-opening) 

C60 2.7-10 - - (Lu et al., 2011) 

C60 2-3 0.6-1 เขียว (Chua et al., 2015) 

ไพโรไลซิสและการลอก (exfoliation) Unsubstituted HBC 60 2-3 น้ำเงิน (Liu et al., 2011) 
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รูปที่ 12 ภาพถายทางฟลูออเรสเซนตของเซลลมะเร็งเตานมมนุษย T47D หลังจากบมดวยแกรฟนควอนตัมดอทเปนเวลา 4 

ชั่วโมง (a) ภาพถายเซลล T47D (b) ภาพถายนิวเคลียสของเซลล T47D หลังจากยอมดวยสียอม DAPI ซึ่งเปลงแสงสีน้ำ

เงิน (c) ภาพถายเซลล T47D หลังจากบมดวย GQDs เปนเวลา 4 ชั่วโมงซึ่งจะเห็นการรวมตัวของ GQDs ซึ่งเปลงแสงสี

เขียวรอบ ๆ นิวเคลียสของเซลล T47D (d) ภาพซอนทับของนิวเคลียสที่ยอมดวย DAPI (สีน้ำเงิน) และ GQDs (สีเขียว) 

(Ge et al., 2012) 
 

4.2 ตัวขนสงยา (Drug delivery) 

 ขนาดท ี ่ เ ล ็ ก ใ น ระด ั บนา โน เมตร ของแกรฟน

ควอนตัมดอททำใหสามารถนำมาประยุกตใชเปนตัวขนสงยาไดดี 

เนื่องจากมีพื้นที่ผิวมากและมีความจำเพาะเจาะจงตอเปาหมาย 

และสามารถเกิดอันตรกิริยาที่หลากหลายผานอันตรกิริยาแบบ

ไพ-ไพ (- stacking) แรงดึงดูดระหวางโมเลกุลที่ไมชอบน้ำ 

(hydrophobic interaction) แ ร ง ด ึ ง ด ู ดท า ง ไ ฟฟ  า สถ ิ ต ย  

(electrostatic attraction) ห ร ื อ ก า ร ด ู ดซ ั บท า งก ายภาพ 

(physisorption) อ ีกทั ้งย ังสามารถดูดซึมเข าส ู  เซลลได ง าย  

มีความเขากันไดกับเน้ือเยื่อในรางกายและมีความเปนพิษตอเซลล

ต่ำ (Zheng et al., 2015) 

 ในปจจุบันไดมีรายงานเกี ่ยวกับการนำเอาแกรฟน

ควอนตัมดอทมาใชเปนตัวขนสงยามากมาย ยกตัวอยางเชน ในป 

ค.ศ. 2011 Yujia Jing (Zhu et al., 2010) และคณะได ค ิดคน

แคปซูลที่ใชในการขนสงยาแพคลิแทกเซิล (Paclitaxel) ซึ่งเปนยา

ที ่ใชในการรักษาโรคมะเร็ง ซ ึ ่งแคปซูลที ่ส ังเคราะหขึ ้นนี ้มี

โครงสรางเปนแบบที่มีเปลือกหุมและแกนกลาง (core-shell) 

โดยช้ันที่เปนเปลือกหุม (shell) จะมีองคประกอบเปนไทเทเนียม-

ไดออกไซด (TiO2) ที่มีความหนาสองชั้น (dual layer) ซึ่งจะเปน

ชัน้ที่ปองกันไมใหเกิดการปลดปลอยของยาถาไมไดรับการกระตุน 

สวนชั้นที่เปนแกนกลาง (core) จะประกอบไปดวยน้ำมันมะกอก

ซึ่งทำหนาที่เปนแหลงเก็บยาที่สามารถละลายไดดีในน้ำมัน (oil-

soluble drug) นอกจากนี้ภายในชั้นที่เปนแกนกลางจะมีเหล็ก

ออกไซด (Fe3O4) ซึ ่งเปนตัวกำหนดเปาหมายโดยใชสมบัติ

แมเหล็ก (magnetic targeting) และแกรฟนควอนตัมดอทซึ่งจะ

ทำใหสามารถติดตามการเคลื่อนท่ีและการทำงานของตัวขนสงยา

ไดโดยการถายภาพเซลลดวยแหลงกำเนิดฟลูออเรสเซนต โดยยา

แพคลิแทกเซิลจะถูกปลอยออกมาจากแคปซูลหลังจากมีการ

กระตุนใหชั้นของไทเทเนียมไดออกไซดเกิดการแตกออกโดยใช

คลื ่นอัลตราโซนิค ดังแสดงในรูปที ่ 13 โดยการปลดปลอยยา

สามารถควบคุมไดโดยการกำหนดระยะเวลาในการใหคลื่นอัลตรา

โซนิค
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รูปที่ 13 แผนภาพกระบวนการในการปลดปลอยยาแพคลิแทกเซิลโดยการใหคลื่นอัลตราโซนิคเพ่ือทำใหเกิดการแตกออกของเปลือก

แคปซูลที่ใชในการขนสงยา (Zhou et al., 2012) 
 

4.3 ตัวแยกดีเอ็นเอ (DNA cleavage system) 

 การที่แกรฟนควอนตัมดอทมีขนาดเล็กทำใหสามารถ

เขาไปแทรกสอด (intercalation) ในสายดีเอ ็นเอได  ทำให

สามารถชวยในการตัดแยก ซอมแซมและชวยในการสงสัญญาณ

ของสายดีเอ็นเอได โดยในป ค.ศ. 2012 Xuejiao Zhou และ

คณะ (Zhou et al., 2012) ไดคิดคนตัวแยกดีเอ็นเอชนิดใหมโดย

การใชแกรฟนควอนตัมดอทและไอออนโลหะคอปเปอร (Cu2+) 

ซึ่งพบวาเมื่อเติมแกรฟนควอนตัมดอท และ Cu2+ สงผลใหดีเอ็น

เอที่มีรูปรางเปนวงแหวนที่พันเกลียวซอน (supercoiled DNA) 

กวา 90 เปอรเซนตเกิดการแยกออกแลวเปลี่ยนไปเปนดีเอ็นเอ

แบบวงแหวนที่ม ีช องเปด (nicked  DNA) ในขณะที่การเติม 

แกรฟ นออกไซด  (GO) และ Cu2+ ในปร ิมาณเท าก ันม ีการ

เปลี่ยนแปลงเพียงแค 59 เปอรเซนต ดังแสดงในรูปที่ 14 ถึงแมวา

จะไมทราบกลไกการแทรกสอดของ GO และ GQDs เขาไปใน

สายดีเอ็นเอที่แนชัด แตอยางไรก็ตามการที่ GQDs มีขนาดเล็ก

กวา GO ทำใหสามารถแทรกสอดเขาไปในสายดีเอ็นเอไดมากกวา 

สงผลใหเกิดการแยกของสายดีเอ็นเอและเกิดการเปลี่ยนแปลง

รูปรางจากแบบวงแหวนที่พันเกลียวซอนไปเปนแบบวงแหวนที่มี

ช องเปดได มากกวาซึ ่งสอดคลองกับผลที ่ไดจากอะกาโรส-

เจลอิเล็กโทรโฟรีซิส 

4.4 เซนเซอร (Sensors) 

 เนื ่องจากแกรฟนควอนตัมดอทมีสมบัติเชิงแสงโดย

สามารถคายแสงฟลูออเรสเซนตที ่ใหความเขมสูง มีสมบัติทาง

อิเล็กตรอนและสมบัติทางไฟฟาเคมีทำใหแกรฟนควอนตัมดอทมี

ความไวต อการรบกวนส ูง ด ั งน ั ้นจ ึงม ีการนำเอาแกรฟน

ควอนตัมดอทมาใชเปนเซนเซอรในการตรวจวัดไอออนโลหะและ

โมเลกุลทางชีวภาพและติดตามการเปลี่ยนแปลงและหาปริมาณ

ของสารเปาหมายไดหลากหลายวิธี เชน การเปลี่ยนแปลงของ

สัญญาณฟลูออเรสเซนต ติดตามการเปลี ่ยนแปลงสี และใช

เทคนิคทางเคมีไฟฟา เปนตน (Zheng et al., 2015) 

 ในป   ค .ศ. 2017 Long Sun และคณะ (Sun et al., 

2017) ไดรายงานการตรวจวัดคลอเรสเตอรอลดวยเทคนคิฟลูออ-

เรสเซนตสเปกโทรสโกป โดยใชตัวตรวจวัดคือสารประกอบ

เชิงซอนระหวางแกรฟนควอนตัมดอทที่เจือดวยอะตอมไนโตรเจน 

(N-GQDs) และโครเมียมพิโคลิเนต (CrPic) โดยเริ่มแรกไดทำการ

สังเคราะห N-GQDs ดวยกระบวนการไฮโดรเทอรมอลที่อุณหภูมิ 

190 C เปนเวลา 4 ชั่วโมง โดยใชกรดซิตริกและเอทิลลีนไดเอมีน

เปนสารตั้งตน ซึ่ง N-GQDs ที่สังเคราะหไดนี้ใหความเขมของการ

คายแสงฟลูออเรสเซนตที ่สูง จากนั ้นหลังจากการทำการตอกิ่ง 

(grafting) N-GQDs ดวย CrPiC โดยมีซีสเตเอมีนเปนตัวเชื่อมขวาง 

พบวาหลังจากการตอกิ่ง N-GQDs ดวย CrPiC ทำใหความเขมของ

การคายแสงฟลูออเรสเซนตของ N-GQDs ลดลง เนื่องจากเกิดการ

ถายโอนอิเล็กตรอนที่เหนี่ยวนำดวยแสง (พีอีที) โดยมี CrPiC ทำ

หนาที ่เปนตัวใหอิเล็กตรอนและ N-GQDs ทำหนาที ่เปนตัวรับ

อิเล็กตรอน และเมื่อเติมสารเปาหมายคือคลอเรสเตอรอลลงใน

ระบบเซนเซอร N-GQDs/CrPiC พบวาความเขมของการคายแสง

ฟลูออเรสเซนตของ N-GQDs เพ่ิมข้ึน เนื่องจาก CrPiC เปนตัวรับท่ี

ชอบจับกับโมเลกุลคลอเรสเตอรอลและมีอันตรกิริยาแบบไพ-ไพ 

ระหวาง CrPiC และคลอเรสเตอรอลซึ่งเปนแรงเสริมทําใหเกิด

อันตรกิริยากันแข็งแรงยิ่งขึ้น ซึ่งชวยขัดขวางการเกิดการถายโอน

อิเล็กตรอนที่เหนี่ยวนำดวยแสง (พีอีที) ทำให N-GQDs มีความเขม

ของการคายแสงฟลูออเรสเซนตของ N-GQDs เพิ ่มขึ ้น ทำให
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สามารถตรวจวัดคลอเรสเตอรอลไดโดยผานกลไกการลดและเพ่ิม 

(off-on) ของสัญญาณฟลูออเรสเซนตดังแสดงในรูปที่ 15 และ

ระบบเซนเซอรนี ้สามารถตรวจวัดคลอเรสเตอรอลไดอยางมี

ประสิทธิภาพโดยมีความจำเพาะเจาะจงสูงและมีขีดจำกับการ

ตรวจวัดที่ความเขมขนต่ำคือ 0.4 ไมโครโมลาร อีกทั้งยังสามารถ

ประยุกตใชในการหาปริมาณของคลอเรสเตอรอลในตัวอยางจริง

คือเซรั่มของมนุษยได 

 

 

 

 

 

 

 

 

 

 

 

รูปที่ 14 อะกาโรสเจลอิเล็กโทรโฟรีซิสของแกรฟนออกไซด (GO) และแกรฟนควอนตัมดอท (GQDs) กับไอออนโลหะคอปเปอร 

(Cu2+)  หลังจากบมที่อุณหภูมิ 37 C เปนเวลา 2 ชั่วโมงในสารละลายทริสบัฟเฟอรความเขมขน 50 mM (พีเอช 2) โดยใช

ความเขมขนของ Cu2+ เทากับ 10 mM และใชความเขมขนของ GO และ GQDs เทากับ 50 g/mL (Zhou et al., 2012) 

 

 
 

รูปที่ 15 แผนภาพกลไกการลดและเพิ่มของสัญญาณฟลูออเรสเซนตของ N-GQDs หลังจากการเติม CrPiC และคลอเรสเตอรอล

(Sun et al., 2017)  
 

4.5 ตวัเรงเชิงแสง (Photocatalyst) 

 การนำแกรฟนควอนตัมดอทไปประยุกตใชเปนตัวเรง

เชิงแสงถือเปนอีกหนึ ่งการประยุกตใชที ่นาสนใจและยังไมมี

รายงานมากนักในปจจุบัน โดยตัวเรงเชิงแสงที่สำคัญในปจจุบัน

ที ่ ม ี ร ายงานอย างแพรหลายคือสารกึ ่ งตั วนำไทเทเนียม- 

ไดออกไซด (TiO2) เนื่องจากมีความเสถียรเชิงความรอนสงู ทนตอ

การกัดกรอนไดดี มีราคาถูกและไมเปนพิษ อีกทั้งยังสามารถ

ดูดกลืนแสงยูวีไดดี ทำใหนิยมนำมาทำเปนตัวเรงเชิงแสงภายใต

แสงยูวี แตยังมีขอจำกัดตรงที่ TiO2 ดูดกลืนแสงไดดีในชวงยูวี

เทานั้น ทำใหไมสามารถเปนตัวเรงเชิงแสงในชวงวิสิเบิลได ดังนั้น

การพัฒนาตัวเรงเชิงแสงที่สามารถดูดกลืนแสงในชวงวิสิเบิลจึง

เปนสิ่งท่ีนาสนใจเนื่องจากในแสงอาทิตยมีแสงวิสิเบิลมากกวาแสง

ยูวแีละเนื่องจากแสงในชวงวิสิเบิลมีพลังงานนอยกวาแสงในชวงยู

วี ทำใหการใชแสงวิสิเบิลในการสลายสียอมมีความรอนเกิดขึ้น

นอยกวาการใชแสงยูวีจึงไมจำเปนตองใชระบบหลอเย็น ซึ่งนำไป

ประยุกตใชงานไดงายและมีตนทุนต่ำ และหนึ่งในสารก่ึงตัวนำท่ีมี

รายงานวาสามารถนำมาประยุกตใชเปนตัวเรงเชิงแสงภายใตแสง

วิสิเบิลไดก็คือ แกรฟนควอนตัมดอท (Li et al., 2013) 
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 ในป   ค .ศ. 2016 Jiexin Fan และคณะ (Fan et al., 

2016) ไดรายงานการสลายสียอมเมทิลีนบลู (Methylene Blue) 

โดยใชแกรฟนควอนตัมดอทเปนตัวเรงเชิงแสงภายใตการฉายแสง

วิสิเบิล โดยแกรฟนควอนตัมดอทที่ Jiexin รายงานมีทั้งหมดสาม

ชนิดคือ แกรฟนควอนดัมดอท (GQDs) แกรฟนควอนตัมดอท 

ที่ดัดแปลงหมูฟงกชันดวยพอลิเอทธิลีนอิมมีน (GQDs-PEIs) และ

แกรฟนควอนตัมดอทที่ดัดแปลงหมูฟงกชันดวยพอลิ เอทธิ ลี น

ไกลคอล (GQDs-PEGs) โดยแกรฟนควอนตัมดอททั้งสาม

ชนิดสามารถสลายสียอมเมทิลีนบลูไดภายใตการฉายแสงวิสิเบิล

ดวยหลอดวสิิเบิล (A 300 W Xe lamp) โดยสามารถสลายสียอม

ไดเกือบหมดภายในเวลา 4 ชั่วโมง ดังแสดงในรูปที่ 16 ซึ่งแสดง

ใหเห็นวาแกรฟนควอนตัมดอทสามารถนำมาประยุกตใชเปน

ต ัวเร งเช ิงแสงภายใต แสงว ิส ิ เบ ิลได อย างม ีประส ิทธิภาพ 

นอกจากนี้ยังสามารถควบคุมอัตราการสลายตัวของสียอมไดโดย

การดัดแปลงหมูฟงกชันดวยโมเลกุลพอลิเมอรท่ีแตกตางกัน 

 

 

รูปที่ 16 สเปกตราการดูดกลืนแสงยูว-ีวิเบิลของสียอมเมทิลีนบลูหลังจากการฉายแสงวิสิเบิลโดยใช (a) GQDs (b) GQDs-PEIs และ

(c) GQDs-PEGs เปนตัวเรงเชิงแสงที่เวลาตาง ๆ และ (d) กราฟเปรียบเทียบอัตราในการสลายสียอมเมทิลีนบลูของตัวเรง

ทั้งสามชนิด (Fan et al., 2016) 
 

4.6 ประย ุกตใช งานทางด านพลังงาน (Energy-related 

applications) 

 การนำแกรฟนควอนตัมดอทไปประยุกตใชงานทางดาน

พลังงานถือเปนการประยุกตใชงานที่นาสนใจ เชน การนำแกรฟน

ควอนต ั มดอทไปใส  ในอ ุปกรณ ออปโตอ ิ เ ล ็ กทรอน ิ กส  

(optoelectronic devices) ซึ่งแบงออกเปนสองกลุมใหญ ๆ  คือ 

1) อุปกรณที่ทำหนาที่เปลี่ยนแสงใหเปนสัญญาณทางไฟฟา ไดแก 

เ ซ ล ล  แ ส ง อ า ท ิ ต ย   (solar cell) แ ล ะ ต ั ว ต ร ว จ ร ั บ แ ส ง 

(photodetector) ชนิดตาง ๆ เชน โฟโตไดโอด (photodiode) 

และโฟโตทรานซิสเตอร (phototransistor) 2) อุปกรณที ่ทำ

หนาที่เปลี่ยนสัญญาณทางไฟฟาให เปนแสง ไดแก  สารกึ่ ง

ตัวนำ เชน ไดโอดเปลงแสง (light-emitting diode, LED) 

 เนื ่องจากสมบัต ิเชิงแสงและเชิงไฟฟาของแกรฟน

ควอนตัมดอทสามารถปรับเปลี่ยนไดขึ้นอยูกับหมูฟงกชันที่อยูบน

พื ้นผิวของแกรฟนควอนตัมดอท อีกทั้งสมบัติการกระจายตัว 

(dispersibiity) ขึ ้นอยู กับความชอบน้ำ (hydrophilicity) และ
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ความไมชอบน้ำ (hydrophobicity) ซึ่งควบคุมดวยหมูฟงกชันที่

ถูกเติม (functionalized) ซึ่งมีความสำคัญอยางยิ่งเพราะชวยให

แกรฟนควอนตัมดอทสามารถรวมเขากับชั้นที่เปนพอลิเมอรซึ่ง

เปนองคประกอบภายในอุปกรณออปโตอิเล็กทรอนิกสไดเปน

อยางด ี

 ในป ค.ศ. 2015 Jung Kyu Kim และคณะ (Kim et 

al., 2015) ไดคิดคนอุปกรณโฟโตวอลเทอิก (photovoltaic cell) 

หรือเซลลแสงอาทิตยโดยนำแกรฟนควอนตัมดอทไปรวมเขากับ

ชั ้นที ่เปนพอลิเมอรดังแสดงในรูปที ่ 17 และพบวาแกรฟน

ควอนต ัมดอทที ่ ใส  เข  าไปน ั ้นช วยเพ ิ ่มประส ิทธ ิภาพการ

เปลี ่ยนแปลงพลังงาน (power conversion efficiency, PCE) 

จากแสงเปนสัญญาณไฟฟา เนื ่องจากอะตอมออกซิเจนที่เปน

องคประกอบของหมู ฟงกชันในแกรฟนควอนตัมดอทสามารถ

กระจายตัวไดดีในชั้นพอลิเมอร PEODT:PSS ซึ ่งชวยปรับปรุง 

คาความหนาแนนกระแสไฟฟาลัดวงจรตอหนึ่งหนวยพื้นที่โฟโต-

อ ิ เล ็กโทรด (short circuit current density, JSC) ให  เพ ิ ่มขึ้น

อยางมีนัยสำคัญ สงผลใหประสิทธิภาพการเปลี่ยนพลังงานแสง 

เป  นพล ั งงาน ไฟฟ  า  ( Incident Photon to Charge Carrier 

Efficiency, IPCE) มีคาสูงข้ึนดวย ดังแสดงในรูปที่ 17

 

 

รูปที่ 17 (a) ภาพสวนประกอบของอุปกรณโฟโตวอลเทอิก ประกอบไปดวยโลหะอลูมิเนียม (Al) ชั้นบัลคเฮทเทอโรจังชั่น(Bulk 

heterojunctions, BHJ) แก ร ฟ  น ค วอ น ต ั ม ดอ ท  (GQDs) ช ั ้ น  poly(3 , 4 - ethylenedioxythiophene): poly(4 -

styrenesulfonate) (PEODT: PSS) และชั้นกระจกอินเดียม ดีบุกออกไซด (ITO glass) และ (b) กราฟแสดงการเพิ่มขึ้น

ของประสิทธิภาพการเปลี่ยนพลังงานแสงเปนพลังงานไฟฟา (% IPCE) หลังจากเติมแกรฟนควอนตัมดอท (Kim et al., 

2015) 
 

 ดวยคุณสมบัติที่นาสนใจและขนาดที่เล็กของแกรฟน

ควอนตัมดอท อีกทั ้งยังมีความเปนพิษต่ำตอสิ ่งมีชีวิต ทำให 

แกรฟนควอนตัมดอทสามารถนำไปประยุกตใชงานไดหลากหลาย

สาขาทั้งทางดานกายภาพและทางชีวภาพดังที่กลาวมาขางตน 

นอกจากนี้ยังมีนำไปประยุกตใชในงานอื่น ๆ ดังแสดงในตาราง 

ที ่ 2 ดวยเหตุนี้ทำใหแกรฟนควอนตัมดอทนั้นเปนหนึ ่งในวัสดุ 

นาโนที่ไดรับความสนใจและมีการศึกษา อยางแพรหลายที่ใน

ปจจุบัน

 

 

 

 

 

 

 

 

a) b) 
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ตารางที่ 2 ตัวอยางการประยุกตใชงานของแกรฟนควอนตัมดอทในงานตาง ๆ 

การประยุกตใชงาน ชนิดของแกรฟนควอนตัมดอท วิธีที่ใชในการสังเคราะห อางอิง 

ดานการแพทย    

ตัวขนสงเปปไทด ไกลซีน-โพรลีน- 

กลูตาเมต (GPE) ไปยังระบบประสาท

สวนกลาง 

Graphene quantum dots (GQDs) 

conjugated neuroprotective 

peptide glycine-proline-glutamate 

(GQDG) 

ไฮโดรเทอรมอล (Xiao et al., 2016) 

ติดตามปริมาณของเอนไซม 

อัลคาไลนฟอสฟาเตส (ALP) ในเซลล

สิ่งมีชีวิต 

Boron-doped graphene quantum 

dots (BGQDs) 

กระบวนการทางไฟฟาเคมี (Chen et al., 2017) 

ตัวขนสงยา Mesoporous silica nanoparticles 

capped with graphene quantum 

dots 

ปฏิกิรยิาออกซิเดชัน 

โดยใชกรด 

(Gao et al., 2019) 

ดานพลังงาน    

ตัวเรงปฏิกิริยาเชิงแสงเพื่อ 

แยกสลายน้ำและเรงปฏิกิรยิารีดักชัน

ของคารบอนไดออกไซด 

Graphene quantum dots (GQDs) ปฏิกิรยิาออกซิเดชัน 

โดยใชกรด 

(Yan et al., 2018) 

เซลลแสงอาทิตย (solar cell) Carboxyl edge-functionalized 

graphene quantum dot (COOH-

GQD) 

- (Sharma and Jha., 2019) 

ดานเซนเซอร    

เซนเซอรทางฟลูออเรสเซนต 

สำหรับตรวจวัดไอออนเหล็ก (Fe3+) 

Graphene quantum dots (GQDs) กระบวนการทางไฟฟาเคม ี (Ananthanarayanan et al., 

2014) 

เซนเซอรทางฟลูออเรสเซนต 

สำหรับตรวจวัดไอออนไอโอไดด (I-) 

ในตัวอยางผงนม 

Nitrogen-doped graphene 

quantum dots (N-GQDs) 

ไฮโดรเทอรมอล (Zhang et al., 2018) 

เซนเซอรทางไฟฟาเคมี 

สำหรับตรวจวัดหาปรมิาณ 

ยาเพนท็อกซิฟลลีน (Pentoxifylline) 

Au nanoclusters@graphene 

quantum dots (Au NCs@GQDs) 

ไพโรไลซิส (Zhang et al., 2019) 

ตรวจวัดปริมาณยาไอบูโพรเฟน (IBP) 

ในตัวอยางยา ซีรั่มในเลือดมนุษยและ

ในตัวอยางน้ำเสีย 

Nanocomposite from nitrogen-

doped graphene quantum dots 

and gold nanoparticles  

(AuNPs@N-GQDs) 

ไฮโดรเทอรมอล (Roushani and Shahdost-fard., 

2019) 

 

5. สรุป 

 บทความนี้ไดนำเสนอแกรฟนควอนตัมดอทซึ่งเปนหนึ่ง

ในว ัสด ุ นา โนท ี ่ ไ ด  ร ั บความสนใจ เป  นอย  า งมาก ในหมู

นักวิทยาศาสตรในปจจุบัน โดยมุงเนนการนำเสนอคุณสมบัติที่

สำคัญ วิธกีารสังเคราะหท่ีนิยมใชในปจจุบันทั้งการสังเคราะหจาก

ใหญไปเล ็ก (top-down approaches) และจากเล ็กไปใหญ 

(bottom-up approaches) และตัวอย างการนำเอาแกรฟน

ควอนตัมดอทไปประยุกตใชงานดานตาง ๆ เชน การถายภาพทาง

ชีวภาพ ตัวขนสงยา ตัวแยกดีเอ็นเอ เซนเซอร ตัวเรงเชิงแสง และ

เซลลแสงอาทิตย เปนตน ซึ่งสามารถพัฒนาเปนอุปกรณตาง ๆ ที่

ใชงานไดจริงในอนาคตตอไป 
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