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บทคัดย่อ 
 การวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบประสิทธิภาพพารามิเตอร์ของโมเดล M-GRM โดยการจำลองสถานการณ์ด้วยวิธี
มอนติคาร์โลด้วยวิธีการประมาณค่าโมเดลเชิงพยากรณ์แบบ Posterior กำหนดค่า b = -2.5, -2, -1, 0, 1, 2, 2.5 ค่า c = 0.1, 0.2, 
0.3,   =0.3, 1.0, 1.7, = -3, -2, -1, 0, 1, 2, 3, และ n = 50, 100, 200, 400, จำนวน 1,764 สถานการณ์ ด้วยโปรแกรม R ทำซ้ำ
จำนวน 10,000 รอบ ผลการวิจัยปรากฎว่า พารามิเตอร์ b วิธีการประมาณค่าโมเดลเชิงพยากรณ์แบบ Posterior มีประสิทธิภาพดีกว่า
วิธี Likelihood ratio ในการตรวจสอบสมบัติ Unidimentional ของโมเดล M-GRM เม่ือขนาดตัวอย่างเป็น 50, 100 และ 400 สำหรับ
พารามิเตอร์ c วิธีการประมาณค่าวิธี Likelihood ratio มีประสิทธิภาพดีกว่าวิธีโมเดลเชิงพยากรณ์แบบ Posterior ในการตรวจสอบ
สมบัติ Unidimentional ของโมเดล M-GRM 
 

ABSTRACT 
This research aims to compare the performance of M-GRM models parameter with Monte Carlo simulation 

based on approximation method of Posterior predictive model (when b = -2.5,  -2, 0, 1, 2, 2.5: c = 0.1,0.2, 0.3:  = 
0. 3, 1. 0, 1. 7,  =  - 3, - 2, - 1, 0, 1, 2, 3 and n =  50, 100, 200, 400 with 1,764 situations) .  For determination the 
unidimentional property of M-GRM using R Program to replicate 10,000 recursions with 1,764 situations, the sample 
size of 50, 100, 200, 400 was used.  The result shows that the b parameter from posterior predictive model has 
more performance than likelihood method where as c parameter, form likelihood method has more performance 
in vice versus. 
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บทนำ 
โมเดล Modified Graded Response Model (M-GRM) เป็นโมเดลที่เหมาะสำหรับวิเคราะห์แบบสอบถามที่มีลักษณะเป็น

มาตรประมาณค่า (Rating Scale) โดยแบบสำรวจจะมีสเกลเท่ากันทั้งฉบับ เช่น แบบสำรวจทัศนคติข้อคำถามในแบบสำรวจจะต้องมี
จำนวนตัวเลือกรายการคำตอบเท่ากัน แต่สามารถมีค่าพารามิเตอร์ความชันแตกต่างกันได้ ใช้วิธีการคำนวณความน่าจะเป็นในการเลือก
รายการคำตอบแบบสองขั้นตอนเหมือนในโมเดล GRM พารามิเตอร์เทรชโฮลด์ ( ij ) ในโมเดล M-GRM แบ่งออกเป็นสองส่วน ได้แก่ 1) 
พารามิเตอร์ตำแหน่ง (Location Parameters: ib ) ของข้อคำถามแต่ละข้อ และ 2) ชุดของพารามิเตอร์เทรชโฮลด์ (Threshold 
Parameters: ic ) ของแบบสำรวจทั้งฉบับ โมเดล M-GRM จึงมีการประมาณค่าพารามิเตอร์ต่าง ๆ น้อยกว่าโมเดล GRM จุดเด่นของ
โมเดล M-GRM เมื่อเปรียบเทียบกับโมเดล GRM คือ มีพารามิเตอร์ตำแหน่งแยกออกมาจากชุดของพารามิเตอร์เทรชโฮลด์เหมาะสมกับ
แบบสำรวจที่มีรูปแบบของข้อคำถามแบบเดียวกันทั้งฉบับ การตรวจสอบความเหมาะสมของโมเดลสามารถตรวจสอบได้จากความ
สอดคล้องในระดับข้อคำถาม (Item Fit) ความสอดคลอ้งในระดับบุคคล (Person Fit) และ ความสอดคล้องในระดับโมเดล (Fit Model)  
วิธีการตรวจสอบความสอดคล้องในระดับโมเดลโดยสถิติแบบด้ังเดิมมีหลายวิธี ได้แก่ Yen’s Q1 (1981) และ Bock’s X2 (1960) โดยใช้
สถิติใช้วิธีการทดสอบโดยใช้ค่าสถิติ Chi-Square สำหรับ McKinley and Mills, 1985 ได้พัฒนาสถิติ 2G  โดยใช้ Likelihood Ratio 
มาทำการทดสอบและใช้หลักการสถิติ Chi-Square  มากไปกว่านั้น Smith (1996) ได้พัฒนาสถิติ OUTFIT and INFIT พัฒนามาจาก
การใช้สถิติ Chi-Square อยู่เช่นกัน โดยมีพื้นฐานจากวิธีการของ Yen’s Q1 และ Bock’s X2 โดยค่าของ OUTFIT and INFIT และ 
Orlando and Thissen (2000) ได้พัฒนาวิธีการทดสอบจาก 2 วิธีท่ีผ่านมาเรียกว่า  S − 2  and S − 2G   

การใช้งานสถิติ Chi-square มีปัญหามากขึ้น จากการทดสอบความเหมาะสมของโมเดล โดยถ้ามีการอ้างถึงการกระจายตัว
แล้ว Degree of Freedom จะถูกกำหนดให้ถูกต้อง (Glas & Falcón, 2003) ได้กล่าวไว้ว่า สถิติ Chi-Square ไม่เหมาะที่จะนำมาใช้
กับ IRT เพราะข้อมูลที่สังเกตุได้จะมีค่าสถิติที่ไม่มีการกระจายแบบเอกนาม (Multinominal Distribution) ซึ่งจะเป็นปัญหากับจำนวน
ขององศาอิสระ เพ่ือแก้ปัญหาน้ี Glas (1999) ได้ใช้สถิติ Lagrange Multipier (LM) ซ่ึงจะเป็นวิธีเดียวท่ีจะจัดการค่า Residual กับการ
ฝ่าฝืนข้อกำหนดของโมเดลได้ โดย Glas ได้ใช้แนวทางทดสอบแบบ LM ในแนวคิดของ Maximum Likelihood (ML) อย่างไรก็ตาม 
MML อาจจะให้ประสิทธิผลท่ีไม่ดีนักสำหรับแบบสำรวจท่ีมีหลายระดับหรือหลายมิติ เพ่ือหลีกเลี่ยงปัญหา การใช้วิธีการของเบส์ จึงเป็น
ท่ีนิยมใช้ในสำหรับการประมาณค่าพารามิเตอร์ท่ีมีความซับซ้อนของโมเดล IRT 

ต่อมาได้มีการประยุกต์โมเดลเชิงพยากรณ์แบบ Posterior ของเบส์เพื่อประเมินข้อกำหนดของ unidimention model 
ประโยชน์ของวิธีการแบบเบส์คือเมื ่อนำไปใช้ผ่าน Markov Chain Monte Carlo (MCMC) จะง่ายต่อการคำนวณการกระจายตัว 
Posterior โดยหลักการคำนวณใช้การหาค่า p-value ของโมเดลที่สร้างขึ้น เพื่อพิจารณาความเหมาะสมของโมเดลเทียบระหว่างข้อมูล
ท่ีสร้างข้ึนชุดแรกกับข้อมูลท่ีสร้างข้ึนชุดถัดไปว่าแตกต่างกันหรือไม่ (Khalid, & Glas, 2016) จากข้อจำกัดของสถิติ Chi-square ในเรื่อง
ขององศาอิสระ ได้มีการพัฒนาเครื ่องมือวิเคราะห์แบบเบส์ (Bayesian Model Diagnostic Tool), การตรวจสอบแบบจำลอง 
Posterior Predictive Model Checking (PPMC) ซึ่งใช้กันอย่างแพร่หลายในการตรวจสอบความเหมาะสมของตัวแปรแฝง โดยใช้ 
Posterior p-value ในการวัดความคลาดเคลื่อนจะวัดชุดข้อมูลจำลองและข้อมูลจริงท่ีกำหนดหมายเลขในการจำลองสถานการณ์แต่ละ
ครั้ง ขนาดของกลุ่มตัวอย่าง และมิติข้อมูลของปัจจัยต่างๆ การศึกษาประสิทธิภาพของวิธีการประมาณค่าด้วยวิธีนี้มีความแข็งแกร่งและ
มีลักษณะเฉพาะตัวที่ประเมินระหว่างข้อมูลที่จำลองสถานการณ์และข้อมูลจริงจึงมีความสามารถในการประเมินความเหมาะสมของ
โมเดลได้มากข้ึน (Wu, Yuen & Leung, 2014) 

มีนักสถิติแบบเบส์ได้พัฒนาวิธีการตรวจสอบความสอดคล้องของโมเดลมีหลายวิธี ได้แก่ Bayesian Methods for Evaluating 
Fit วิธีการที่นิยมกันมาในการวัดผลทางการศึกษาเนื่องจากมีความยืดหยุ่นในการประเมินรูปแบบที่ซับซ้อนและมีซอฟต์แวร์ที่ช่วยในการ
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ประมาณค่าแบบเบส์ โดยเริ่มการใช้งานแบบเบส์จะเริ่มจากเน้นที่การประมาณการค่าพารามิเตอร์โมเดลการตอบสนอง (Kim & Bolt, 
2007; Patz & Junker, 1999) โดยในปัจจุบันได้มีการนำมาใช้ในการประเมินความเหมาะสมของโมเดลการตอบสนองข้อคำถาม 
(Hoijtink, 2001; Sinharay, 2006; Vriens and Sinharay, 2006) Bayesian Network or Bayesian Inference Network; BNs or 
BINs เป็นวิธีที่ต้องการที่จะดูรายละเอียดที่เป็นลักษณะที่แสดงถึงความหลากหลายของความรู้ ทักษะ และความสามารถของผู้ตอบหรือ
ผู้เรียนแต่ละคน ซ่ึงเทคนิคสำหรับการให้คะแนนลักษณะนี้คือการใช้โมเดลการวินิจฉัยแบบเครือข่ายเบส์เซียน หรือเครือข่ายการอนุมาน
แบบเบส์เซียน เครือข่ายแบบเบส์เซียนเป็นเป็นเครื่องมือที่เหมาะสมกับการประเมินโดยใช้แบบสอบซึ่งโมเดลจะแสดงให้เห็นว่าในการ
แก้ปัญหาข้อสอบแต่ละข้อต้องใช้ทักษะใดบ้างและใช้กี่ทักษะ ตัวแปรที่อยู่ในเครือข่ายเบส์เซียนจะเป็นระดับที่แบ่งแยกให้ขาดจากกัน 
(ตัวแปรแบบจัดประเภท) ที่นำมาระบุระดับความสามารถของผู้ตอบ แนวคิดของเครือข่ายเบส์เซียน หรือ รู้จักกันดีในชื่อของ เครือข่าย
การอนุมานแบบเบส์เซียนมีจุดเริ่มต้นจากทฤษฏีโมเดลกราฟิก (Graphical Model) ซึ่งขั้นต่อไปคือ การอธิบายรูปแบบความน่าจะเป็น
สำหรับการตอบสนองข้อสอบจากผู้สอบกับข้อสอบแต่ละข้อขึ้นอยู่กับความสามารถจากทักษะของผู้ตอบที่ต้องใช้ในการแก้ข้อสอบข้อ
นั้นๆ ค่าสถิติแบบเบส์โดยใช้เทคนิค Posterior Predictive Model Checking (PPMC) เป็นวิธีการที่มีความยืดหยุ่นสูงในการประเมิน
ความเหมาะสมของโมเดลการตอบสนองข้อสอบโดยหลักการของ PPMC จะเป็นการเปรียบเทียบค่าการตอบสนองข้อคำถามระหว่าง
ค่าท่ีสังเกตุได้และค่าทำนายในการวิเคราะห์ค่าสถิติ (Residual Analysis) โดยมีการกำหนดตัวแปรในสถานการณ์จำลองจาก Posterior 
Distribution โดยมีการสุ่มค่าพารามิเตอร์ความสามารถ (Ability Parameter) ข้ึนเพ่ือใช้ในการทดสอบ 

ผู้วิจัยจึงสนใจศึกษาการเปรียบเทียบประสิทธิภาพพารามิเตอร์ของโมเดล M-GRM โดยการจำลองสถานการณ์ด้วยวิธีมอนติ-
คาร์โลด้วยวิธีการประมาณค่าโมเดลเชิงพยากรณ์แบบ Posterior เพ่ือเป็นประโยชน์ในการวิเคราะห์แบบสำรวจบคุลิกภาพแบบแสดงตัว
ของนักศึกษาระดับปริญญาตรีโดยตรวจสอบความเหมาะสมของโมเดลการตอบสนองข้อสอบระดับโมเดลโดยใช้โมเดล M-GRM ด้วยวิธี
แบบด้ังเดิมและวิธีการแบบเบส์ เม่ือโมเดลท่ีใช้ในการตอบสนองข้อสอบมีความเหมาะสมส่งผลให้การอ้างอิงเกี่ยวกับการใช้แบบสำรวจมี
ความน่าเชื่อถือมากยิ่งขึ้น เพื่อเป็นประโยชน์ในการพัฒนานักศึกษาของครูแนะแนวในการแนะแนวอาชีพของนักศึกษาและประโยชน์ใน
การคัดเลือกบุคลากรให้ทำงานตรงตามบุคลิคภาพ 
 

วิธีการดำเนินการวิจัย 
 การตรวจสอบความเหมาะสมของโมเดลโดยใช้การทดสอบด้วยวิธี Posterior Predictive Model Checking (PPMC) แสดง
ข้ันตอนการพัฒนาวิธีการ Posterior Predictive Model Checking ในการตรวจสอบความสอดคล้องของโมเดล M-GRM ได้ดังต่อไปน้ี 

𝑃௜௫
∗ ሺ𝜃ሻ ൌ

𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ
1 ൅ 𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ

 

เม่ือ 
)(* ixP  คือ ความน่าจะเป็นที่ผู ้ตอบมีคุณลักษณะ   จะตอบข้อ i ด้วยการเลือกรายการคำตอบที่ x หรือสูงกว่า เม่ือ 

x=1,2,…, im  
i  คือ ค่าพารามิเตอร์ความชันร่วมของข้อคำถามท่ี i 

ib   คือ ค่าพารามิเตอร์ตำแหน่งของโค้ง OCC หรือ ค่าความยากของข้อคำถามท่ี i 
ic   คือ ค่าพารามิเตอร์ Threshold สำหรับรายการข้อคำถามท้ังฉบับ 
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โดยฟังก์ชันดังกล่าวมีวิธีการหาโมเดลเชิงพยากรณ์แบบ Posterior ดังนี้ 
1. กำหนด )(P ~ )c,b(istlog  โดยฟังก์ชันการแจกแจงความน่าจะเป็นของ   คือ 

𝑃௜ሺ𝜃|𝑏௜ሻ ൌ
𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ

1 ൅ 𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ
 

 และ 

𝑃௜ሺ𝜃|𝑐௜ሻ ൌ
𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ

1 ൅ 𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ
 

 
2. หาค่าภาวะน่าจะเป็นของ )(iP  จาก 

𝐿ሺ𝑏௜ሻ ൌ ෑ
𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ

1 ൅ 𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ

௡

௜ୀଵ

 

 และ 

𝐿ሺ𝑐௜ሻ ൌ ෑ
𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ

1 ൅ 𝑒𝑥𝑝ሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿ

௡

௜ୀଵ

 

 
3. กำหนดให้ 𝑏~Nሺ0,1ሻ เป็นการแจกแจงก่อนโดยมีฟังก์ชันเป็น 

𝑔ሺ𝑏௜ሻ ൌ
1

√2𝜋
𝑒𝑥𝑝ሺ െ

ሺ𝑏௜ሻଶ

2
ሻ 

 และ 
กำหนดให้ 𝑐௜~Nሺ0,1ሻ เป็นการแจกแจงก่อนโดยมีฟังก์ชันเป็น 

𝑔ሺ𝑐௜ሻ ൌ
1

√2𝜋
𝑒𝑥𝑝ሺ െ

ሺ𝑐௜ሻଶ

2
ሻ 

  
 4. หาฟังก์ชันการแจกแจงภายหลังของ  b และ c คือ  

ℎሺ𝑏௜|𝜃ሻ ൌ
𝐿ሺ𝑏௜ሻ𝑔ሺ𝑏௜ሻ

׬ 𝐿ሺ𝑏௜ሻ𝑔ሺ𝑏௜ሻ𝑑𝑏௜
ஶ

଴

 

 และ 
ℎሺ𝑐௜|𝜃ሻ ൌ ௅ሺ௖೔ሻ௚ሺ௖೔ሻ

׬ ௅ሺ௖೔ሻ௚ሺ௖೔ሻௗ௖೔
ಮ

బ
    (William, 2007) 

 รายละเอียดแสดงดังรูปท่ี 1 
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รูปท่ี 1 ข้ันตอนการพัฒนาวิธีการโมเดลเชิงพยากรณ์แบบ Posterior ในการตรวจสอบความสอดคล้องของโมเดล M-GRM 

 

 การเปรียบเทียบประสิทธิภาพของพารามิเตอร์ b และ c ของโมเดล M-GRM โดยใช้วิธีการโมเดลเชิงพยากรณ์แบบ Posterior 
กับวิธีการประมาณค่าแบบดั้งเดิม ด้วยวิธีการจำลองสถานการณ์ด้วยวิธีมอนติคาร์โล การเปรียบเทียบความสอดคล้อง (p-value) ของ
โมเดล Modified Graded Response Model (M-GRM) โดยใช้โมเดลเชิงพยากรณ์แบบ Posterior กับวิธี Likelihood Ratio ( 2G ) 
ในทฤษฏีการตอบสนองข้อสอบ ด้วยวิธีการจำลองสถานการณ์ด้วยวิธีมอนติคาร์โล สำหรับการหาค่า p-value นั้นเป็นเกณฑ์ทางสถิติท่ี
ใช้ในการทดสอบสมมติฐานโดยเกณฑ์ที่ใช้คือ ถ้าค่า p-value > .05 แบบวัดมีสมบัติ Unidimentional กล่าวคือเครื่องมือวัดที่สร้างข้ึน
สามารถวัดความสามารถของผู้ตอบได้จริงตามความสามารถของผู้ตอบ เช่น ความชันร่วมของข้อคำถาม ( i ) อยู่ในช่วง 0.3 ค่าความ
ยากของข้อคำถาม ( ib ) อยู่ในช่วง 2.0 และ ค่าThreshold แต่ละรายการคำตอบทั้งฉบับ ( ic ) มีค่า 0.3 โดยที่ความน่าจะเป็นท่ี
ความสามารถของผู้ตอบเป็น 0 ( ( )P  ) มีค่าเท่ากับ 0.60 ถ้าค่า p-value > .05  กล่าวคือ ผู้ตอบแบบวัดมีความสามารถในการตอบ
เป็นไปตามพารามิเตอร์ที่กำหนด โดยกำหนดค่า b = -2.5, -2, -1, 0, 1, 2, 2.5 ค่า c= 0.1, 0.2, 0.3,  =0.3, 1.0, 1.7, = -3, -2, 
-1, 0, 1, 2, 3, และ n= 50, 100, 200, 400, จำนวน 1,764 สถานการณ์ ด้วยโปรแกรม R 
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ผลการวิจัย 
4.1 ผลพัฒนาวิธีการประมาณค่าพารามิเตอร์ของโมเดล M-GRM โดยใช้วิธีการประมาณค่าแบบเบส์  

4.1.1 การหาการแจกแจงภายหลังของพารามิเตอร์ b 
ℎሺ𝑏௜|𝜃ሻ ൌ ௅ሺ௕೔ሻ௚ሺ௕೔ሻ

׬ ௅ሺ௕೔ሻ௚ሺ௕೔ሻௗ௕೔
ಮ

బ
 (William, 2007) 

 

ℎሺ𝑏௜|𝜃ሻ ൌ
ሺ

𝑒𝑥𝑝ሺ െ
ሺ𝑏௜ሻଶ

2 ሻ
∏ ሺ1 ൅ 𝑒𝑥𝑝 െሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿሻ௡

௜ୀଵ

׬ ሺ
𝑒𝑥𝑝ሺ െ

ሺ𝑏௜ሻଶ

2
∏ ሺ1 ൅ 𝑒𝑥𝑝 െሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿሻ௡

௜ୀଵ
𝑑𝑏௜

ஶ
ିஶ

 

 

 เน ื ่องจาก ׬ ሺ
௘௫௣ሺି

ሺ್೔ሻమ

మ
∏ ଵା௘௫௣ିሾఈ೔ሺఏିሺ௕೔ି௖೔ሻሻሿ೙

೔సభ
𝑑𝑏௜

ஶ
ିஶ  ไม่สามารถหาค่าได้ ใช ้การประมาณค่าด้วยวิธ ี Monte Carlo 

Integration โดย 

𝐼 ൎ
1
𝑁

෍ 𝑓ሺ𝑏௜ሻ

ே

௜ୀଵ

 

𝐼 ൎ
1
𝑁

෍
𝑒𝑥𝑝ሺ െ

ሺ𝑏௜ሻଶ

2 ሻ

∏ ሺ1 ൅ 𝑒𝑥𝑝 െሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿሻ௡
௜ୀଵ

ே

௜ୀଵ

 

 

 จากนั้นสร้างข้อมูล ib  จากการแจกแจงยูนิฟอร์ม (0,1) เพ่ือหาค่า I จะได้การแจกแจงภายหลัง คือ 

ℎሺ𝑏௜|𝜃ሻ ൌ
ሺ

𝑒𝑥𝑝ሺ െ
ሺ𝑏௜ሻଶ

2 ሻ
∏ ሺ1 ൅ 𝑒𝑥𝑝 െሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿሻ௡

௜ୀଵ

2𝐼
 

 
 แทนค่า b= -2.5, -2, -1, 0, 1, 2, 2.5, c= 0.1, 0.2, 0.3,  =0.3, 1.0, 1.7,  = -3, -2, -1, 0, 1, 2, 3, และ n= 50, 100, 
200, 400 เพ่ือหาค่า  ℎଵሺ𝑏௜|𝜃ሻ  
 ในทำนองเดียวกัน หาค่า ℎଶሺ𝑏௜|𝜃ሻ จากการสร้างข้อมูล 𝑏௜~Nሺ0,1ሻ  
 เนื่องจากวิธีการโมเดลเชิงพยากรณ์ใช้การเปรียบเทียบระหว่างข้อมูลของการแจกแจงก่อนกับข้อมูลของการแจกแจงภายหลัง 
ดังนั้นหาการแจกแจงผลต่างของตัวสถิติ ℎଵሺ𝑏௜|𝜃ሻ และ ℎଶሺ𝑏௜|𝜃ሻ เนื่องจาก 
 

𝑧 ൌ
ℎଵሺ𝑏௜|𝜃ሻ െ ℎଶሺ𝑏௜|𝜃ሻ

ට𝑉𝑎𝑟ሺℎଵሺ𝑏௜|𝜃ሻ
𝑛 ൅

𝑉𝑎𝑟ሺℎଶሺ𝑏௜|𝜃ሻ
𝑛

~Nሺ0,1ሻ 

 

ดังนั้น สามารถคำนวณค่า p-value ได้จากพื้นท่ีใต้โค้งของการแจกแจงปกติมาตรฐาน โดยท่ี 
( )p value P Z z    

 สำหรับวิธีแบบดังเดิมคำนวณค่า 2G  จาก 𝑏௜~logisticሺb, cሻ และคำนวณค่า p-value ได้จากพื้นท่ีใต้โค้งของการแจกแจง 
Chi-square โดยท่ี 

2 2
, 1( )np value P G      
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4.1.2 การหาการแจกแจงภายหลังของพารามิเตอร์ c  
ℎሺ𝑐௜|𝜃ሻ ൌ ௅ሺ௖೔ሻ௚ሺ௖೔ሻ

׬ ௅ሺ௖೔ሻ௚ሺ௖೔ሻௗ௖೔
ಮ

బ
   (William, 2007) 

 

ℎሺ𝑐௜|𝜃ሻ ൌ
ሺ

𝑒𝑥𝑝ሺ െ
ሺ𝑐௜ሻଶ

2 ሻ
∏ ሺ1 ൅ 𝑒𝑥𝑝 െሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿሻ௡

௜ୀଵ

׬ ሺ
𝑒𝑥𝑝ሺ െ

ሺ𝑐௜ሻଶ

2
∏ ሺ1 ൅ 𝑒𝑥𝑝 െሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿሻ௡

௜ୀଵ
𝑑𝑐௜

ஶ
ିஶ

 

 

 เนื่องจาก ׬ ሺ
௘௫௣ሺି

ሺ೎೔ሻమ

మ
∏ ଵା௘௫௣ିሾఈ೔ሺఏିሺ௕೔ି௖೔ሻሻሿ೙

೔సభ
𝑑𝑐௜

ஶ
ିஶ   ไม่สามารถหาค่าได้ 

  

ใช้การประมาณค่าด้วยวิธี  Monte Carlo Integration  

 โดย   𝐼 ൌ ׬ ሺ
௘௫௣ሺି

ሺ೎೔ሻమ

మ
∏ ଵା௘௫௣ିሾఈ೔ሺఏିሺ௕೔ି௖೔ሻሻሿ೙

೔సభ
𝑑𝑐௜

ஶ
𝒐  

 
    𝐼 ൎ ଵ

ே
∑ 𝑓ሺ𝑐௜ሻே

௜ୀଵ  

𝐼 ൎ
1
𝑁

෍
𝑒𝑥𝑝ሺ െ

ሺ𝑐௜ሻଶ

2 ሻ

∏ ሺ1 ൅ 𝑒𝑥𝑝 െሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿሻ௡
௜ୀଵ

ே

௜ୀଵ

 

 
 จากนั้นสร้างข้อมูล ic  จากการแจกแจงยูนิฟอร์ม (0,1) เพ่ือหาค่า I จะได้ การแจกแจงภายหลัง คือ 

ℎሺ𝑐௜|𝜃ሻ ൌ
ሺ

𝑒𝑥𝑝ሺ െ
ሺ𝑐௜ሻଶ

2 ሻ
∏ ሺ1 ൅ 𝑒𝑥𝑝 െሾ 𝛼௜ሺ𝜃 െ ሺ𝑏௜ െ 𝑐௜ሻሻሿሻ௡

௜ୀଵ

2𝐼
 

 แทนค่า b= -2.5, -2, -1, 0, 1, 2, 2.5, c= 0.1, 0.2, 0.3,  =0.3, 1.0, 1.7,  = -3, -2, -1, 0, 1, 2, 3, และ n= 50, 100, 
200, 400 เพ่ือหาค่า  ℎଵሺ𝑐௜|𝜃ሻ  ในทำนองเดียวกัน หาค่า ℎଶሺ𝑐௜|𝜃ሻ จากการสร้างข้อมูล 𝑐௜~Nሺ0,1ሻ  
 เนื่องจากวิธีการโมเดลเชิงพยากรณ์ใช้การเปรียบเทียบระหว่างข้อมูลของการแจกแจงก่อนกับข้อมูลของการแจกแจงภายหลัง 
ดังนั้นหาการแจกแจงผลต่างของตัวสถิติ ℎଵሺ𝑐௜|𝜃ሻ และ ℎଶሺ𝑐௜|𝜃ሻ  
 ผลการเปรียบเทียบความสอดคล้อง (p-value) ของโมเดล Modified Graded Response Model (M-GRM) โดยใช้โมเดล
เชิงพยากรณ์แบบ Posterior กับวิธี Likelihood Ratio ( 2G ) ด้วยวิธีการจำลองสถานการณ์ด้วยวิธีมอนติคาร์โล โดยกำหนดค่า b = -
2.5, -2, -1, 0, 1, 2, 2.5 ค่า c= 0.1, 0.2, 0.3,  =0.3, 1.0, 1.7, = -3, -2, -1, 0, 1, 2, 3, และ n = 50, 100, 200, 400, จำนวน 
1,764 สถานการณ์ ด้วยโปรแกรม R ของพารามิเตอร์ b และ c แสดงรายละเอียดดังตารางท่ี 1-4 
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ตารางท่ี 1 ผลการจำลองสถานการณ์ เม่ือ n = 50, c = 0.1, 0.2 และ 0.3,  = -3, -2, -1, 0, 1, 2, 3 

 

 จากตารางที่ 1 ผลการจำลองสถานการณ์ เมื ่อ n = 50, c = 0.1, 0.2 และ 0.3,  = -3, -2, -1, 0, 1, 2, 3 จำนวน 441 
สถานการณ์ของพารามิเตอร์ b ในการตรวจสอบสมบัติ Unidimentional เมื ่อ n = 50 ปรากฎว่า วิธีโมเดลเชิงพยากรณ์แบบ 
Posterior สามารถตรวจสอบสมบัติ Unidimentional ได้จำนวน 328 สถานการณ์ สำหรับวิธี Likelihood ratio สามารถตรวจสอบ
สมบัติ Unidimentional ได้จำนวน 270 สถานการณ์ สามารถสรุปได้ว่า วิธีโมเดลเชิงพยากรณ์แบบ Posterior มีประสิทธิภาพดีกว่าใน
การตรวจสอบสมบัติ Unidimentional ยกเว้นกรณีที่ 𝛼=0.3, b = -1, 0, 𝛼=1.0, b = -2, -1, 0 และ 𝛼=1.7, b = -2, -1, 0, 1 ผล
การจำลองสถานการณ์ จำนวน 441 สถานการณ์ของพารามิเตอร์ c ในการตรวจสอบสมบัติ Unidimentional เมื่อ n = 50 ปรากฎว่า 
วิธี Likelihood ratio สามารถตรวจสอบสมบัติ Unidimentional ได้จำนวน 413 สถานการณ์ สำหรับวิธีโมเดลเชิงพยากรณ์แบบ 
Posterior สามารถตรวจสอบสมบัติ Unidimentional ได้จำนวน 173 สถานการณ์ สามารถสรุปได้ว่า วิธี Likelihood ratio มี
ประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional 
 
 

ค่าพารามิเตอร์ 

พารามิเตอร์ b พารามิเตอร์ c 

จำนวนสถานการณ์ที่ PPMC 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์ 
LR ( 2G ) มีสมบัติ 
Unidimentional 

จำนวนสถานการณ์ที่ PPMC 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์ที่ LR ( 2G
) มีสมบัติ Unidimentional 

𝛼=0.3 b = -2.5 21 0 9 21 
𝛼=0.3 b = -2.0 21 21 10 21 
𝛼=0.3 b = -1.0 9 21 12 21 
𝛼=0.3 b = 0 15 21 11 21 
𝛼=0.3 b = 1 21 21 10 21 
𝛼=0.3 b = 2 21 2 10 21 
𝛼=0.3 b = 2.5 21 0 12 21 
𝛼=1.0 b = -2.5 17 9 11 21 
𝛼=1.0 b = -2.0 15 19 15 19 
𝛼=1.0 b = -1.0 8 21 11 21 
𝛼=1.0 b = 0 11 21 5 20 
𝛼=1.0 b = 1 21 21 8 21 
𝛼=1.0 b = 2 21 3 4 21 
𝛼=1.0 b = 2.5 21 0 4 21 
𝛼=1.7 b = -2.5 12 9 8 19 
𝛼=1.7 b = -2.0 12 21 8 21 
𝛼=1.7 b = -1.0 2 21 8 20 
𝛼=1.7 b = 0 6 21 9 19 
𝛼=1.7 b = 1 11 15 5 17 
𝛼=1.7 b = 2 21 3 3 14 
𝛼=1.7 b = 2.5 21 0 2 12 
รวม  328 270 175 413 
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ตารางท่ี 2 ผลการจำลองสถานการณ์ เม่ือ n = 100, c = 0.1, 0.2 และ 0.3,  = -3, -2, -1, 0, 1, 2, 3 

ค่าพารามิเตอร์ 

พารามิเตอร์ b พารามิเตอร์ c 

จำนวนสถานการณ์ที่ PPMC 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์ LR ( 2G ) 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์ที่ 
PPMC มีสมบัติ 

Unidimentional 

จำนวนสถานการณ์ที่ 
LR ( 2G ) มีสมบัติ 
Unidimentional 

𝛼=0.3 b = -2.5 21 0 7 21 
𝛼=0.3 b = -2.0 20 17 7 21 
𝛼=0.3 b = -1.0 13 21 9 21 
𝛼=0.3 b = 0 4 21 6 21 
𝛼=0.3 b = 1 12 21 10 21 
𝛼=0.3 b = 2 5 21 9 21 
𝛼=0.3 b = 2.5 3 21 8 21 
𝛼=1.0 b = -2.5 0 21 2 21 
𝛼=1.0 b = -2.0 4 20 0 21 
𝛼=1.0 b = -1.0 0 21 5 21 
𝛼=1.0 b = 0 8 21 3 21 
𝛼=1.0 b = 1 21 4 4 21 
𝛼=1.0 b = 2 19 4 2 19 
𝛼=1.0 b = 2.5 18 0 2 19 
𝛼=1.7 b = -2.5 21 3 1 19 
𝛼=1.7 b = -2.0 21 2 2 21 
𝛼=1.7 b = -1.0 16 1 3 20 
𝛼=1.7 b = 0 13 0 1 19 
𝛼=1.7 b = 1 19 2 4 16 
𝛼=1.7 b = 2 21 3 2 14 
𝛼=1.7 b = 2.5 21 0 4 17 

รวม  280 224 91 416 
 

 จากตารางที ่ 2 ผลการจำลองสถานการณ์ จำนวน 441 สถานการณ์ ของพารามิเตอร์ b ในการตรวจสอบสมบัติ 
Unidimentional เมื่อ n = 100 ปรากฎว่า วิธีโมเดลเชิงพยากรณ์แบบ Posterior สามารถตรวจสอบสมบัติ Unidimentional ได้
จำนวน 280 สถานการณ์ สำหรับวิธี Likelihood ratio สามารถตรวจสอบสมบัติ Unidimentional ได้จำนวน 224 สถานการณ์ 
สามารถสรุปได้ว่า วิธีโมเดลเชิงพยากรณ์แบบ Posterior มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional ยกเว้นกรณีท่ี 
𝛼=0.3, b = -1, 0, 1, 2, 2.5 และ 𝛼=1.0, b = -2.5, -2, -1, 0 ผลการจำลองสถานการณ์ จำนวน 441 สถานการณ์ของพารามิเตอร์ c 
ในการตรวจสอบสมบัติ Unidimentional เมื่อ n = 100 ปรากฎว่า วิธี Likelihood ratio สามารถตรวจสอบสมบัติ Unidimentional 
ได้จำนวน 416 สถานการณ์ สำหรับวิธีโมเดลเชิงพยากรณ์แบบ Posterior สามารถตรวจสอบสมบัติ Unidimentional ได้จำนวน 91 
สถานการณ์ สามารถสรุปได้ว่า วิธี Likelihood ratio มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional 
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ตารางท่ี 3 ผลการจำลองสถานการณ์ เม่ือ n = 200, c = 0.1, 0.2 และ 0.3,  = -3, -2, -1, 0, 1, 2, 3 

ค่าพารามิเตอร์ 

พารามิเตอร์ b พารามิเตอร์ c 

จำนวนสถานการณ์ที่ PPMC 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์ LR ( 2G ) 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์ที่ 
PPMC มีสมบัติ 

Unidimentional 

จำนวนสถานการณ์ที่ 
LR ( 2G ) มีสมบัติ 
Unidimentional 

𝛼=0.3 b = -2.5  3 21 7 21 
𝛼=0.3 b = -2.0 4 21 8 21 
𝛼=0.3 b = -1.0  3 21 6 21 
𝛼=0.3 b = 0 3 21 7 21 
𝛼=0.3 b = 1 3 21 4 21 
𝛼=0.3 b = 2 3 21 7 21 
𝛼=0.3 b = 2.5 5 21 5 21 
𝛼=1.0 b = -2.5  0 21 0 21 
𝛼=1.0 b = -2.0 0 21 0 21 
𝛼=1.0 b = -1.0  4 21 1 20 
𝛼=1.0 b = 0 2 21 5 21 
𝛼=1.0 b = 1 2 21 1 21 
𝛼=1.0 b = 2 1 21 4 21 
𝛼=1.0 b = 2.5 1 21 2 21 
𝛼=1.7 b = -2.5  0 21 1 20 
𝛼=1.7 b = -2.0 0 20 2 21 
𝛼=1.7 b = -1.0  0 21 3 20 
𝛼=1.7 b = 0 0 20 1 18 
𝛼=1.7 b = 1 2 20 2 16 
𝛼=1.7 b = 2 0 20 1 16 
𝛼=1.7 b = 2.5 1 16 1 19 

รวม  37 432 68 423 
 

 จากตารางที ่ 3 ผลการจำลองสถานการณ์ จำนวน 441 สถานการณ์ของพารามิเตอร ์ b ในการตรวจสอบสมบัติ 
Unidimentional เม ื ่อ n = 200 ปรากฎว่า วิธ ี Likelihood ratio สามารถตรวจสอบสมบัติ Unidimentional ได้จำนวน 432 
สถานการณ์ สำหรับวิธีโมเดลเชิงพยากรณ์แบบ Posterior สามารถตรวจสอบสมบัติ Unidimentional ได้ จำนวน 37 สถานการณ์ 
สามารถสรุปได้ว่า วิธี Likelihood ratio มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional ผลการจำลองสถานการณ์ 
จำนวน 441 สถานการณ์ ของพารามิเตอร์ c ในการตรวจสอบสมบัติ Unidimentional เม่ือ n = 200 ปรากฎว่า วิธี Likelihood ratio 
สามารถตรวจสอบสมบัติ Unidimentional ได้จำนวน 423 สถานการณ์ สำหรับวิธีโมเดลเชิงพยากรณ์แบบ Posterior สามารถ
ตรวจสอบสมบัติ Unidimentional ได้ จำนวน 68 สถานการณ์ สามารถสรุปได้ว่า วิธี Likelihood ratio มีประสิทธิภาพดีกว่าในการ
ตรวจสอบสมบัติ Unidimentional 
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ตารางท่ี 4 ผลการจำลองสถานการณ์ เม่ือ n = 400, c = 0.1, 0.2 และ 0.3,  = -3, -2, -1, 0, 1, 2, 3 

ค่าพารามิเตอร์ 

พารามิเตอร์ b พารามิเตอร์ c 

จำนวนสถานการณ์ PPMC 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์ LR ( 2G ) 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์ PPMC 
มีสมบัติ Unidimentional 

จำนวนสถานการณ์  
LR ( 2G ) มีสมบัติ 
Unidimentional 

𝛼=0.3 b = -2.5  21 1 6 21 
𝛼=0.3 b = -2.0 21 1 5 21 
𝛼=0.3 b = -1.0  21 1 3 21 
𝛼=0.3 b = 0 21 3 5 21 
𝛼=0.3 b = 1 21 2 4 21 
𝛼=0.3 b = 2 21 3 3 21 
𝛼=0.3 b = 2.5 1 21 4 21 
𝛼=1.0 b = -2.5  1 21 2 21 
𝛼=1.0 b = -2.0 0 21 0 21 
𝛼=1.0 b = -1.0  2 21 2 21 
𝛼=1.0 b = 0 0 21 2 21 
𝛼=1.0 b = 1 14 1 1 21 
𝛼=1.0 b = 2 21 0 0 19 
𝛼=1.0 b = 2.5 20 1 0 19 
𝛼=1.7 b = -2.5  20 2 1 20 
𝛼=1.7 b = -2.0 21 4 1 21 
𝛼=1.7 b = -1.0  21 9 0 21 
𝛼=1.7 b = 0 6 21 1 20 
𝛼=1.7 b = 1 3 21 2 19 
𝛼=1.7 b = 2 21 1 1 16 
𝛼=1.7 b = 2.5 13 0 0 16 

รวม  290 176 43 423 
 

 จากตารางที ่ 4 ผลการจำลองสถานการณ์ จำนวน 441 สถานการณ์ ของพารามิเตอร์ b ในการตรวจสอบสมบัติ 
Unidimentional เมื่อ n = 400 ปรากฎว่า วิธีโมเดลเชิงพยากรณ์แบบ Posterior สามารถตรวจสอบสมบัติ Unidimentional ได้
จำนวน 290 สถานการณ์ สำหรับวิธี Likelihood ratio สามารถตรวจสอบสมบัติ Unidimentional ได้จำนวน 176 สถานการณ์ 
สามารถสรุปได้ว่า วิธีโมเดลเชิงพยากรณ์แบบ Posterior มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional ยกเว้นกรณีท่ี 
𝛼=0.3, b = 2.5, 𝛼=1.0, b = -2.5, -2, -1, 0, 1 และ 𝛼=1.7, b = 0, 1 ผลการจำลองสถานการณ์ จำนวน 441 สถานการณ์ของ
พารามิเตอร์ c ในการตรวจสอบสมบัติ Unidimentional เมื่อ n = 400 ปรากฎว่า วิธี Likelihood ratio สามารถตรวจสอบสมบัติ 
Unidimentional ได ้จำนวน  423 สถานการณ ์ สำหร ับว ิธ ี โมเดลเช ิงพยากรณ์แบบ  Posterior สามารถตรวจสอบสมบ ั ติ 
Unidimentional ได้จำนวน 43 สถานการณ์ สามารถสรุปได้ว่า วิธี Likelihood ratio มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ 
Unidimentional 
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อภิปรายผลการวิจัย 
 พารามิเตอร์ b เมื่อ n = 50 ในกรณีที่ 𝛼=0.3, b = -1, 0, 𝛼=1.0, b = -2, -1, 0 และ 𝛼=1.7, b = -2, -1, 0, 1 เมื่อ n = 
100 กรณีที่ 𝛼=0.3, b = -1, 0, 1, 2, 2.5 และ 𝛼=1.0, b = -2.5, -2, -1 เมื่อ n = 400 กรณีที่ 𝛼=0.3, b = 2.5, 𝛼=1.0, b = -2.5, 
-2, -1, 0, 1 และ 𝛼=1.7, b = 0, 1 ไม่มีสมบัติ Unidimentional เนื ่องจากค่าพารามิเตอร์ต่างๆ ไม่เป็นไปตามข้อมูลที ่จำลอง
สถานการณ์ขึ้นมาส่งผลให้ค่าความน่าจะเป็นของความสามารถในการตอบ ( ) ของผู้ตอบแบบทดสอบไม่เป็นตามที่กำหนดไว้ทำให้
ค่าพารามิเตอร์ในกรณีดังกล่าวไม่มีสมบัติ Unidimentional 
 พารามิเตอร์ c วิธี Likelihood ratio มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional การตรวจสอบสมบัติ 
Unidimentional ของพารามิเตอร์ c ควรใช้วิธี Likelihood ratio เนื่องจากข้อมูลที่ได้จากการจำลองสถาการณ์ด้วยวิธีมอนติคาร์โล 
ทำให้พารามิเตอร์ c ของตัวแบบ M-GRM มีสมบัติ Unidimentional เกือบทุกสถานการณ์ 
 ในการประมาณค่าความน่าจะเป็นของการแจกแจงภายหลัง (Posterior distribution) ด้วยวิธีโมเดลเชิงพยากรณ์แบบ 
Posterior ไม่สามารถหาค่าการแจกแจงภายหลังได้โดยตรงต้องใช้หลักการ Monte Carlo Integration ค่า Integral ที่ได้จากการสร้าง
ข้อมูลจากการแจกแจงยูนิฟอร์ม [0, 1] ข้อมูลมีความเหมาะสมกับพารามิเตอร์ b กับสถานการณ์ต่างๆ ของตัวแบบ M-GRM ด้วยวิธี
โมเดลเชิงพยากรณ์แบบ Posterior เนื่องจากข้อมูลท่ีสร้างข้ึนจากการแจกแจงยูนิฟอร์ม [0, 1] ให้ข้อมูลท่ีทดสอบแล้วไม่ต่างกับการแจก
แจกปรกติมาตรฐาน 
 

สรุปผลการวิจัย 
 เม ื ่อ n = 50 พารามิเตอร์ b วิธ ีโมเดลเชิงพยากรณ์แบบ Posterior มีประสิทธิภาพดีกว ่าในการตรวจสอบสมบัติ 
Unidimentional ยกเว ้นกรณีท ี ่ 𝛼=0.3, b = -1, 0, 𝛼=1.0, b = -2, -1, 0  และ 𝛼=1.7, b = -2, -1, 0, 1 พารามิเตอร ์ c ว ิ ธี 
Likelihood ratio มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional เมื่อ n = 100 พารามิเตอร์ b วิธีโมเดลเชิงพยากรณ์
แบบ Posterior มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional ยกเว้นกรณีที ่ 𝛼=0.3, b = -1, 0, 1, 2, 2.5 และ 
𝛼=1.0, b = -2.5, -2, -1, พารามิเตอร์ c ในการตรวจสอบสมบัติ Unidimentional วิธี Likelihood ratio มีประสิทธิภาพดีกว่าในการ
ตรวจสอบสมบัติ Unidimentional เมื่อ n = 200 พารามิเตอร์ b และ c วิธี Likelihood ratio มีประสิทธิภาพดีกว่าในการตรวจสอบ
สมบัติ Unidimentional เมื่อ n = 400 พารามิเตอร์ b วิธีโมเดลเชิงพยากรณ์แบบ Posterior มีประสิทธิภาพดีกว่าในการตรวจสอบ
สมบัติ Unidimentional ยกเว้นกรณีที่ 𝛼=0.3, b = 2.5, 𝛼=1.0, b = -2.5, -2, -1, 0, 1 และ 𝛼=1.7, b = 0, 1 พารามิเตอร์ c วิธี 
Likelihood ratio มีประสิทธิภาพดีกว่าในการตรวจสอบสมบัติ Unidimentional  
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