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บทคัดย่อ 
การขึ้นรูปพอลิเมอร์ เช่น กระบวนการฉีดพลาสติก กระบวนการอัดรีด และกระบวนการอัดขึ้นรูป เป็นกระบวนการท่ีพอลิ- 

เมอร์หลอมเหลวจะไหลเข้าแม่พิมพ์ด้วยช่องทางไหลแคบ ๆ ซึ่งเป็นการไหลแบบเฉือน พฤติกรรมการไหลแบบเฉือนของของไหลแบบ
นอนนิวโตเนียน (Non-Newtonian behavior) มีความแตกต่างจากการไหลของของไหลแบบนิวโตเนียนเป็นอย่างมาก กล่าวคือความ
หนืดจะเป็นฟังก์ชันของอัตราเครียดเฉือน   ในที่นี ้จะกล่าวถึงพฤติกรรมการไหลของของไหลคล้ายนิวโตเนียน (Generalized 
Newtonian Fluid, GNF) ของของไหลบางชนิดเช่น ของไหลเพาเวอร์ลอร์ ของไหลคารัวย์-ยาซูดะ ของไหลบิงก์แฮมส์ และของไหล
เฮอร์เชลบัล์กเลย์ เป็นต้น 
 

ABSTRACT 
Polymer processing such as injection molding, extrusion or compression molding deals with a polymer melt 

flows between gaps or channels of a production mold. The flow characteristics of the melt in the channels are 
considered shear flows which express non-Newtonian behaviors. The non-Newtonian flow behavior is normally 
different from Newtonian one in that the non- Newtonian fluids are mostly a function of shear rate  . In this article, 
we introduce some generalized Newtonian fluids (GNF) which are wildly used in polymer processing, for example, 
power-law, Carreau-Yasuda, Bingham and Herschel-Bulkley fluids. 
 

คำสำคัญ: ของไหลคล้ายนิวโตเนียน  ของไหลเพาเวอร์ลอร์  ของไหลคารัวย์-ยาซูดะ  ของไหลบิงก์แฮมส์  ของไหลเฮอร์เชลบัล์กเลย์ 
Keywords: Generalized Newtonian fluids, Power-law fluid, Carreau-Yasuda fluid, Bingham fluid, 
                Herschel-Bulkley fluid. 
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บทนำ 

รีโอโลยี (Rheology) เป็นศาสตร์ที่เกิดขึ้นในช่วงราวกลางคริสศรรตวรรษที่ 20 (Tanner, 2002) เป็นการศึกษาความสัมพันธ์
ระหว่างแรงและการเสียรูปของวัตถุในช่วงเวลาที่สนใจ โดยที่แรงนั้นจะทำให้วัตถุเกิดการเสียรูปอย่างถาวรและเกิดเป็นการไหลของ
สสารในที่สุด (Kolitawong, 2003; Kolitawong and Giacomin 2009) การไหลแบ่งออกเป็น 2 กลุ่มหลัก ๆ คือ การไหลแบบเฉือน 
(Shear flow) และการไหลที่ไม่มีการเฉือน (Shear free flow) การไหลแบบเฉือนเป็นการไหลของของไหลในช่องแคบหรือไหลในท่อ 
ซึ่งกระบวนการผลิตพลาสติกแทบทั้งหมด เช่นการอัดรีด (Extrusion) การฉีดเข้าแม่พิมพ์ (Injection molding) และการกดอัดเข้า
แม่พิมพ์ (Compression molding) จะเกี่ยวกับการไหลแบบเฉือนนี้ (Kolitawong, 2018) ในขณะที่ของไหลในช่องแคบหรือไหลในท่อ
นั้นบางครั้งของไหลอาจจะถูกยืดดึง (Elongation) ไปพร้อม ๆ กันด้วยซึ่งเกิดได้เองจากธรรมชาติของการไหล เช่น การไหลผ่านช่อง
แคบหรือท่อลดขนาดเป็นต้น ส่วนการไหลแบบที่ไม่มีการเฉือนจะเกิดจากการยืดดึงเป็นหลักเช่นการยืดดึงในกระบวนการหลอมปั่นเส้น
ใย (Fiber melt spinning) กระบวนการเป่าถุง (Film blowing) และการเป่าเข้าแม่พิมพ์ (Blow molding) เป็นต้น ในที่นี้เราจะมาทำ
ความเข้าใจถึงสมบัติของวัสดุและพฤติกรรมการไหลแบบเฉือนในช่องแคบนี้ (Morrison, 2001) 
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รูปท่ี 1 แสดงก้อนอนุภาคของไหลท่ีมีการเคล่ือนท่ีทำให้ก้อนอนุภาคมีการเสียรูปเชิงเส้น เช่นการยืดดึง และการเสียรูปเชิงมุม เช่นการ
บิดเบี้ยวไปพร้อม ๆ กัน โดยก้อนอนุภาคท่ีเวลา 0t  ยังไม่มีการเปลี่ยนแปลงรูปร่าง ในขณะที่ก้อนอนุภาคเดิมท่ีเวลา 0t t   
เกิดการเปลี่ยนแปลงรูปร่างไปแล้ว 

 

นิวตันได้เสนอแนวคิดแบบง่าย ๆ โดยคิดว่าการเคลื่อนท่ีของกลุ่มอนุภาคของไหลทำให้รูปทรงของกลุ่มของไหลเสียรูปไป (ตาม
ความเร็วในการเปลี่ยนรูปทรง) ซ่ึงทำให้เกิดความเค้นดังแสดงใน 

รูปท่ี 1 ดังนั้นเราจึงสรุปได้ว่าความเค้นจากการเคล่ือนท่ี ( ij ) สัมพันธ์กับอัตราการเสียรูปของก้อนของไหล ( ij ) 

 ij ijf    (1) 
เมื่อ i  และ j  เป็นตำแหน่งบนเทนเซอร์ความเค้นและความเครียดซึ่งมีค่าเท่ากับ 1, 2, 3 และเป็นหมายเลขกำกับทิศทาง

ของระบบแกน โดยแกน 1 2 3, ,x x x  บางครั้งเรียกว่าแกน , ,x y z  ในระบบแกนพิกัดฉากตามลำดับ ซึ่งพจน์ของอัตราเครียดเฉือนหา
ได้จาก 
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เม่ือ iv  และ jv  เป็นความเร็วของก้อนของไหล (Fluid element) ในแนวแกน i  และ j  และ ix  และ jx  เป็นตำแหน่ง
ของก้อนของไหลในแนวแกน i  และ j  ตามลำดับ เม่ือ , 1, 2,3i j   สมการท่ี (2) ทำให้เราทราบว่าอัตราเครียดของวัสดุเกิดจาก
อัตราการเสียรูปของวัสดุเชิงเส้น (Linear deformation) เม่ือ i j  ซ่ึงอยู่ในตำแหน่งแนวทแยง (Diagonal positions) ของเทนเซอร์
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อัตราเครียด และอัตราการเสียรูปเชิงมุม (Angular deformation) เม่ือ i j  ซ่ึงจะอยู่นอกตำแหน่งทแยงมุม (Off-diagonal 
position) ของเทนเซอร์อัตราเครียด ทำให้เราสามารถแจกแจงประเภทของการไหลออกเป็น 2 กลุ่มคือการไหลแบบเฉือนและการไหลท่ี
ไม่มีการเฉือน (Pure shear and shear free flow) โดยในทางทฤษฏี การไหลแบบเฉือนจะเป็นการไหลท่ีมีค่าอัตราเครียดท่ีอยู่ใน
ตำแหน่งทแยงมุมเป็นศูนย์ท้ังหมด และในทางกลับกันการไหลท่ีไม่มีการเฉือนจะเป็นการไหลท่ีมีค่าอัตราเครียดท่ีอยู่นอกตำแหน่งทแยง
มุมเป็นศูนย์ท้ังหมด 

รูปท่ี 2 แสดงอัตราความเครียดเฉือน (หรืออัตราการเปลี่ยนแปลงรูปร่างของกลุ่มอนุภาคของไหล) ในขณะที่ได้รับความเค้น
เฉือนซึ่งเป็นการแสดงพฤติกรรมการไหลของของไหล (Constitute equation) โดยของไหลสามารถจำแนกตามพฤติกรรมการไหลได้
เป็น 4 รูปแบบคือ (ก) ของไหลชนิดนิวโตเนียน (Newtonian fluid) (ข) ของไหลชนิดความเค้นเฉือนลดลง (Pseudoplastics or shear 
thinning fluid) (ค) ของไหลชนิดความเค้นเฉือนเพิ ่มขึ ้น (Dilatant or shear thickening fluid) และ (ง) ของไหลชนิดบิงแฮม 
(Bingham fluid) พฤติกรรมการไหลของของไหลชนิดนิวโตเนียนจะมีลักษณะท่ีความเค้นเฉือนจะแปรผันตรงกับอัตราความเครียดเฉือน 
นั่นคือความหนืดจะคงท่ีในทุก ๆ อัตราความเครียดเฉือนนั่นเอง ของไหลในกลุ่มนี้มีอยู่มากมายรอบ ๆ ตัวเรา เช่น น้ำ อากาศ และน้ำมัน 
เป็นต้น ส่วนของไหลชนิดความเค้นเฉือนลดลงจะมีพฤติกรรมการไหลในลักษณะที่ความเค้นเฉือนจะลดลงเมื่ออัตราความเครียดเฉือน
เพ่ิมข้ึนหรืออีกนัยหนึ่งคือความหนืดลดลงเม่ืออัตราความเครียดเฉือนเพ่ิมมากข้ึนนั่นเอง ยกตัวอย่างเช่น สีทาบ้านเมื่อเปิดใช้ใหม่ ๆ สีจะ
มีความหนืดมากยังไม่สามารถใช้งานได้ช่างทาสีจะต้องคนให้มีความหนืดลดลงก่อนใช้งาน การคนก็คือการใส่อัตราการเปลี่ยนแปลง
รูปร่างของกลุ่มอนุภาคของไหลซึ่งเป็นการเพิ่มอัตราความเครียดเฉือนนั่นเอง ของไหลในกลุ่มนี้มีอยู่หลายชนิด เช่น สี และพลาสติก
หลอมเหลว เป็นต้น (Cengel and Cimbala, 2006; White, 2003; Munson et al., 2002) 
 

 
 

รูปท่ี 2 แสดงพฤติกรรมการไหลของของไหล 4 รูปแบบคือ (ก) ของไหลชนิดนิวโตเนียน (Newtonian fluid) (ข) ของไหลชนิดความ
เค้นเฉือนลดลง (Pseudo plastics or shear thinning fluid) (ค) ของไหลชนิดความเค้นเฉือนเพิ่มขึ้น (Dilatant or shear 
thickening fluid) และ (ง) ของไหลชนิดบิงแฮม (Bingham fluid) (จ) ของไหลชนิดเฮอร์เชลบัล์กเลย์ (Herschel-Bulkley 
fluid) 

 

ในขณะที่พฤติกรรมการไหลของของไหลชนิดความเค้นเฉือนเพิ่มขึ้นจะมีพฤติกรรมตรงกันข้ามนั่นคือความเค้นเฉือนจะเพ่ิม
มากขึ้นเมื่ออัตราความเครียดเฉือนเพิ่มขึ้นหรืออีกนัยหนึ่งคือความหนืดเพิ่มขึ้นเมื่ออัตราความเครียดเฉือนเพิ่มมากขึ้นนั่นเอง ตัวอย่าง
ของไหลชนิดนี้คือทรายผสมน้ำหรือที่เรารู้จักกันคือบ่อทรายดูดนั่นเอง ลองนึกว่าถ้าเราตกลงไปในบ่อทรายดูดเราจำเป็นจะต้องเคลื่อน
ตัวอย่างช้า ๆ เพื่อเอาชนะแรงเฉือน แต่ถ้าเราออกแรงขยับตัวอย่างรวดเร็วเราจะไม่สามารถขยับตัวได้เนื่องจากจังหวะการขยับตัวก็คือ
การให้อัตราความเครียดเฉือนต่อทรายผสมน้ำนั่นเอง ส่วนตัวอย่างของไหลชนิดบิงแฮมคือยาสีฟันหรือซอสมะเขือเทศ ของไหลประเภท
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นี้จะมีความเค้นเฉือนต้ังต้น (Pre-stress) ก่อนท่ีจะมีการไหลตัวของของไหล ดังนั้นเราต้องบีบยาสีฟันให้ออกจากหลอด หรือต้องตบขวด
ซอสมะเขือเทศเพื่อให้ซอสไหลออกมาจากขวดนั่นเอง (Pritchard, 2011) 

ในการไหลที ่ไม่สามารถกดอัดได้ (Incompressible) และมีอุณหภูมิคงที ่ (Isothermal) ของไหลแบบนิวโตเนียนจะมี
พฤติกรรมการไหลท่ีความเค้นเฉือนจะแปรผันตรงกับอัตราความเครียดเฉือน นั่นคือ 

ij ij     (3) 
ในทำนองเดียวกันสำหรับของไหลแบบนอนนิวโตเนียน 

 ij ij        (4) 
เราเรียก   ว่าความหนืดของของไหลชนิดนอนนิวโตเนียนโดย   เป็นฟังก์ชันของสเกลาร์คงตัวของอัตราเครียดเฉือน 

(Scalar Invariants of Strain Rate) เราเรียกสมการท่ี (4) ว่าเป็นพฤติกรรมการไหลเลียนแบบหรือคล้ายนิวโตเนียน (Generalized 
Newtonian fluid) ซ่ึงเป็นของไหลแบบนอนนิวโตเนียนท่ีมีสมการแสดงพฤติกรรมการไหลเลียนแบบมาจากสมการนิวโตเนียนในสมการ
ท่ี (3) เราเรียกสมการแสดงพฤติกรรมของของไหลเม่ือมีแรงมากระทำให้ของไหลเปลี่ยนจากสภาวะเดิมว่าสมการแสดงพฤติกรรม 
(Constitutive equation) (Bird et al., 2015) สำหรับของไหลแบบนิวโตเนียนความเค้นจะแปรผันตรงกับอัตราเครียดเฉือนดัง 

รูปท่ี 2 และเขียนเป็นสมการแสดงพฤติกรรมดังสมการท่ี (3) โดยค่าสัมประสิทธิท่ีอยู่หน้าอัตราเครียดเฉือนมีชื่อเรียกว่าความ
หนืดแบบนิวโต-เนียน   ซ่ึงเป็นค่าคงท่ีสำหรับอุณหภูมิและความดันนั้น ๆ 

แต่สำหรับของไหลแบบนอนนิวโตเนียน ความเค้นในสมการแสดงพฤติกรรมจะไม่แปรผันตรงกับอัตราเครียดเฉือนอีกต่อไป 
โดยสัมประสิทธ์ิหน้าอัตราเครียดเฉือนจะเป็นฟังก์ชันของอัตราเครียดเฉือนดังสมการที่ (4) และเราเรียกสัมประสิทธ์ิหน้าอัตราเครียด
เฉือนว่าความหนืดชนิดนอนนิวโตเนียน   โดย   เป็นฟังก์ชันของสเกลาร์คงตัวของอัตราเครียดเฉือน (Scalar invariants of strain 
rate) จะเห็นได้ว่าของไหลคล้ายนิวโตเนียนเป็นของไหลนอนนิวโตเนียนที่มีสมการแสดงพฤติกรรมการไหลท่ีปรับปรุง (เลียนแบบ) มา
จากสมการของของไหลนิวโตเนียนนั่นเอง ของไหลคล้ายนิวโตเนียนสามารถเป็นได้ทั้งแบบความเค้นเฉือนเพิ่มขึ้น (Shear thickening) 
และความเค้นเฉือนลดลง (Shear thinning) แต่โดยมากแล้วพอลิเมอร์หลอมเหลวจะมีพฤติกรรมการไหลแบบความเค้นเฉือนลดลงดัง
แสดงในรูปที่ 3 และในรูปที่ 4 โดยรูปที่ 3 แสดงความสัมพันธ์ระหว่างความหนืดและอัตราเค้นเฉือนที่อุณหภูมิคงที่สำหรับพอลิเมอร์ 
หลอมเหลวทั่ว ๆ ไปที่เขียนอยู่ในสเกลปกติ และรูปที่ 4 แสดงความหนืดของพอลิเมอร์หลอมเหลวชนิดพอลิเอทธิลินความหนาแน่นต่ำ 
(LDPE) ท่ีอุณหภูมิต่าง ๆ ในสเกล log  และ log   





0

 
รูปท่ี 3 แสดงความสัมพันธ์ระหว่างความหนืดและอัตราเค้นเฉือนที่อุณหภูมิคงที่สำหรับพอลิเมอร์หลอมเหลวทั่ว ๆ ไปที่เขียนอยู่ใน

สเกลปกติ 
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รูปท่ี 4 แสดงความหนืดของพอลิเมอร์หลอมเหลวชนิดพอลิเอทธิลินความหนาแน่นต่ำ (LDPE) ท่ีอุณหภูมิต่าง ๆ ในสเกล log  และ 

log   ข้อมูลในกราฟได้มาจาก (Bird et al., 1987) 
 

เนื่องจากของไหลคล้ายนิวโตเนียนเป็นการประยุกต์สมการแสดงพฤติกรรมการไหลแบบนิวโตเนียนอย่างง่าย ๆ ตรงไปตรงมา
โดยการกำหนดให้ความหนืดเป็นฟังก์ชันของสเกลาร์คงตัวอัตราเครียดเฉือน แต่ของไหลคล้ายนิวโตเนียนก็สามารถทำนายพฤติกรรม
ความหนืดในรูปท่ี 3 และรูปท่ี 4 ได้เป็นอย่างดี แต่ไม่สามารถทำนายความแตกต่างของความเค้นต้ังฉาก และพฤติกรรมหนืดยืดหยุ่นของ
พอลิเมอร์เหลวได้ อย่างไรก็ตามเนื่องจากเปน็สมการท่ีง่ายต่อการนำไปใช้งาน ของไหลคล้ายนิวโตเนียนจึงมีความสำคัญในการแก้ปัญหา
ในหลาย ๆ อุตสาหกรรม เช่น การไหลของพอลิเมอร์เหลวในท่อหรือช่องทางไหล การไหลในแม่พิมพ์ของพลาสติกเหลว เป็นต้น การไหล
เหล่านี้เป็นการไหลราบเรียบแบบคงตัว ซึ่งจะไม่แสดงพฤติกรรมหนืดยืดหยุ่นและไม่มีผลของความแตกต่างของความเค้นตั้งฉาก (Bird 
et al., 1987) 
 


lo
g

log

0



 
รูปท่ี 5 แสดงค่าความหนืดในส่วนที่เป็นเส้นตรงในกราฟความสัมพันธ์ระหว่าง log  และ log   ที่ใช้กับของไหลชนิดเพาเวอร์

ลอว์ซ่ึงเป็นช่วงใช้งานในภาคอุตสาหกรรม 
 

ของไหลเพาเวอร์ลอร ์
ดังท่ีได้กล่าวไปแล้วว่าในการข้ึนรูปพอลิเมอร์ส่วนใหญ่ เช่น กระบวนการฉีดพลาสติก กระบวนการอัดรีด และกระบวนการอัด

ขึ้นรูป ซึ่งพอลิเมอร์จากการไหลในแม่พิมพ์ช่องแคบ ๆ จะเป็นการไหลแบบเฉือน และโดยมากจะเป็นการไหลที่เกี่ยวข้องกับส่วนที่เป็น
เส้นตรงในกราฟความสัมพันธ์ระหว่าง log  และ log   ดังแสดงในรูปที่ 5 ประกอบกับเครื่องมือวัดความหนืด เช่น เครื่องวัดความ
หนืดแบบหลอด (Capillary rheometer) ก็สามารถวัดความเค้นเฉือนในช่วงอัตราเครียดประมาณ 10 1s  ถึง 10,000 1s  ดังแสดงใน
ตารางที่ 1 ซึ่งเป็นช่วงที่ใช้งานในกระบวนการขึ้นรูปด้วย ดังนั้นพฤติกรรมของความหนืดในช่วงที่เป็นเส้นตรงในกราฟ log  และ 
log   สามารถแทนด้วยสมการยกกำลัง (Power-law viscosity) ซ่ึงกำหนดโดย 

  1nm      (5) 
โดย m  คือค่าคงที ่ของพอลิเมอร์ (Consistency index) และ n  คือเลขยกกำลังของพอลิเมอร์ชนิดนั ้น (Power-law 

index) ซึ่งหาได้จากการทาบเส้น (Curve fitting) กับผลการทดลอง ถ้า  และ  จะเป็นความหนืดของของเหลวแบบ1n  m 
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นิวโตเนียน แต่ถ้า  จะเป็นความหนืดของของเหลวแบบความเค้นลดลง (Shear thinning or pseudo plastic) แต่ถ้า  
จะเป็นความหนืดของของเหลวแบบความเค้นเพ่ิมข้ึน (Shear thickening or dilatant) 
 

ตารางท่ี 1 แสดงช่วงอัตราเฉือนท่ีเกิดข้ึนในกระบวนการผลิตพลาสติกแบบต่าง ๆ (Wollny and Ringhofer, 2003) 
กระบวนการผลิต ช่วงอัตราเฉือน   ( 1s ) 

การอัดขึ้นรูปในแม่พิมพ์ (Compression molding) 1 - 10 
การรีดขึ้นรูป (Calendering) 10 - 100 

การอัดรีดแผ่นฟิล์ม (Film extrusion) 100 – 1,000 
การเป่าเข้าแม่พิมพ์ (Blow molding) 100 – 10,000 

การฉีดขึ้นรูปในแม่พิมพ์ (Injection molding) 500 – 50,000 
 

)(   เป็นความหนืดที่เป็นฟังก์ชันของตัวแทนอัตราเครียดเฉือน   โดยฟังก์ชันอัตราเครียดเฉือน   หาได้จากค่าสเกลาร์
คงตัวของอัตราเครียดเฉือน (Scalar invariants of strain rate) เป็นการหมุนเทนเซอร์อัตราเครียดให้อยู่ในทิศทางหลัก (Principle 
directions) ท่ีมีแต่ความเครียดต้ังฉากในแนวทแยงมุม (Strain rate at normal directions) เท่านั้น โดยกำหนดให้ 
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1i j k
kijkijIII    (8) 

โดยนิยามของ ij  หาได้จากสมการท่ี (2) เราเรียก I , II  และ III  ว่าค่าสเกลาร์คงตัวของเทนเซอร์อัตราเครียด (Scalar 
invariants of  ) ลำดับท่ี 1, 2 และ 3 ตามลำดับ ซ่ึงค่าสเกลาร์คงตัวท้ัง 3 ค่าเป็นค่าอัตราเครียดบนแกนหลัก (Principle directions) 
จึงเป็นค่าท่ีไม่ข้ึนอยู่กับระบบแกน สำหรับของไหลแบบอัดตัวไม่ได้ค่า 

  02  VI


 (9) 
 และสำหรับการไหลแบบอัดตัวไม่ได้ (Incompressible flow) ค่า 1III   ซึ่งเป็นค่าคงท่ีจึงเหลือแค่ II  เท่านั้นที่ไม่ไช่
ค่าคงท่ี ดังนั้นค่าสเกลาร์คงตัวของอัตราความเครียดเฉือน   
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สังเกตว่าค่าสเกลาร์ฟังก์ชันของอัตราความเครียดเฉือน   จะไม่ขึ้นอยู่กับระบบแกน โดยความหนืดของวัสดุพอลิเมอร์หลอม
เหลวหรือสารละลายพอลิเมอร์   สามารถวัดหาได้จากเครื่องมือวัดที่เรียกว่ารีโอมิเตอร์ (Rheometer) เช่นเครื่องวัดความหนืดแบบ
หลอด (Capillary rheometer) เครื่องวัดความหนืดแบบแผ่นประกบ (Plate and plate rheometer) หรือเครื่องวัดความหนืดแบบ
โคนประกบกับแผ่น (Cone and plate rheometer) เป็นต้น (Macosko, 1994) 
 

ของไหลคารัวล์-ยาซูดะ 
เนื่องจากข้อจำกัดของของไหลคล้ายนิวโตเนียนชนิดเพาเวอร์ลอร์ที่ไม่สามารถใช้งานได้ที่ค่าความเครียดเฉือนต่ำ ๆ ของไหล

คล้ายนิวโตเนียนแบบคารัวล์-ยาซูดะ (Carreau-Yasuda viscosity model) จึงได้ถูกปรับปรุงสมการให้สามารถหาค่าความหนืดท่ี
ความเครียดต่ำ ๆ ได้ ซึ่งถึงแม้ว่าจะมีคา่คงที่ของวัสดุถึง 5 ตัว แต่ก็สามารถทาบเส้นระหว่าง log  และ log  ได้ในช่วงที่กว้างข้ึน
ซึ่งจะมีประโยชน์ในการใช้งานในการคำนวณเชิงตัวเลข (Numerical calculation) ของไหลแบบคารัวล์-ยาซูดะแสดงในสมการ (11) 
คือ 

1n  1n 
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   a

n
a

1

0

1




 

 



  (11) 

เมื ่อ 0  เป็นค่าความหนืดที ่อัตราความเครียดเป็นศูนย์ (Zero-shear-rate viscosity)   เป็นค่าความหนืดที ่อัตรา
ความเครียดเป็นค่าอนันต์ (Infinity-shear-rate viscosity)   เป็นค่าคงที่ของเวลา n  เป็นค่ายกกำลัง และ a  เป็นค่าคงที่ไร้มิติซ่ึง
กำหนดความโค้งในช่วงรอยต่อระหว่างความหนืดที่อัตราความเครียดเป็นศูนย์และช่วงลาดชันดังแสดงในรูปที่ 6 ตัวอย่างการทาบเส้นท่ี
ได้จากสมการความหนืดแบบคารัวล์-ยาซูดะโดยมีค่าคงท่ีท่ีใช้ในการทาบเส้นแสดงในตารางท่ี 2 และเม่ือ 1a n   สมการท่ี (11) ลด
รูปเป็นสมการครอส (Cross equation viscosity) 

 0

1

1
a

 
  








  
 (12) 

สมการครอส (Cross equation viscosity) นิยมใช้ก ันมากในการคำนวณเชิงตัวเลข (Numerical calculation) เช่น
โปรแกรมจำลองการไหล Moldflow (Kennedy, 2008; Autodesk Moldflow, 2009) และ Moldex เป็นต้น (Moldex3d/eDesign 
Reference Manual, 2010) 


lo
g

log  
รูปท่ี 6 แสดงความหมายของค่าคงท่ีท่ีใช้ในการทาบเส้นในสมการของไหลคล้ายนิวโตเนียนแบบคารัวล์-ยาซูดะ 0  เป็นค่าความหนืด

ท่ีอัตราความเครียดเป็นศูนย์ (Zero-shear-rate viscosity)   เป็นค่าความหนืดท่ีอัตราความเครียดเป็นค่าอนันต์ (Infinity-
shear-rate viscosity) a  เป็นค่าคงที่ไร้มิติซึ่งกำหนดความโค้งในช่วงรอยต่อระหว่างความหนืดที่อัตราความเครียดเป็นศูนย์
และช่วงลาดชัน 

 
รูปท่ี 7 แสดงความหนืดแบบนอนนิวโตเนียนของสารละลาย 4 ชนิด ที่ทาบเส้นด้วยสมการคารัวล์-ยูซาดะด้วยค่า a  = 2 ค่าคงที่ของ

พอลิเมอร์ชนิดคารัวล์-ยูซาดะแสดงในตารางท่ี 2 (Bird et al., 1987) 
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ตารางท่ี 2 แสดงค่าคงท่ีของพอลิเมอร์ชนิดคารัวล์-ยูซาดะท่ีใช้ในการทาบเส้นในรูปท่ี 7 

พอลิเมอร์ สัญลักษณ์ 0   Pa s  
  

 Pa s  
   s  n  a  

2% พอลิบูไทลินละลายในไพรมอล 355 
(2% Polybutylene in Primol 355)  9.23  102 1.50  10-1 191 0.358 2 

5% พอลิสไตลินละลายในอโรเคอร์ 1242 
(5% Polystyrene in Aroclor 1242)  1.01  102 5.9  10-2 0.84 0.364 2 

0.75% พอลิอะไครลาไมด์ละลายใน 95/5 น้ำผสมกรีเซอรีน 
(0.75% Polyacrylamide in a 95/5 mixture by 
weight of water and glycerin) 

 10.6 10-2 8.04 0.364 2 

7% สบู่อลูมินัมละลายในดีคาลินและเอ็มครีโซล 
(7% Aluminum soap in decalin and m-cresol)  89.6 10-2 1.41 0.200 2 

 

ของไหลบงิก์แฮมส ์
ของไหลประเภทบิงก์แฮมส์นี้จะเกิดการไหลก็ต่อเมื่อมีค่าความเค้นเฉือนสูงเกินค่าหนึ่ง และเมื่อของไหลเกิดการไหลจะมี

อัตราส่วนระหว่างความเค้นเฉือนต่ออัตราความเครียดเฉือนคงที่ ซึ่งเป็นการรวมพฤติกรรมของไหลแบบนิวทอเนียนกับค่าความเค้น
เฉือนเริ่มต้น โดยมีรูปแบบสมการของไหลชนิดบิงแฮมคือ 

0        เม่ือ 0              (13) 
และ 

0       เม่ือ 0              (14) 
โดย 0  เป็นค่าความเค้นต้ังต้น (Yield stress) ตัวอย่างของไหลประเภทบิงก์แฮมส์ท่ีพบในชีวิตประจำวันคือยาสีฟัน และซอส

มะเขือเทศเป็นต้น ของไหลบิงก์แฮมส์นี้มีพฤติกรรมการไหลแบบนอนนิวโตเนียน (Non-Newtonian behavior) ภายใต้สภาวะแบบ
เฉือน (Leewuthinan, 2009) ดังแสดงใน 

รูปท่ี 2 
 

ของไหลเฮอรเ์ชลบัล์กเลย์ 
ของไหลประเภทเฮอร์เชลบัล์กเลย์ (Herschel-Bulkley fluid) นี้จะเกิดการไหลก็ต่อเม่ือมีค่าความเค้นเฉือนสูงเกินค่าหนึ่ง และ

เม่ือของไหลเกิดการไหล จะมีอัตราส่วนการเปลี่ยนแปลงของความเค้นเฉือนต่ออัตราความเครียดเฉือนท่ีไม่คงท่ี โดยเป็นการรวม
พฤติกรรมของไหลแบบเพาเวอร์ลอว์กับบิงก์แฮมส์ดังแสดงใน 

รูปท่ี 2 โดยมีรูปแบบสมการดังนี้ 

0
nm         เม่ือ 0              (15) 

และ 
0       เม่ือ 0              (16) 

เมื่อ 0  คือค่าความเค้นตั้งต้น (Yield stress) m  คือค่าคงที่ของพอลิเมอร์ (Consistency index) และ n  คือเลขยกกำลัง
ของพอลิเมอร์ชนิดนั้น (Power-law index) เมื่อ 1n   อัตราส่วนการเปลี่ยนแปลงของความเค้นเฉือนต่ออัตราความเครียดเฉือนจะ
ลดลง (Shear thinning) แต่ถ้า 1n   อัตราส่วนการเปลี่ยนแปลงของความเค้นเฉือนต่ออัตราความเครียดเฉือนจะเพิ่มขึ้น (Shear 
thickening) (Bird et al., 1987; Leewuthinan, 2009; Michaeli, 1992) ของไหลประเภทบิงก์แฮมส์และเฮอร์เชลบัล์กเลย์นี้นิยมใช้
แทนพฤติกรรมของเลือด (Blood flow) (Kalion et al., 2004; Mazumdar, 1998) และในบางครั้งของไหลเฮอร์เชลบัล์กเลย์นี้ใช้แทน
พฤติกรรมการไหลของยางในเคร่ืองอัดรีดด้วย (Leewuthinan, 2009) 
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บทสรุป 
ความสัมพันธ์ระหว่างแรงและการเปลี่ยนรูปร่างของวัตถุในช่วงเวลาที่สนใจโดยที่แรงนั้นจะทำให้วัตถุเกิดการเปลี่ยนแปลง

รูปร่างอย่างถาวรและเกิดเป็นการไหลของสสารเป็นศาสตร์ที่เราเรียกว่ารีโอโลยี (Rheology) ดังนั้นการขึ้นรูปพอลิเมอร์ในกระบวนการ
ฉีดพลาสติก กระบวนการอัดรีด และกระบวนการอัดขึ้นรูปถือเป็นกระบวนการที่พอลิเมอร์หลอมเหลวไหลเข้าแม่พิมพ์ในช่องทางไหล
แคบ ๆ ซึ่งเป็นการไหลแบบเฉือนของการศึกษาทางรีโอโลยี พฤติกรรมการไหลแบบเฉือนของของไหลแบบนอนนิวโตเนียน (Non-
Newtonian behavior) มีความแตกต่างจากการไหลของของไหลแบบนิวโตเนียนเป็นอย่างมาก กล่าวคือความหนืดจะเป็นฟังก์ชันของ
อัตราเครียดเฉือน   ถึงแม้ว่าการไหลของของไหลเพาเวอร์ลอร์ซ่ึงถือได้ว่าเป็นของไหลคล้ายนิวโตเนียน (Generalized Newtonian 
Fluid, GNF) ชนิดท่ีง่ายท่ีสุดจะใช้ได้ดีในช่วงท่ีอัตราเครียดเฉือน   ในกระบวนการผลิต แต่ในช่วงอัตราเครียดเฉือน   ต่ำ ๆ ของไหล
คารัวย์-ยาซูดะจะมีค่าที่ใกล้เคียงมากกว่าและถูกนำมาดัดแปลงเป็นโมเดลคลอสซึ่งใช้ในโปรแกรมคอมพิวเตอร์จำลองการไหลเช่น 
MoldFlow และ Moldex ส่วนท้ายของบทความแสดงสมการของของไหลบิงก์แฮมส์และเฮอร์เชลบัล์กเลย์ซ่ึงบางครั้งใช้แทนพฤติกรรม
การไหลของเลือด (Blood flow) ด้วย 
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