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ABSTRACT
The purpose of this research was to derive the Explicit Expression of ARL for Exponential Weighted Moving
Average (EWMA) control chart when observations are explained by ARFIMAX (1,d,1) process with exponential white
noise. The results of the ARL obtained from the Explicit Expression and Integral Equation (IE) were in good

accordance, with the Explicit Expression taking time to calculate ARL.
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1. INTRODUCTION

Control charts are graphical procedures used to detect assignable causes. Observations are obtained from
the process and the values of some statistics that are computed and plotted over time. The first control charts
were proposed by Shewhart (1931), resulting in them often being called Shewhart control charts. These charts are
designed for the detection of large deviations in the parameter process monitoring. However, these control charts
are not good for detecting relatively small changes in parameter processing. Other types of control charts include
the cumulative sum (CUSUM) chart and the exponentially-weighted moving average (EWMA) chart, proposed by
Page (1954) and Roberts (1959), respectively. In contrast to Shewhart charts, which have the advantage of
accumulating information from past observations, these types of charts usually have some tuning parameters that
must be specified by the user that are optimal detecting specific changed size. Therefore, performance for detecting
other changes in size could be compromised. This implies that, for these charts, the user needs to have relatively
good information about the changed parameters that would likely occur when the process is out of control. The
underlying assumption in a control chart is that observations from the process are independent and identically
distributed (i.i.d.).

The most commonly used autoregressive moving-average (ARMA) models (Box and Jenkins, 1976) are
short- memory processes. On the other hand, a long- memory process shows very strong persistence and
observations more like a non-stationary process. Based on this observation, a class of continuous-time long-memory
processes (fractional Brownian motions) was proposed by Mandelbrot and van Ness (1968). However, such models
tend to be quite restricted because they depend on only one parameter. The most commonly used long-memory
processes are fractionally integrated ARMA (ARFIMA) processes, which were first introduced by Granger and Joyeux
(1980) and Hosking (1981). ARFIMA models can represent a variety of dependent structures, including both short
memory and long memory. There are more interesting applications. Besides, seasonal effects can be incorporated
into an ARFIMA process in various ways to construct flexible models (Porter-Hudak, 1990; Ray 1993).

Criticisms of Shewhart charts are slow to show the small shifts in the process average. Two methods often
used because of their efficiency in more quickly finding such small shifts are CUSUM and EWMA charts. These charts
handle the data as a time series rather than iid. The CUSUM is an infinite length time series in that the difference
from the long term average value of each point is added algebraically to the cumulative algebraic sum of all
previous differences, after which it is plotted (Reproduced with permission of the copyright owner; Further
reproduction prohibited without permission). The technique is somewhat cumbersome as it requires special
techniques to determine when a point is out of control. The EWMA uses a weighted series of previous data points,
along with the current data point, to determine the expected value of that point. The calculated value is then
plotted against standard Shewhart control limits looking for a trend or out-of-control point. Thus, the two methods
commonly used to overcome a weakness in the Shewhart method are in fact time series methods and have been
clearly shown and accepted by practitioners in the field to be better than conventional charts for detecting small
shifts in the process average. Therefore, the main goal of this paper is to study the Fredholm type integral equations
method to derive a closed-form solution for Average Run Length (ARL) of the EWMA control chart for Autoregressive

Fractionally-Integrated Moving Average with exponential white noise.
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The control charts are typically compared by their average run length (ARL).The ARL is the average number
of runs that occur before an out-of-control point presents itself. If a process is in-control (ARLy), it is ideal for the
ARL to be large. However, if a process is out-of-control (ARL,), it is optimal for the ARL to be small. Methods for
evaluating ARL, and ARL; of EWMA control chart include the Markov Chain Approach (MCA), Integral Equation
approach (IE) and Monte Carlo Simulation (MC). In 1987, Crowder (1987) first used IE for approximating ARL, and
ARL, for Gaussian distribution. Later, Lucus and Saccucci (1990) used MCA to evaluate the run length properties of
EWMA control charts. Harris and Ross (1991) studied CUSUM and EWMA control charts with serially correlated
observations via Monte Carlo simulation. Later, a simple and very accurate ARL calculation procedure based on an
approximating equation was provided by Hawkins and Olwell (1998). Recently, Areepong and Novikov (2009) used
the Nystrom method to present the error term of numerical integral equations for approximating ARL, and ARL, for
EWMA control chart in the case of exponential distribution. Later, Mititelu et al. (2010) used the Fredholm integral
equation of the second method for explicit formulas of ARL for a one-sided EWMA procedure. Vermatt and Does
(2008) derived explicit easy- to- use expressions for EWMA statistics when the process observations were
autoregressive of order 1. Variance was used to modify the control limits of the corresponding EWMA control chart.
Suriyakat et al. (2012) presented the explicit formulas of ARL for EWMA control chart to monitor AR(1) process.
Consequently, exact expression of ARL for EWMA control chart based on ARX (p) process were proposed by Paichit
(2017). The IE for the ARL can be easy to compute and program. The focus of this paper is to find the analytical
formulas and numerical methods of ARL for EWMA control chart for ARFIMAX (1,d,1) process with exponential white
noise to detect change in the process mean. The Integral Equation is used to derive this explicit expression for ARL.
The procedures of the paper are as follows: the characteristics of EWMA control chart for ARFIMAX (1, d, 1) process
is introduced in Section 2; the derivation of closed-form expression for ARL is expressed in Section 3; the numerical
method for solving the integral equation to obtain approximation of ARL is presented in Section 4; the conclusions

are presented in Section 5.

2. THE ARFIMAX (1,D,1) PROCESS FOR EWMA CONTROL CHARTS

In this section, the characteristics of EWMA control chart for ARFIMAX (1,d,1) process effected the tool for
detecting small changes in the process parameters. Given Y; to be a sequence for an Autoregressive Fractionally
Integrated Moving Average with explanatory variable (ARFIMAX (1, d, 1)) random process. The EWMA process regress
the current value Y; on the past values of itself Yi_1, Yi—2, ..., Yi—q and past random errors that occurred in past
time periods & _1. Thus, the current value is a linear combination of the most recent past values and most recent
past (unobserved) white noise error terms.

The definition of EWMA statistics based on the ARFIMAX (1, d, 1) process is the following recursion:

Zi =1 —=NZig + AVt =12, ... (1)

where Z; is the EWMA statistics, Y; is the sequence Autoregressive Fractionally Integrated Moving Average

(ARFIMAX (1,d,1)) process and A € (0,1) is the smoothing parameter. The initial value is a constant (Z, = u = 0)
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The ARFIMA (Auto Regressive Fractionally Integrated Moving Average) model combining the fractional order
of time series integration with the conventional autoregressive/ moving average method has been widely applied
to prove its empirical applicability, such as stock price series or international exchange rates (Henry and Olekalns,
2002). The ARFIMA model can include explanatory variables for deterministic trends, called the ARFIMAX model
(Davidson and Sibbertsen, 2005).

The general Autoregressive Fractionally Integrated Moving Average with explanatory variable, denoted by
the (ARFIMAX (1, d, 1)) process, can be written as:

Vo =dYey —dCRY 4 d(d - DY+t Yoy — X diXeny +E — 018y
#(B1¥er = Vs +d D0V —d(d = DER Y, ot by (Vi) @
where & is the white noise process assumed with Exponential distribution. The initial value is normally the process
mean, with an autoregressive coefficient —1 < ¢; < 1 and moving average coefficients—1 < 0; < 1. It is
assumed that the initial value of ARFIMAX (1, d, 1) process Yi—1, Yi—2, ..., Yi—q = 1 , difference operator
d=0.3and Xy, Xi-q = 1.

In this paper, the case of a positive change in distribution crossing the upper control limit that raises alarm
is discussed in detail. Given & , t = 1,2, ... to be a sequence of independent, identical distribution random variables
with exponential parameter (). It is normally assumed that under in-control state, the parameter has a known in-
control value of B = By. Parameter B could be changed to out-of-control value § = B4, when (8 < =), § is the
change-point time.

The first passage time for the EWMA can be written as:

T, = inf(t > 0:Z; > b), (3)
where b is a control limit.

The ARL is the expectation value of Ty,. Mostly, two characteristics are used for the performance of
control chart, which are ARL, and ARL;, as follows:

ARLy = E_(zp) (a)
ARL, = Es(ty, — 6 + 1|1, = 6) (5)
where E_(.) is the expectation corresponding to the target value and is assumed to be large enough.

Es(.) is the expectation under the assumption that change-point occurs at time § = 1.

3. EXPLICIT EXPRESSION FOR ARL IN EWMA CONTROL CHART

In this section, explicit expression to evaluate the solution of EWMA control chart for ARFIMAX (1, d, 1)
observations with exponential white noise is discussed. We follow the technique for approximating the ARL for
Gaussian distribution developed in Crowder (1997). Given L(u) is ARL for ARFIMAX (1, d, 1) observations with initial
value Zy = u, if is assumed that the lower control limit and the upper control limit are LCL = 0 and UCL = b.

When EWMA statistics Z; in an in-control process, the inequality is:

(d-1) (d—2)
0< (1= N2 +di¥;g = d =AW,y +d(d = 1) =57 AWoog + oo+ AWy = AXe + A Xor + 26,

! 3!
(d-2)
Bitios + ot $i(Vigi)) <

3!

—A0:8¢-1 + 1 (¢1Yt—1 —¢dY, + d(dz__!l)¢1yt—3 —dd-1)
Consider function L(w) =1+ [ L(Z\)f(&)dé,,
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Therefore,

d—1
L(u) = 1+fL((1—/1)u)+d/1Yt_1 —d(z—,)/m 2+ d(d—l)( )/wt g+t AYg — AXp + AP X g + A&,

d— d
—ABEey + A Yooy — ApydYe +d APV, g —d(d — 1) %wm_s + oo 21 (Vo)) f (@)

Change variables in the integration will be:

L(u) = 1+1f L(w )f(fm_dytq"'d(dz;,l) —dd-1) (d )Yt—3_"'_yt—d + X — 1 Xey + 01804

(d 2)
BrYios == 1 (o i) ) do

(d 1)
+240:8 1 — PV + 01dYp, —d——d Vi3 +d(d -1

-1 d—2
L = 1+ = [ Lwe <(1_A)u+dy“1_d( )Y”*d(d‘l)( )Yr3+ Vg = Kot 1Ko — 016y
u) = — w)e *Pex
lﬁ P\™ 28 5
—191&—1+¢1Yt—1—¢1dyt—z+d(d;1)¢1yt—3—d(d—l)(d_z)

dw. (6)

3 P1¥e-3 +"'+¢1(—Yt—d+1)>
B

Let P, and E, be the probability measure and induced expectation corresponding to the initial value U,

respectively. Then the ARL is a unique solution to the integral equation, defined as ARL = L(u) = E_(T) < . The

olution for the integral equation of EWMA control chart is defined in Equation (6). The right hand side of Equation
(6) is continuous. Therefore, the solution of the integral for Equation (6) is a continuous function.

Considering the complete matric space (C), I ll) where C(1) denotes the space of all continuous functions

on |, where | is a compact interval, with the norm Ll =sup,e, |L(u)|. The operator T is named as a contraction if

there exists a number 0 < q <1 such ITL)-TWN < gllL,-Lllfor all Ly, L,eC). In this case, let T be an operation

in this class of all continuous functions C(I), where | = [0, b] is defined by:

(1—7\)u+dYt 1 d( )Yt 2 +d(d— 1)(d )Yt 3+t Yig — X+ 01X — 0151
AB B
(d;1)¢1Yt—3—d(d—l)(d;,z)¢1Yt—3+"'+¢1(—Yt—d+1)>

B
Thus, the integral equation in (7) can be written as T(L(u))=L(u). Now, according to Banach’s Fixed Point

TLW) =1 +$ exp<

“A018—1+d1Ye—1—P1dY¢_p+d

fob L(u))e_l%du). (7

Theorem, if the operator T is a contraction, then the fixed point equation T(L(u))=L(u) has a unique solution. We
will show that operator T is a contraction in Proposition1.
Proposition 1 On the matric space (C(I), llle) with the norm lILllee = sup,e, |L(W)| the operator T is a contraction.
Proof.

To show that T is a contraction for any u€l and L;, L, €C(l). The inequality
L )-TUIS gllL Ll for atl Ly, L,ech) with 0 < g <1. According to (7), then |IT(L,) —

d-2
((1 Mu | dYe— 1—d( )Yt 2+d(d- 1)( )Yt 3+ + Yo q—XetP1Xe—1-018¢-1
B

fob L(oo)e_"\_ﬁdm|

TN < supyeop) L (0) - um)—ep

~A01Ee_ g+ Yoy~ 1 dYep+d L =7 Dpy Yeog—d(d—1)
B

(d 2)

¢1Yt—z+ -+ 1 (- Y- d+1)>

d—
((1 u  dVeis a9y +d(d-DC Y, st 4V g —XetdrXeo1-018c—1

B

< supyejop) [lILs = LIl 55 exp

(d 2)

—A018t—1+P1Ye—1—Pp1dYe— 2+d ¢‘1Yt 3—d(d-1)

B

GJM(E%—lﬂ

G1Ye—z++Pg (- Yo d+1)>

d-—
a-nu Y- 1=y o td@-DE DY g+ Yo g Xt b1Xem1— 01t
=|IL; — Lall.. SUPye[o,b] | [€XP B 5
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d— d—
_Aelgt—1+¢1Yt—1_¢1dYt—2+d%¢1Yt—3_d(d_1)( 312)¢1Yt—3+"‘+¢1(_Yt—d+1) (1 _ e—}%)
B
d—
Ly — Lyl |1 —e_l% su L oex ((1—)\)u dYe- 1—d( XY p+d(d- 1)( )Yt 3t Ve q—Xe+P1Xe-1-6181
=llLq 21l Puelo,b] 7 p B 8
d- d-
~A01Ee_1 1 Yemg 1 dYe g+l 1)¢’1Yt s=d(d-1t 2)¢1Yt 3t +P1(=Yed+1)
B
= qllL; — Lall.,
d—
where o< | —e s | s ox ((1 Wu |, Wi ~d 8y +d(d-D DY g Y X+ 1Xeo1~018e1
0<q-l1— =
q Pue(o,b] B/l P B
d— d—
_7\91§t—1+¢1Yt—1_‘bldYt—Z+d%¢1Yt—3_d(d_1)( 3!2)¢1Yt—3+"'+¢1(—Yt—d+1)) <1
B )

O<}\<1vB>Oa”in'Ei=1'

Triangular inequality has been used and the fact is:

|L;1(0) — Ly (0)] < supyeqop)lLs(u) — Ly (w)| = [|Lg — Ly|...
Therefore, the uniqueness of the solution is guaranteed via Proposition 1. Next, we derive explicit expression of

the Fredholm integral equation, which is called the explicit expression of equation (7), as shown by Theorem 1.

Theorem 1 The solutions for the integral equation T(L(u)) = L(u) given by:

a-Du -1~ d(d2| )Yt 2+d(d— 1)(d Z)Yt 3+t (=Y d+1)> )
VT _b
e d (e ¥-1)
Lw=1- @ @2
<dn 1~y -0 By ety (<Y d+1)>
ﬁ _b
e (e £-1)

1+ y)

Proof.

To consider the integral equation in (6):

d—1
(1—/1>u+dyt71—d( 2y, +a@ -l

AB W

- 2)

Yig+ o+ Yeag—Xe+P1Xeq — 0184

1 (? _e
Lw) =1 +E£ L(w)e ’Wexp(

—191&—1+¢1Yt—1-¢>1dYt—z+d(d;1)¢1yt—3—d(d-l)(d;2)¢1Yt—3+'"+¢1(-Yt—d+1) dw
5 .

where & ~ Exp(B).

(1-DHu | dYp-1— d( )Yt—z+d(d 1)( Yt 3tV g—Xe+tP1Xe—1-6018¢-1
Let C(u) = exp T

d- d-
201§ 1+§1¥eo1~$1d¥e_p+d 2!1)¢1Yt—3—d(d—1)( 3!2)¢1Yt—3+"'+¢>1(—Yt—d+1)>
B

Then L(u) =1+ C(u)f L(w)e "ﬁdw ;0<u<b.
_ -1+
Letd = fo L(w)e /U?da), we have L(u) =1 + 7 d,

then

) (d 2)

(
- dYp—q—d"——Yr_p+d(d-1) YeoztotYeog—XeteXe—1—618
L(u):l-'—iexp((l)')u_'_ t-1— t-2 t—3 t—d™— t¢ft1 15t—-1
AB AB
(d-2

d-1
_/19151:—1+¢1Yt—1_¢1dYt—2+d%¢‘1yt—3_d(d 1 Dy Ve_stpa (=Y e d+1)>

B
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Solving a constant d = fob L(w) e *Adw.
- €@ 1\ 775
d= [+ v d)e *dw
= fob e Bdw+ fob C(w)e *dw

b
-2 d
=A(1—e AB)E exp(

d-1 d—2
(1-Du dYt—rd%Yt—erd(d—l)( 3 )Yt—3+'"+Yt—d—Xt+¢tXt—1—91ft—1

AB B

—191ft—1+¢1yt—1—¢1dYt—2+d(d;1)¢1yt—3—d(d—1)(d;2)¢1yt—3+“'+¢1(—Yt—d+1) fb —%d
5 o € Fdw
_b
(-w)<e A/3—1)
d= @D @-2)
<dyc—1—d o Ye—2+d(d—1)"—; Yc—3+"'+¢1(—ytd+1)> b
B _b
e <e 5—1)
14 3
Substitute constant d into functionL(w), then
(1—A)u*dyt—l_d(dz_!l)yf—z+d(d_1)(d3_!2)yt—3+“‘+¢1(_Yt—d+1)
B P 5,
Lw)=1-2 @D @2 . .
aYi_q—-d—; Yi_p+d(d-1) 3T Yt—3+“'+¢1(_Yt—d+1)
B _b
e (e 5—1)

1+

A
By Theorem 1, the explicit expression for ARL, is as follows:

Ae ((1/1—1;1314)(9_%_1)

<—dyt—1+d(d;1)yt—z—d(d—l)(d_;z)ytﬂ—"'—¢1(‘yt—d+1)>
Ae

(8.

ARL,=1—

Fo e(_ﬁ_o)—1

On the contrary, the explicit expression for ARL1 when the process is out-of-control involves parameter B = B4,

which can be written as follows:

Ae(“ié‘f“)(e-%l_l)

<—dYt_1+d(d2_!1)Yt—2—d(d—l)(d;Z)Yt—z,—'"—¢1(—Yt—d+1)>

B

ARL, =1-—

b
Ae e _B_1>—1
where —1 < ¢; < 1and —1 < 6; < 1 is Autoregressive Moving Average coefficient and

0<A<1Yiq,Yieg -, Yi_g and &, & _4 are the smoothing parameters and initial values, respectively.

4. NUMERICAL INTEGRAL EQUATION (IE)

Generally, the Integral Equation cannot be solved analytically for L(u). Thus, it is necessary to use
numerical methods to solve them. Kantorovich and Krylov (1958), and Atkinson and Han (2001) developed
numerical schemes for solving integral equations. We use a quadrature rule to approximate the integral by a finite
sum of an area of rectangles with base b/m with heights chosen as the values of f at the midpoint of intervals for
length b/m beginning at zero. Particularly, once the choice of a quadrature rule is made, the interval [0, b] is
divided into a partition 0 < a;< @,<...< a, <b and set of constant weight k; = (b / m) = 0.

The approximation for an integral is of the form

b m
jo L(w)f (0)dw = Z]-=1k’f (a))

b (2j-1
where @; = = (2£==) and k; =
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Let f(aj) denote the numerical approximation to integral equation L(w), which can be found as the solution for

the linear equation as follows:

L(a) = 1+3%0, kiL(a))f (& —dYy + a2, —d(d - )Ry — - ¢1<—Yt_d+1)) (10)
where ; [ = 1,2, ...m, the set of m equations is m unknowns, which can be written in matrix form.

Let Lyyxq = [L(ay), L(ay), ..., L(a;,)]/ be the column vector of L(a;) and 1%, = [1,1,...,1)/ be a
column vector of one. Also, let Ry xm be a matrix and define the (m, m)th as an element of matrix R, as
follows:

(d-2)

1-Da; (d-
[ u] = Z] 1 k; L( J)f (a] % dyt—l + dTl)Yt—z - d(d - 1) Yt—3 -t ¢1(_Yt—d+1)><

and Ipxq = diag[1,1, ...,1]is unit matrix order m. If (I — R)~1 exists, the numerical approximation for the
integral equation in terms of matrix is:
Ly = (I = R) M.
When a; is replaced by u in Z(aj), the numerical approximation for function L(u) is as follows:
(d 1)

a-(1-Da; (d 2)

Lw)=1+= z Ly k; L(a,)f( —dY,_, +d—= —d(d-1)—= - qbl(—yt_dﬁ)) (11).

NUMERICAL RESULTS

In this section, the results of ARLO and ARL1 for ARFIMAX(1,d,1) process, which are obtained from the
explicit expression with numerical solution for the integral equation (IE) method with m=1,000, are compared. The
results of ARL are expressed in Tables 1 to 3. The parameter value for in-control parameter is equal to 1 and the
parameter value for out-of-control B 1=1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.20, 1.30, 1.40, 1.50,
2,3, 4, 5. Performance of the proposed explicit expression in terms of computational times and absolute percentage

difference is considered.

|L(w) — L(w)]

) X 100%.

Diff (%) =

Table 1. Comparison of ARL, and ARL; for EWMA control chart by explicit expression with numerical integral
equation for ARFIMAX(1,0.3,1) process with ¢ = 0.1, 8; = 0.1, and 4 = 0.01

Parameter value of EWMA chart

for ARL,=370 b = 0.0162051 and for ARL,=500 b = 0.01621058

ARL,=370 ARL,=500
B Diff(%) Diff(%)
Explicit expression IE (Time used: second) Explicit expression IE (Time used: second)
1.00 370.229 370.229 (33.3) 0.00003 500.299 500.299 (32.6
1.01 77.8823 77.8823 (32.7) 0.00001 82.2747 82.2747 (32.2
1.02 44.0443 44.0443 (32.4) 0.00002 45.3825 45.3825 (32.7
1.03 30.9537 30.9537 (32.7) 0.00006 31.5934 31.5934 (32.8 0.00006

(32.6)
(32.2)
(32.7)
(32.8)
1.04 24.0057 24.0057 (32.8) 0.00008 24.3799 24.3799 (33.1) 0.00008
(32.9)
(32.4)
(32.3)

0.00004
0.00002
0.00007

1.05 19.6981 19.6981 (32.1) 0.00005 19.9438 19.9438 (32.9
1.06 16.7659 16.7659 (31.7) 0.00006 16.9397 16.9397 (32.4
1.07 14.6409 14.6409 (32.6) 0.00007 14.7704 14.7704 (32.3

0.00005
0.00006
0.00007
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Table 1. Comparison of ARL, and ARL; for EWMA control chart by explicit expression with numerical integral

equation for ARFIMAX(1,0.3,1) process with ¢; = 0.1, ; = 0.1, and 1 = 0.01 (continue)

Parameter value of EWMA chart

for ARL,=370 b = 0.0162051 and for ARL;=500 b = 001621058

ARL=370 ARLy=500
B — : : Diff(%) — - - Diff(%)
Explicit expression IE (Time used: second) Explicit expression IE (Time used: second)

1.08 13.0300 13.0300 (32,2) 0.00008 13.1303 13.1303 (32.1) 0.00008
1.09 11.7666 11.7666 (32.5) 0.00007 11.8467 11.8467 (31.8) 0.00004
1.10 10.7492 10.7492 (31.8) 0.00008 10.8147 10.8147 (32.5) 0.00006
1.20 6.09145 6.09145 (32.4) 0.00002 6.10890 6.1089 (32.6) 0.00003
1.30 4.50352 4.50352 (32.5) 0.00004 4.51169 4.51169 (32.3) 0.00007
1.40 3.69825 3.69825 (32.9) 0.00005 3.70335 3.70335 (32.7) 0.00005
1.50 3.20958 3.20958 (33.1) 0.00009 3.21282 3.21282 (32.8) 0.00006
2.00 2.20256 2.20256 (32.6) 0.00004 2.20358 2.20358 (31.9) 0.00005
3.00 1.65908 1.65908 (31.9) 0.00006 1.65945 1.65945 (32.1) 0.00006
4.00 1.46133 1.46133 (32.2) 0.00004 1.46155 1.46155 (32.2) 0.00003
5.00 1.35659 1.35659 (32.7) 0.00007 1.35675 1.35675 (31.7) 0.00005

Table 2. Comparison of ARL, and ARL; for EWMA control chart by explicit expression with numerical integral
equation for ARFIMAX(1,0.3,1) process with ¢ = 0.1,8; = —0.1,and A = 0.01

Parameter value of EWMA chart

for ARL, =370 b = 0.01324593 and for ARL,=500 b = 00132512

ARLy=370 ARLy=500
B — - - Diff(%) — - - Diff(%)
Explicit expression IE (Time used: second) Explicit expression IE (Time used: second)

1.00 370.076 370.076 (31.6) 0.00006 500.840 500.840 (32.3) 0.00004
1.01 65.4492 65.4492 (31.3) 0.00003 68.5295 68.5295 (32.7) 0.00006
1.02 36.4500 36.4500 (32.1) 0.00005 37.3610 37.3610 (32.4) 0.00005
1.03 255152 25.5152 (32.4) 0.00008 25.9469 25.9469 (31.8) 0.00008
1.04 19.7736 19.7736 (32.5) 0.00006 20.0255 20.0255 (31.9) 0.00005
1.05 16.2351 16.2351 (31.7) 0.00006 16.4004 16.4004 (32.1) 0.00007
1.06 13.8356 13.8356 (31.5) 0.00007 13.9525 13.9525 (33.6) 0.00008
1.07 12.1010 12.1010 (32.8) 0.00005 12.1883 12.1883 (32.8) 0.00003
1.08 10.7885 10.7885 (32.5) 0.00004 10.8563 10.8563 (32.5) 0.00007
1.09 9.76062 9.76062 (32.9) 0.00003 9.81485 9.81485 (32.4) 0.00002
1.10 8.93369 8.93369 (32.3) 0.00004 8.97812 8.97812 (33.1) 0.00003
1.20 5.15563 5.15563 (32.1) 0.00006 5.16779 5.16779 (33.2) 0.00006
1.30 3.86831 3.86831 (32.5) 0.00003 3.87415 3.87415 (32.9) 0.00005
1.40 3.21459 3.21459 (31.8) 0.00009 3.21811 3.21811 (32.5) 0.00003
1.50 2.81664 2.81664 (31.4) 0.00005 2.81905 2.81905 (32.1) 0.00004
2.00 1.99276 1.99276 (32.1) 0.00004 1.99357 1.99357 (31.8) 0.00005
3.00 1.54429 1.54429 (31.9) 0.00006 1.54461 1.54461 (32.2) 0.00008
4.00 1.38052 1.38052 (31.8) 0.00007 1.38071 1.38071 (32.3) 0.00007

5.00 1.29378 1.29378 (32.2) 0.00008 1.29393 1.29393 (32.6) 0.00006
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Table 3. Comparison of ARL, and ARL; for EWMA control chart by explicit expression with numerical integral
equation for ARFIMAX(1,0.3,1) process with ¢; = —0.1,0; = 0.1, and A = 0.01

Parameter value of EWMA chart

for ARL,=370 b = 0.02236853 and for ARL,=500 b = 0.02237498

ARL=370 ARL(=500
B — - - Diff(%) — - - Diff(%)
Explicit expression IE (Time used: second) Explicit expression IE (Time used: second)

1.00 370.085 370.085 (31.4) 0.00005 500.224 500.224 (32.4) 0.00004
1.01 133.610 133.61 (30.7) 0.00008 147.216 147.216 (32.8) 0.00007
1.02 81.2722 81.2722 (31.2) 0.00006 86.0315 86.0315 (31.7) 0.00003
1.03 58.2966 58.2966 (31.7) 0.00003 60.6655 60.6655 (32.3) 0.00005
1.04 45.4027 45.4027 (30.5) 0.00004 46.8035 46.8035 (33.1) 0.00004
1.05 37.1582 37.1582 (32.1) 0.00005 38.0760 38.0760 (32.3) 0.00005
1.06 31.4385 31.4385 (30.4) 0.00003 32.0824 32.0824 (32.5) 0.00003
1.07 27.2419 27.2419 (31.6) 0.00007 27.7164 27.7164 (33.2) 0.00009
1.08 24.0344 24.0344 (31.9) 0.00008 24.3971 24.3971 (31.8) 0.00004
1.09 21.5054 21.5054 (31.3) 0.00005 21.7907 21.7907 (32.9) 0.00005
1.10 19.4616 19.4616 (32.2) 0.00007 19.6914 19.6914 (32.6) 0.00008
1.20 10.0995 10.0995 (31.8) 0.00006 10.1524 10.1524 (32.5) 0.00006
1.30 6.97878 6.97878 (31.2) 0.00003 7.00074 7.00074 (33.1) 0.00003
1.40 5.44556 5.44556 (32.5) 0.00004 5.45734 5.45734 (33.4) 0.00004
1.50 4.54225 4.54225 (32.1) 0.00007 4.54957 4.54957 (32.6) 0.00009
2.00 2.7909 2.79090 (31.8) 0.00004 2.7927 2.79270 (31.6) 0.00007
3.00 1.93752 1.93752 (31.4) 0.00008 1.93806 1.93806 (32.2) 0.00005
4.00 1.64682 1.64682 (30.7) 0.00002 1.64712 1.64712 (32.5) 0.00008
5.00 1.49685 1.49685 (30.5) 0.00003 1.49705 1.49705 (32.7) 0.00007

The results from Tables 1 to 3 show that these methods are in good agreement. Our analytical results

agree with the numerical approximation per an absolute percentage difference of less than 0.01% for m = 1000

iterations and computational durations of approximately 30 seconds. The computational durations for the proposed

analytical explicit expression are less than 1 second.

5. CONCLUSION

We derived explicit expression formulas for the ARL of EWMA control chart in the case of ARFIMAX (1,d,1)

process with exponential white noise. We have shown that our formulas are very accurate as well as being easy to

calculate and programmable. In addition, explicit expression consumes much less computational time compared

to numerical integral equation.
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