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บทคัดย่อ 
วัตถุประสงค์ของงานวิจัยนี้คือเพ่ือหาสูตรสําเร็จของค่าความยาวว่ิงเฉล่ียสําหรับแผนภูมิควบคุมค่าเฉล่ียเคล่ือนท่ีถ่วงน้ําหนัก

แบบเลขชี้กําลังเม่ือค่าสังเกตถูกกําหนดโดยกระบวนการ ARFIMAX (1,d,1) พร้อมกับความคลาดเคลื่อนมีการแจกแจงแบบเลขชี้กําลัง
และเป็นอิสระกัน  ผลลัพธ์ของค่าความยาวว่ิงเฉลี่ยท่ีได้จากสูตรสําเร็จและสมการปริพันธ์ให้ผลท่ีสอดคล้องกันดี และสูตรสําเร็จท่ีได้ใช้
เวลาในการคํานวณค่าความยาวว่ิงเฉลี่ยน้อยกว่า 
 

ABSTRACT 
The purpose of this research was to derive the Explicit Expression of ARL for Exponential Weighted Moving 

Average (EWMA) control chart when observations are explained by ARFIMAX (1,d,1) process with exponential white 
noise. The results of the ARL obtained from the Explicit Expression and Integral Equation (IE) were in good 
accordance, with the Explicit Expression taking time to calculate ARL. 
 

คําสําคัญ: กระบวนการ ARFIMAX  แผนภูมิควบคุมค่าเฉลี่ยเคล่ือนท่ีถ่วงน้ําหนักแบบเลขชี้กําลัง  ความยาวว่ิงเฉลี่ย 
Keywords: ARFIMAX procedure, EWMA control chart, Average Run Length (ARL). 
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1. INTRODUCTION 

Control charts are graphical procedures used to detect assignable causes. Observations are obtained from 
the process and the values of some statistics that are computed and plotted over time.  The first control charts 
were proposed by Shewhart (1931), resulting in them often being called Shewhart control charts. These charts are 
designed for the detection of large deviations in the parameter process monitoring. However, these control charts 
are not good for detecting relatively small changes in parameter processing.  Other types of control charts include 
the cumulative sum ( CUSUM)  chart and the exponentially-weighted moving average ( EWMA)  chart, proposed by 
Page ( 1954)  and Roberts ( 1959) , respectively.  In contrast to Shewhart charts, which have the advantage of 
accumulating information from past observations, these types of charts usually have some tuning parameters that 
must be specified by the user that are optimal detecting specific changed size. Therefore, performance for detecting 
other changes in size could be compromised. This implies that, for these charts, the user needs to have relatively 
good information about the changed parameters that would likely occur when the process is out of control.  The 
underlying assumption in a control chart is that observations from the process are independent and identically 
distributed (i.i.d.). 

The most commonly used autoregressive moving- average ( ARMA)  models ( Box and Jenkins, 1976)  are 
short- memory processes.  On the other hand, a long- memory process shows very strong persistence and 
observations more like a non-stationary process. Based on this observation, a class of continuous-time long-memory 
processes (fractional Brownian motions) was proposed by Mandelbrot and van Ness (1968). However, such models 
tend to be quite restricted because they depend on only one parameter. The most commonly used long-memory 
processes are fractionally integrated ARMA (ARFIMA) processes, which were first introduced by Granger and Joyeux 
( 1980)  and Hosking ( 1981) .  ARFIMA models can represent a variety of dependent structures, including both short 
memory and long memory. There are more interesting applications. Besides, seasonal effects can be incorporated 
into an ARFIMA process in various ways to construct flexible models (Porter-Hudak, 1990; Ray 1993). 

Criticisms of Shewhart charts are slow to show the small shifts in the process average. Two methods often 
used because of their efficiency in more quickly finding such small shifts are CUSUM and EWMA charts. These charts 
handle the data as a time series rather than iid.  The CUSUM is an infinite length time series in that the difference 
from the long term average value of each point is added algebraically to the cumulative algebraic sum of all 
previous differences, after which it is plotted ( Reproduced with permission of the copyright owner; Further 
reproduction prohibited without permission) .  The technique is somewhat cumbersome as it requires special 
techniques to determine when a point is out of control. The EWMA uses a weighted series of previous data points, 
along with the current data point, to determine the expected value of that point.  The calculated value is then 
plotted against standard Shewhart control limits looking for a trend or out-of-control point. Thus, the two methods 
commonly used to overcome a weakness in the Shewhart method are in fact time series methods and have been 
clearly shown and accepted by practitioners in the field to be better than conventional charts for detecting small 
shifts in the process average. Therefore, the main goal of this paper is to study the Fredholm type integral equations 
method to derive a closed-form solution for Average Run Length (ARL) of the EWMA control chart for Autoregressive 
Fractionally-Integrated Moving Average with exponential white noise. 
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The control charts are typically compared by their average run length (ARL).The ARL is the average number 
of runs that occur before an out-of-control point presents itself.  If a process is in-control (ARL0) , it is ideal for the 
ARL to be large.  However, if a process is out- of- control ( ARL1) , it is optimal for the ARL to be small.  Methods for 
evaluating ARL0 and ARL1 of EWMA control chart include the Markov Chain Approach (MCA) , Integral Equation 
approach ( IE)  and Monte Carlo Simulation (MC) .  In 1987, Crowder (1987)  first used IE for approximating ARL0 and 
ARL1 for Gaussian distribution. Later, Lucus and Saccucci (1990) used MCA to evaluate the run length properties of 
EWMA control charts.  Harris and Ross ( 1991)  studied CUSUM and EWMA control charts with serially correlated 
observations via Monte Carlo simulation. Later, a simple and very accurate ARL calculation procedure based on an 
approximating equation was provided by Hawkins and Olwell (1998). Recently, Areepong and Novikov (2009) used 
the Nystrom method to present the error term of numerical integral equations for approximating ARL0 and ARL1 for 
EWMA control chart in the case of exponential distribution. Later, Mititelu et al. (2010) used the Fredholm integral 
equation of the second method for explicit formulas of ARL for a one- sided EWMA procedure.  Vermatt and Does 
( 2008)  derived explicit easy- to- use expressions for EWMA statistics when the process observations were 
autoregressive of order 1. Variance was used to modify the control limits of the corresponding EWMA control chart. 
Suriyakat et al.  ( 2012)  presented the explicit formulas of ARL for EWMA control chart to monitor AR( 1)  process. 
Consequently, exact expression of ARL for EWMA control chart based on ARX (p) process were proposed by Paichit 
( 2017) .  The IE for the ARL can be easy to compute and program. The focus of this paper is to find the analytical 
formulas and numerical methods of ARL for EWMA control chart for ARFIMAX (1,d,1) process with exponential white 
noise to detect change in the process mean. The Integral Equation is used to derive this explicit expression for ARL. 
The procedures of the paper are as follows: the characteristics of EWMA control chart for ARFIMAX (1, d, 1) process 
is introduced in Section 2; the derivation of closed-form expression for ARL is expressed in Section 3; the numerical 
method for solving the integral equation to obtain approximation of ARL is presented in Section 4; the conclusions 
are presented in Section 5. 
 

2. THE ARFIMAX (1,D,1) PROCESS FOR EWMA CONTROL CHARTS 
In this section, the characteristics of EWMA control chart for ARFIMAX (1,d,1) process effected the tool for 

detecting small changes in the process parameters.  Given Y୲ to be a sequence for an Autoregressive Fractionally 
Integrated Moving Average with explanatory variable (ARFIMAX (1, d, 1)) random process. The EWMA process regress 
the current value Y୲ on the past values of itself Y୲ିଵ, Y୲ିଶ, … , Y୲ିୢ and past random errors that occurred in past 
time periods ξ୲ିଵ. Thus, the current value is a linear combination of the most recent past values and most recent 
past (unobserved) white noise error terms. 
 The definition of EWMA statistics based on the ARFIMAX (1, d, 1) process is the following recursion: 

𝑍௧ ൌ ሺ1 െ 𝜆ሻ𝑍௧ିଵ ൅ 𝜆𝑌௧ ; 𝑡 ൌ 1,2, …     (1) 
where Z୲ is the EWMA statistics, Y୲  is the sequence Autoregressive Fractionally Integrated Moving Average 
(ARFIMAX (1,d,1)) process and λ ∈ ሺ0,1ሻ is the smoothing parameter. The initial value is a constant ሺZ଴ ൌ u ൌ 0ሻ 
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 The ARFIMA (Auto Regressive Fractionally Integrated Moving Average) model combining the fractional order 
of time series integration with the conventional autoregressive/moving average method has been widely applied 
to prove its empirical applicability, such as stock price series or international exchange rates ( Henry and Olekalns, 
2002) .  The ARFIMA model can include explanatory variables for deterministic trends, called the ARFIMAX model 
(Davidson and Sibbertsen, 2005). 

The general Autoregressive Fractionally Integrated Moving Average with explanatory variable, denoted by 
the (ARFIMAX (1, d, 1)) process, can be written as: 

  𝑌௧ ൌ 𝑑𝑌௧ିଵ െ 𝑑
ሺௗିଵሻ

ଶ!
𝑌௧ିଶ ൅ 𝑑ሺ𝑑 െ 1ሻ ሺௗିଶሻ

ଷ!
𝑌௧ିଷ ൅ ⋯ ൅ 𝑌௧ିௗ െ 𝑋௧ ൅ 𝜙ଵ𝑋௧ିଵ ൅ 𝜉௧ െ 𝜃ଵ𝜉௧ିଵ         

                    ൅ ൬𝜙ଵ𝑌௧ିଵ െ 𝜙ଵ𝑑𝑌௧ିଶ ൅ 𝑑
ሺௗିଵሻ

ଶ!
𝜙ଵ𝑌௧ିଷ െ 𝑑ሺ𝑑 െ 1ሻ ሺௗିଶሻ

ଷ!
𝜙ଵ𝑌௧ିଷ ൅ ⋯ ൅ 𝜙ଵሺെ𝑌௧ିௗାଵሻ൰   (2) 

where ξ୲ is the white noise process assumed with Exponential distribution. The initial value is normally the process 
mean, with an autoregressive coefficient െ1 ൏ ϕଵ ൏ 1  and moving average coefficients െ1 ൏ θଵ ൏ 1.  It is 
assumed that the initial value of ARFIMAX ( 1, d, 1)  process Y୲ିଵ, Y୲ିଶ, … , Y୲ିୢ ൌ 1  , difference operator 
𝑑 ൌ 0.3 and X୲, X୲ିଵ ൌ 1. 

 In this paper, the case of a positive change in distribution crossing the upper control limit that raises alarm 
is discussed in detail. Given ξ୲ , t ൌ 1,2, … to be a sequence of independent, identical distribution random variables 
with exponential parameter ሺβሻ. It is normally assumed that under in-control state, the parameter has a known in-
control value of β ൌ β଴.  Parameter β could be changed to out-of- control value β ൌ βଵ, when ሺδ ൏ ∞ሻ, δ is the 
change-point time. 
 The first passage time for the EWMA can be written as: 
     𝜏௕ ൌ 𝑖𝑛𝑓ሺ𝑡 ൐ 0: 𝑍௧ ൐ 𝑏ሻ,      (3) 
where b is a control limit. 
 The ARL is the expectation value of τୠ . Mostly, two characteristics are used for the performance of 
control chart, which are ARL0 and ARL1, as follows: 
     𝐴𝑅𝐿଴ ൌ 𝐸∞ሺ𝜏௕ሻ       (4) 
     𝐴𝑅𝐿ଵ ൌ 𝐸ఋሺ𝜏௕ െ 𝛿 ൅ 1|𝜏௕ ൒ 𝛿ሻ     (5) 
where 𝐸∞ሺ. ሻ is the expectation corresponding to the target value and is assumed to be large enough.  

𝐸ఋሺ. ሻ is the expectation under the assumption that change-point occurs at time 𝛿 ൌ 1. 
 

3. EXPLICIT EXPRESSION FOR ARL IN EWMA CONTROL CHART 
 In this section, explicit expression to evaluate the solution of EWMA control chart for ARFIMAX ( 1, d, 1) 
observations with exponential white noise is discussed.  We follow the technique for approximating the ARL for 
Gaussian distribution developed in Crowder (1997). Given 𝐿ሺ𝑢ሻ is ARL for ARFIMAX (1, d, 1) observations with initial 
value 𝑍଴ ൌ 𝑢, if is assumed that the lower control limit and the upper control limit are 𝐿𝐶𝐿 ൌ 0 and 𝑈𝐶𝐿 ൌ 𝑏. 
When EWMA statistics 𝑍ଵ in an in-control process, the inequality is: 

0 ൏ ሺ1 െ 𝜆ሻ𝑍଴ ൅ 𝑑𝜆𝑌௧ିଵ െ 𝑑
ሺ𝑑 െ 1ሻ

2!
𝜆𝑌௧ିଶ ൅ 𝑑ሺ𝑑 െ 1ሻ

ሺ𝑑 െ 2ሻ

3!
𝜆𝑌௧ିଷ ൅ ⋯ ൅ 𝜆𝑌௧ିௗ െ 𝜆𝑋௧ ൅ 𝜆𝜙௧𝑋௧ିଵ ൅ 𝜆𝜉௧ 

                     െ𝜆𝜃ଵ𝜉௧ିଵ ൅ 𝜆 ൬𝜙ଵ𝑌௧ିଵ െ 𝜙ଵ𝑑𝑌௧ିଶ ൅ 𝑑
ሺௗିଵሻ

ଶ!
𝜙ଵ𝑌௧ିଷ െ 𝑑ሺ𝑑 െ 1ሻ ሺௗିଶሻ

ଷ!
𝜙ଵ𝑌௧ିଷ ൅ ⋯ ൅ 𝜙ଵሺെ𝑌௧ିௗାଵሻ൰ ൏ 𝑏. 

Consider function   𝐿ሺ𝑢ሻ ൌ 1 ൅ ׬ 𝐿ሺ𝑍ଵሻ𝑓ሺ𝜉௧ሻ𝑑𝜉௧ , 
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Therefore, 

𝐿ሺ𝑢ሻ ൌ 1 ൅ න 𝐿൫ሺ1 െ 𝜆ሻ𝑢൯ ൅ 𝑑𝜆𝑌௧ିଵ െ 𝑑
ሺ𝑑 െ 1ሻ

2!
𝜆𝑌௧ିଶ ൅ 𝑑ሺ𝑑 െ 1ሻ

ሺ𝑑 െ 2ሻ

3!
𝜆𝑌௧ିଷ ൅ ⋯ ൅ 𝜆𝑌௧ିௗ െ 𝜆𝑋௧ ൅ 𝜆𝜙௧𝑋௧ିଵ ൅ 𝜆𝜉௧  

                       െ𝜆𝜃ଵ𝜉௧ିଵ ൅ 𝜆𝜙ଵ𝑌௧ିଵ െ 𝜆𝜙ଵ𝑑𝑌௧ିଶ ൅ 𝑑
ሺௗିଵሻ

ଶ!
𝜆𝜙ଵ𝑌௧ିଷ െ 𝑑ሺ𝑑 െ 1ሻ

ሺௗିଶሻ

ଷ!
𝜆𝜙ଵ𝑌௧ିଷ ൅ ⋯ ൅ 𝜆𝜙ଵሺെ𝑌௧ିௗାଵሻሻ𝑓ሺ𝜔ሻ𝑑𝜔. 

Change variables in the integration will be: 
𝐿ሺ𝑢ሻ ൌ 1 ൅

1
𝜆

න 𝐿ሺ𝜔ሻ𝑓 ቆ
𝜔 െ ሺ1 െ 𝜆ሻ𝑢

𝜆

௕

଴
െ 𝑑𝑌௧ିଵ ൅ 𝑑

ሺ𝑑 െ 1ሻ

2!
𝑌௧ିଶ െ 𝑑ሺ𝑑 െ 1ሻ

ሺ𝑑 െ 2ሻ

3!
𝑌௧ିଷ െ ⋯ െ 𝑌௧ିௗ ൅ 𝑋௧ െ 𝜙ଵ𝑋௧ିଵ ൅ 𝜃ଵ𝜉௧ିଵ 

                           ൅𝜆𝜃ଵ𝜉௧ିଵ െ 𝜙ଵ𝑌௧ିଵ ൅ 𝜙ଵ𝑑𝑌௧ିଶ െ 𝑑
ሺௗିଵሻ

ଶ!
𝜙ଵ𝑌௧ିଷ ൅ 𝑑ሺ𝑑 െ 1ሻ

ሺௗିଶሻ

ଷ!
𝜙ଵ𝑌௧ିଷ െ ⋯ െ 𝜙ଵሺെ𝑌௧ିௗାଵሻ൰ 𝑑𝜔 

𝐿ሺ𝑢ሻ ൌ 1 ൅
1

𝜆𝛽
න 𝐿ሺ𝜔ሻ𝑒

ି
ఠ

ఒఉ𝑒𝑥𝑝 ቆ
ሺ1 െ 𝜆ሻ𝑢

𝜆𝛽
൅

௕

଴

𝑑𝑌௧ିଵ െ 𝑑
ሺ𝑑 െ 1ሻ

2! 𝑌௧ିଶ ൅ 𝑑ሺ𝑑 െ 1ሻ
ሺ𝑑 െ 2ሻ

3! 𝑌௧ିଷ ൅ ⋯ ൅ 𝑌௧ିௗ െ 𝑋௧ ൅ 𝜙ଵ𝑋௧ିଵ െ 𝜃ଵ𝜉௧ିଵ

𝛽
 

            
ିఒఏభక೟షభାథభ௒೟షభିథభௗ௒೟షమାௗ

ሺ೏షభሻ
మ!

థభ௒೟షయିௗሺௗିଵሻ
ሺ೏షమሻ

య!
థభ௒೟షయା⋯ାథభሺି௒೟ష೏శభሻ

ఉ
ቇ 𝑑𝜔.    (6) 

Let P୸ and E୸  be the probability measure and induced expectation corresponding to the initial value u, 
respectively. Then the ARL is a unique solution to the integral equation, defined as ARL ൌ Lሺuሻ ൌ E∞ሺτሻ ൏ ∞. The 
solution for the integral equation of EWMA control chart is defined in Equation (6). The right hand side of Equation 
(6) is continuous. Therefore, the solution of the integral for Equation (6) is a continuous function. 

Considering the complete matric space (C(I),‖ ‖) where C(I) denotes the space of all continuous functions 
on I, where I is a compact interval, with the norm ‖L‖ =supuI |L(u)|. The operator T is named as a contraction if 
there exists a number 0  q 1 such ‖T(L1)-T(L2)‖  q‖L1-L2‖for all L1, L2C(I). In this case, let T be an operation 
in this class of all continuous functions C(I), where I = [0, b] is defined by: 

TሺLሺuሻሻ ൌ 1 ൅
1

λβ
 exp ቆ

ሺ1 െ λሻu
λβ

൅
dY୲ିଵ െ d

ሺd െ 1ሻ
2! Y୲ିଶ ൅ dሺd െ 1ሻ

ሺd െ 2ሻ
3! Y୲ିଷ ൅ ⋯ ൅ Y୲ିୢ െ X୲ ൅ ϕଵX୲ିଵ െ θଵξ୲ିଵ

β
 

                     
ି஛஘భஞ౪షభାமభଢ଼౪షభିமభୢଢ଼౪షమାୢ

ሺౚషభሻ
మ!

மభଢ଼౪షయିୢሺୢିଵሻ
ሺౚషమሻ

య!
மభଢ଼౪షయା⋯ାமభሺିଢ଼౪షౚశభሻ

ஒ
ቇ ׬ Lሺωሻe

ି
ಡ

ಓಊdω
ୠ

଴ . (7) 

Thus, the integral equation in (7) can be written as T(L(u))=L(u). Now, according to Banach’s Fixed Point 
Theorem, if the operator T is a contraction, then the fixed point equation T(L(u))=L(u)  has a unique solution. We 
will show that operator T is a contraction in Proposition1. 
Proposition 1 On the matric space (C(I), ‖‖)  with the norm ‖L‖ = supuI |L(u)| the operator T is a contraction. 
Proof. 
 To show that T is a contraction for any uI and L1, L2C(I). The inequality  
‖T(L1)-T(L2)‖ q‖L1-L2‖ for all L1, L2C(I) with 0  q 1. According to (7), then ‖TሺLଵሻ െ

TሺLଶሻ‖∞ ൑   sup୳∈ሾ଴,ୠሿ ቚLଵሺ0ሻ െ Lଶሺ0ሻ 
ଵ

஛ஒ
 exp ቀ

ሺଵି஛ሻ୳

஛ஒ
൅

ୢଢ଼౪షభିୢ
ሺౚషభሻ

మ!
ଢ଼౪షమାୢሺୢିଵሻ

ሺౚషమሻ
య!

ଢ଼౪షయା⋯ାଢ଼౪షౚିଡ଼౪ାமభଡ଼౪షభି஘భஞ౪షభ

ஒ
   

  
ି஛஘భஞ౪షభାமభଢ଼౪షభିமభୢଢ଼౪షమାୢ

ሺౚషభሻ
మ!

மభଢ଼౪షయିୢሺୢିଵሻ
ሺౚషమሻ

య!
மభଢ଼౪షయା⋯ାமభሺିଢ଼౪షౚశభሻ

ஒ
ቇ ׬ Lሺωሻe

ି
ಡ

ಓಊdω
ୠ

଴ ฬ 

 ൑ sup୳∈ሾ଴,ୠሿ ቚ‖Lଵ െ Lଶ‖ ଵ

஛ஒ
  exp ቀ

ሺଵି஛ሻ୳

஛ஒ
൅

ୢଢ଼౪షభିୢ
ሺౚషభሻ

మ!
ଢ଼౪షమାୢሺୢିଵሻ

ሺౚషమሻ
య!

ଢ଼౪షయା⋯ାଢ଼౪షౚିଡ଼౪ାமభଡ଼౪షభି஘భஞ౪షభ

ஒ
   

         ି஛஘భஞ౪షభାமభଢ଼౪షభିமభୢଢ଼౪షమାୢ
ሺౚషభሻ

మ!
மభଢ଼౪షయିୢሺୢିଵሻ

ሺౚషమሻ
య!

மభଢ଼౪షయା⋯ାமభሺିଢ଼౪షౚశభሻ

ஒ
ቇ ሺെλβሻ ൬e

ି
ౘ

ಓಊ െ 1൰ฬ  

 = ‖Lଵ െ Lଶ‖∞sup୳∈ሾ଴,ୠሿ ቈቚexp ቀ
ሺଵି஛ሻ୳

஛ஒ
൅

ୢଢ଼౪షభିୢ
ሺౚషభሻ

మ!
ଢ଼౪షమାୢሺୢିଵሻ

ሺౚషమሻ
య!

ଢ଼౪షయା⋯ାଢ଼౪షౚିଡ଼౪ାமభଡ଼౪షభି஘భஞ౪షభ

ஒ
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         ି஛஘భஞ౪షభାமభଢ଼౪షభିமభୢଢ଼౪షమାୢ
ሺౚషభሻ

మ!
மభଢ଼౪షయିୢሺୢିଵሻ

ሺౚషమሻ
య!

மభଢ଼౪షయା⋯ାமభሺିଢ଼౪షౚశభሻ

ஒ
ቇ ൬1 െ e

ି
ౘ

ಓಊ൰ฬ቉ 

=‖Lଵ െ Lଶ‖∞ ฬ1 െ e
ି

ౘ
ಓಊฬ sup୳∈ሾ଴,ୠሿ ቈ ቤ

ଵ

ఉఒ
exp ቀ

ሺଵି஛ሻ୳

஛ஒ
൅

ୢଢ଼౪షభିୢ
ሺౚషభሻ

మ!
ଢ଼౪షమାୢሺୢିଵሻ

ሺౚషమሻ
య!

ଢ଼౪షయା⋯ାଢ଼౪షౚିଡ଼౪ାமభଡ଼౪షభି஘భஞ౪షభ

ஒ
 

         ି஛஘భஞ౪షభାமభଢ଼౪షభିமభୢଢ଼౪షమାୢ
ሺౚషభሻ

మ!
மభଢ଼౪షయିୢሺୢିଵሻ

ሺౚషమሻ
య!

மభଢ଼౪షయା⋯ାமభሺିଢ଼౪షౚశభሻ

ஒ
ቇቤ ቉ 

  ൌ q‖Lଵ െ Lଶ‖∞ , 

where   0 ൑ q =ฬ1 െ e
ି

ౘ
ಓಊ   ฬ  sup୳∈ሾ଴,ୠሿ ቈቤ 

ଵ

ఉఒ
exp ቀ

ሺଵି஛ሻ୳

஛ஒ
൅

ୢଢ଼౪షభିୢ
ሺౚషభሻ

మ!
ଢ଼౪షమାୢሺୢିଵሻ

ሺౚషమሻ
య!

ଢ଼౪షయା⋯ାଢ଼౪షౚିଡ଼౪ାமభଡ଼౪షభି஘భஞ౪షభ

ஒ
 

          
ି஛஘భஞ౪షభାமభଢ଼౪షభିமభୢଢ଼౪షమାୢ

ሺౚషభሻ
మ!

மభଢ଼౪షయିୢሺୢିଵሻ
ሺౚషమሻ

య!
மభଢ଼౪షయା⋯ାமభሺିଢ଼౪షౚశభሻ

ஒ
ቇቤ቉ ൏ 1, 

0 ൏ λ ൏ 1, β ൐ 0 and y୧, ξ୧ ൌ 1. 

 Triangular inequality has been used and the fact is: 
|Lଵሺ0ሻ െ Lଶሺ0ሻ| ൑ sup୳∈ሾ଴,ୠሿ|Lଵሺuሻ െ Lଶሺuሻ| ൌ ‖Lଵ െ Lଶ‖∞. 

Therefore, the uniqueness of the solution is guaranteed via Proposition 1. Next, we derive explicit expression of 
the Fredholm integral equation, which is called the explicit expression of equation (7), as shown by Theorem 1. 
Theorem 1 The solutions for the integral equation  T൫Lሺuሻ൯ ൌ Lሺuሻ given by: 
 

𝐿ሺ𝑢ሻ ൌ 1 െ
𝑒

ቌ
ሺଵିఒሻ௨

ఒఉ ା
ௗ௒೟షభିௗ

ሺௗିଵሻ
ଶ! ௒೟షమାௗሺௗିଵሻ

ሺௗିଶሻ
ଷ! ௒೟షయା⋯൅థభሺି௒೟ష೏శభሻ

𝛽 ቍ

ሺ𝑒
ି

௕
ఒఉ െ 1ሻ

1 ൅
𝑒

ቌ
ௗ௒೟షభିௗ

ሺௗିଵሻ
ଶ! ௒೟షమାௗሺௗିଵሻ

ሺௗିଶሻ
ଷ! ௒೟షయା⋯൅థభሺି௒೟ష೏శభሻ

𝛽 ቍ

ሺ𝑒
ି

௕
ఉ െ 1ሻ

𝜆

 

Proof.  
 To consider the integral equation in (6): 

𝐿ሺ𝑢ሻ ൌ 1 ൅
1

𝜆𝛽
න 𝐿ሺ𝜔ሻ𝑒

ି
ఠ

ఒఉ𝑒𝑥𝑝 ቆ
ሺ1 െ 𝜆ሻ𝑢

𝜆𝛽
൅

௕

଴

𝑑𝑌௧ିଵ െ 𝑑
ሺ𝑑 െ 1ሻ

2! 𝑌௧ିଶ ൅ 𝑑ሺ𝑑 െ 1ሻ
ሺ𝑑 െ 2ሻ

3! 𝑌௧ିଷ ൅ ⋯ ൅ 𝑌௧ିௗ െ 𝑋௧ ൅ 𝜙ଵ𝑋௧ିଵ െ 𝜃ଵ𝜉௧ିଵ

𝛽
 

                         
ିఒఏభక೟షభାథభ௒೟షభିథభௗ௒೟షమାௗ

ሺ೏షభሻ
మ!

థభ௒೟షయିௗሺௗିଵሻ
ሺ೏షమሻ

య!
థభ௒೟షయା⋯ାథభሺି௒೟ష೏శభሻ

ఉ
ቇ 𝑑𝜔. 

where 𝜉௧ ∼ 𝐸𝑥𝑝ሺ𝛽ሻ. 

Let 𝐶ሺ𝑢ሻ ൌ  𝑒𝑥𝑝 ቀ
ሺଵିఒሻ௨

ఒఉ
൅

ௗ௒೟షభିௗ
ሺ೏షభሻ

మ!
௒೟షమାௗሺௗିଵሻ

ሺ೏షమሻ
య!

௒೟షయା⋯ା௒೟ష೏ି௑೟ାథభ௑೟షభିఏభక೟షభ

ఉ
 

                   
ିఒఏభక೟షభାథభ௒೟షభିథభௗ௒೟షమାௗ

ሺ೏షభሻ
మ!

థభ௒೟షయିௗሺௗିଵሻ
ሺ೏షమሻ

య!
థభ௒೟షయା⋯ାథభሺି௒೟ష೏శభሻ

ఉ
ቇ 

Then  𝐿ሺ𝑢ሻ ൌ 1 ൅
஼ሺ௨ሻ

ఒఉ
׬ 𝐿ሺ𝜔ሻ𝑒

ି
ഘ

ഊഁ𝑑𝜔
௕

଴     ; 0 ൑ 𝑢 ൑ 𝑏. 

Let 𝑑 ൌ ׬ 𝐿ሺ𝜔ሻ௕
଴ 𝑒

ି
ഘ

ഊഁ𝑑𝜔,  we have 𝐿ሺ𝑢ሻ ൌ 1 ൅
஼ሺ௨ሻ

ఒఉ
𝑑, 

then  

 𝐿ሺ𝑢ሻ ൌ 1 ൅
ௗ

ఒఉ
 𝑒𝑥𝑝 ቀ

ሺଵିఒሻ௨

ఒఉ
൅

ௗ௒೟షభିௗ
ሺ೏షభሻ

మ!
௒೟షమାௗሺௗିଵሻ

ሺ೏షమሻ
య!

௒೟షయା⋯ା௒೟ష೏ି௑೟ାథ೟௑೟షభିఏభక೟షభ

ఉ
 

                                                 
ିఒఏభక೟షభାథభ௒೟షభିథభௗ௒೟షమାௗ

ሺ೏షభሻ
మ!

థభ௒೟షయିௗሺௗିଵሻ
ሺ೏షమሻ

య!
థభ௒೟షయା⋯ାథభሺି௒೟ష೏శభሻ

ఉ
ቇ. 
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Solving a constant 𝑑 ൌ ׬ 𝐿ሺ𝜔ሻ௕

଴ 𝑒
ି

ഘ
ഊഁ𝑑𝜔. 

 𝑑 ൌ ׬ ሺ1 ൅
஼ሺఠሻ

ఒఉ
𝑑ሻ

௕
଴ 𝑒

ି
ഘ

ഊഁ𝑑𝜔 
    ൌ ׬ 𝑒

ି
ഘ

ഊഁ
௕

଴ 𝑑𝜔 + ׬ 𝐶ሺ𝜔ሻ
௕

଴ 𝑒
ି

ഘ
ഊഁ𝑑𝜔 

    ൌ 𝜆𝛽ሺ1 െ 𝑒
ି

್
ഊഁሻ

ௗ

ఒఉ
 𝑒𝑥𝑝 ቀ

ሺଵିఒሻ௨

ఒఉ
൅

ௗ௒೟షభିௗ
ሺ೏షభሻ

మ!
௒೟షమାௗሺௗିଵሻ

ሺ೏షమሻ
య!

௒೟షయା⋯ା௒೟ష೏ି௑೟ାథ೟௑೟షభିఏభక೟షభ

ఉ
 

  
ିఒఏభక೟షభାథభ௒೟షభିథభௗ௒೟షమାௗ

ሺ೏షభሻ
మ!

థభ௒೟షయିௗሺௗିଵሻ
ሺ೏షమሻ

య!
థభ௒೟షయା⋯ାథభሺି௒೟ష೏శభሻ

ఉ
ቇ ׬ 𝑒

ି
ഘ
ഁ𝑑𝜔

௕
଴  

 𝑑 ൌ
ሺିఒఉሻ൭௘

ష
್

ഊഁିଵ൱

ଵା

೐

ቌ
𝑑𝑌𝑡െ1െ𝑑

ሺ𝑑െ1ሻ
2! 𝑌𝑡െ2൅𝑑ሺ𝑑െ1ሻ

ሺ𝑑െ2ሻ
3! 𝑌𝑡െ3൅⋯శ𝜙1൫െ𝑌𝑡െ𝑑൅1൯

ഁ ቍ

ቌ೐
ష

್
ഁషభቍ

ഊ

 

Substitute constant 𝑑 into function𝐿ሺ𝑢ሻ, then 

𝐿ሺ𝑢ሻ ൌ 1 െ
௘

ቌ
ሺభషഊሻೠ

ഊഁ శ
೏ೊ೟షభష೏

ሺ೏షభሻ
మ! ೊ೟షమశ೏ሺ೏షభሻ

ሺ೏షమሻ
య! ೊ೟షయశ⋯൅ഝభ൫షೊ೟ష೏శభ൯

𝛽 ቍ

ሺ௘
ష

್
ഊഁିଵሻ

ଵା
೐

ቌ
೏ೊ೟షభష೏

ሺ೏షభሻ
మ! ೊ೟షమశ೏ሺ೏షభሻ

ሺ೏షమሻ
య! ೊ೟షయశ⋯൅ഝభ൫షೊ೟ష೏శభ൯

𝛽 ቍ

ሺ೐
ష

್
ഁషభሻ

ഊ

. 

By Theorem 1, the explicit expression for ARL0 is as follows: 

𝐴𝑅𝐿଴ ൌ 1 െ
ఒ௘

൬
ሺభషഊሻೠ

ഊഁబ
൰

൭௘
ష

್
ഊഁబିଵ൱

ఒ ௘
ቌ

ష೏ೊ೟షభశ೏
ሺ೏షభሻ

మ! ೊ೟షమష೏ሺ೏షభሻ
ሺ೏షమሻ

య! ೊ೟షయష⋯െഝభ൫షೊ೟ష೏శభ൯
𝛽0

ቍ

௘
൬ష

್
ഁబ

൰
ିଵ

                (8). 

On the contrary, the explicit expression for ARL1 when the process is out-of-control involves parameter β ൌ βଵ, 
which can be written as follows: 

 𝐴𝑅𝐿ଵ ൌ 1 െ
ఒ௘

൬
ሺభషഊሻೠ

ഊഁభ
൰

൭௘
ష

್
ഊഁభିଵ൱

ఒ ௘
ቌ

ష೏ೊ೟షభశ೏
ሺ೏షభሻ

మ! ೊ೟షమష೏ሺ೏షభሻ
ሺ೏షమሻ

య! ೊ೟షయష⋯െഝభ൫షೊ೟ష೏శభ൯
𝛽1

ቍ

௘
൬ష

್
ഁభ

൰
ିଵ

                    (9) 

where െ1 ൏ ϕଵ ൏ 1 and െ1 ൏ θଵ ൏ 1 is Autoregressive Moving Average coefficient and  
0 ൏ λ ൏ 1, Y୲ିଵ, Y୲ିଶ, … , Y୲ିୢ and ξ୲, ξ୲ିଵ are the smoothing parameters and initial values, respectively. 
 

4. NUMERICAL INTEGRAL EQUATION (IE) 
Generally, the Integral Equation cannot be solved analytically for Lሺuሻ.  Thus, it is necessary to use 

numerical methods to solve them.  Kantorovich and Krylov ( 1958) , and Atkinson and Han ( 2001)  developed 
numerical schemes for solving integral equations. We use a quadrature rule to approximate the integral by a finite 
sum of an area of rectangles with base b/m with heights chosen as the values of f at the midpoint of intervals for 
length b/m beginning at zero.  Particularly, once the choice of a quadrature rule is made, the interval ሾ0, bሿ is 
divided into a partition 0 ≤ a1≤ a2≤…≤ am ≤b and set of constant weight k୨ ൌ ሺb ോ mሻ ൒ 0. 

The approximation for an integral is of the form  

න 𝐿ሺ𝜔ሻ𝑓ሺ𝜔ሻ𝑑𝜔 ≅ ෍ 𝑘௝𝑓൫𝑎௝൯
௠

௝ୀଵ

௕

଴
 

where 𝑎௝ ൌ
௕

௠
ቀଶ௝ିଵ

ଶ
ቁ and 𝑘௝ ൌ

௕

௠
; 𝑗 ൌ 1,2, … , 𝑚. 
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Let 𝐿෨൫𝑎௝൯ denote the numerical approximation to integral equation 𝐿ሺ𝑢ሻ, which can be found as the solution for 
the linear equation as follows: 

𝐿෨൫𝑎௝൯ ≅ 1 ൅
ଵ

ఒ
∑ 𝑘௝𝐿൫𝑎௝൯𝑓 ቆ

௔ೕିሺଵିఒሻ௔೔

ఒ
െ 𝑑𝑌௧ିଵ ൅ 𝑑

ሺௗିଵሻ

ଶ!
𝑌௧ିଶ െ 𝑑ሺ𝑑 െ 1ሻ

ሺௗିଶሻ

ଷ!
𝑌௧ିଷ െ ⋯ െ 𝜙ଵሺെ𝑌௧ିௗାଵሻቇ௠

௝ୀଵ  (10) 
where ;  𝑖 ൌ 1,2, … 𝑚, the set of m equations is m unknowns, which can be written in matrix form. 
 Let 𝑳௠ൈଵ ൌ ሾ𝐿෨ሺ𝑎ଵሻ, 𝐿෨ሺ𝑎ଶሻ, … , 𝐿෨ሺ𝑎௠ሻሿോ be the column vector of 𝐿෨൫𝑎௝൯ and 𝟏௠ൈଵ ൌ ሾ1, 1, … ,1ሿോ be a 
column vector of one. Also, let R୫ൈ୫ be a matrix and define the ሺm, mሻ୲୦ as an element of matrix R, as 
follows: 

ൣ𝑅௜௝൧ ≅
ଵ

ఒ
∑ 𝑘௝𝐿൫𝑎௝൯𝑓 ቆ

௔ೕିሺଵିఒሻ௔೔

ఒ
െ 𝑑𝑌௧ିଵ ൅ 𝑑

ሺௗିଵሻ

ଶ!
𝑌௧ିଶ െ 𝑑ሺ𝑑 െ 1ሻ ሺௗିଶሻ

ଷ!
𝑌௧ିଷ െ ⋯ െ 𝜙ଵሺെ𝑌௧ିௗାଵሻቇ௠

௝ୀଵ . 

and 𝐼௠ൈଵ ൌ 𝑑𝑖𝑎𝑔ሾ1,1, … ,1ሿ is unit matrix order m. If ሺ𝑰 െ 𝑹ሻିଵ exists, the numerical approximation for the 
integral equation in terms of matrix is: 

𝑳௠ൈଵ ൌ ሺ𝑰 െ 𝑹ሻିଵ1௠ൈଵ. 
When 𝑎௜ is replaced by 𝑢 in 𝐿෨൫𝑎௝൯, the numerical approximation for function Lሺuሻ is as follows: 
𝐿෨ሺ𝑢ሻ ≅ 1 ൅

ଵ

ఒ
∑ 𝑘௝𝐿൫𝑎௝൯𝑓 ቆ

௔ೕିሺଵିఒሻ௔೔

ఒ
െ 𝑑𝑌௧ିଵ ൅ 𝑑

ሺௗିଵሻ

ଶ!
𝑌௧ିଶ െ 𝑑ሺ𝑑 െ 1ሻ

ሺௗିଶሻ

ଷ!
𝑌௧ିଷ െ ⋯ െ 𝜙ଵሺെ𝑌௧ିௗାଵሻቇ௠

௝ୀଵ  (11). 
 

NUMERICAL RESULTS 
In this section, the results of ARL0 and ARL1 for ARFIMAX(1,d,1) process, which are obtained from the 

explicit expression with numerical solution for the integral equation (IE) method with m=1,000, are compared. The 
results of ARL are expressed in Tables 1 to 3. The parameter value for in-control parameter is equal to 1 and the 
parameter value for out-of-control β_1=1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.20, 1.30, 1.40, 1.50, 
2, 3, 4, 5. Performance of the proposed explicit expression in terms of computational times and absolute percentage 
difference is considered. 

𝐷𝑖𝑓𝑓ሺ%ሻ ൌ
ห𝐿෨ሺ𝑢ሻ െ 𝐿ሺ𝑢ሻห

𝐿ሺ𝑢ሻ
ൈ 100%. 

 

Table 1. Comparison of ARL0 and ARL1 for EWMA control chart by explicit expression with numerical integral 
equation for ARFIMAX(1,0.3,1) process with 𝜙ଵ ൌ 0.1, 𝜃ଵ ൌ 0.1, and 𝜆 ൌ 0.01 

Parameter value of EWMA chart 
for ARL0=370 b = 0.0162051 and for ARL1=500 b = 0.01621058 

β 
ARL0=370 

Diff(%) 
ARL0=500 

Diff(%) 
Explicit expression IE (Time used: second) Explicit expression IE (Time used: second) 

1.00 370.229 370.229 (33.3) 0.00003 500.299 500.299 (32.6) 0.00004 
1.01 77.8823 77.8823 (32.7) 0.00001 82.2747 82.2747 (32.2) 0.00002 
1.02 44.0443 44.0443 (32.4) 0.00002 45.3825 45.3825 (32.7) 0.00007 
1.03 30.9537 30.9537 (32.7) 0.00006 31.5934 31.5934 (32.8) 0.00006 
1.04 24.0057 24.0057 (32.8) 0.00008 24.3799 24.3799 (33.1) 0.00008 
1.05 19.6981 19.6981 (32.1) 0.00005 19.9438 19.9438 (32.9) 0.00005 
1.06 16.7659 16.7659 (31.7) 0.00006 16.9397 16.9397 (32.4) 0.00006 
1.07 14.6409 14.6409 (32.6) 0.00007 14.7704 14.7704 (32.3) 0.00007 
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Table 1. Comparison of ARL0 and ARL1 for EWMA control chart by explicit expression with numerical integral 

equation for ARFIMAX(1,0.3,1) process with 𝜙ଵ ൌ 0.1, 𝜃ଵ ൌ 0.1, and 𝜆 ൌ 0.01 (continue) 
Parameter value of EWMA chart 

for ARL0=370 b = 0.0162051 and for ARL1=500 b = 0.01621058 

β 
ARL0=370 

Diff(%) 
ARL0=500 

Diff(%) 
Explicit expression IE (Time used: second) Explicit expression IE (Time used: second) 

1.08 13.0300 13.0300 (32,2) 0.00008 13.1303 13.1303 (32.1) 0.00008 
1.09 11.7666 11.7666 (32.5) 0.00007 11.8467 11.8467 (31.8) 0.00004 
1.10 10.7492 10.7492 (31.8) 0.00008 10.8147 10.8147 (32.5) 0.00006 
1.20 6.09145 6.09145 (32.4) 0.00002 6.10890 6.1089 (32.6) 0.00003 
1.30 4.50352 4.50352 (32.5) 0.00004 4.51169 4.51169 (32.3) 0.00007 
1.40 3.69825 3.69825 (32.9) 0.00005 3.70335 3.70335 (32.7) 0.00005 
1.50 3.20958 3.20958 (33.1) 0.00009 3.21282 3.21282 (32.8) 0.00006 
2.00 2.20256 2.20256 (32.6) 0.00004 2.20358 2.20358 (31.9) 0.00005 
3.00 1.65908 1.65908 (31.9) 0.00006 1.65945 1.65945 (32.1) 0.00006 
4.00 1.46133 1.46133 (32.2) 0.00004 1.46155 1.46155 (32.2) 0.00003 
5.00 1.35659 1.35659 (32.7) 0.00007 1.35675 1.35675 (31.7) 0.00005 

 

Table 2. Comparison of ARL0 and ARL1 for EWMA control chart by explicit expression with numerical integral 
equation for ARFIMAX(1,0.3,1) process with ϕଵ ൌ 0.1, θଵ ൌ െ0.1, and λ ൌ 0.01 

 
 

Parameter value of EWMA chart 
for ARL0 =370 b = 0.01324593 and for ARL0=500  b = 0.0132512 

β 
ARL0=370 

Diff(%) 
ARL0=500 

Diff(%) 
Explicit expression IE (Time used: second) Explicit expression IE (Time used: second) 

1.00 370.076 370.076 (31.6) 0.00006 500.840 500.840 (32.3) 0.00004 
1.01 65.4492 65.4492 (31.3) 0.00003 68.5295 68.5295 (32.7) 0.00006 
1.02 36.4500 36.4500 (32.1) 0.00005 37.3610 37.3610 (32.4) 0.00005 
1.03 25.5152 25.5152 (32.4) 0.00008 25.9469 25.9469 (31.8) 0.00008 
1.04 19.7736 19.7736 (32.5) 0.00006 20.0255 20.0255 (31.9) 0.00005 
1.05 16.2351 16.2351 (31.7) 0.00006 16.4004 16.4004 (32.1) 0.00007 
1.06 13.8356 13.8356 (31.5) 0.00007 13.9525 13.9525 (33.6) 0.00008 
1.07 12.1010 12.1010 (32.8) 0.00005 12.1883 12.1883 (32.8) 0.00003 
1.08 10.7885 10.7885 (32.5) 0.00004 10.8563 10.8563 (32.5) 0.00007 
1.09 9.76062 9.76062 (32.9) 0.00003 9.81485 9.81485 (32.4) 0.00002 
1.10 8.93369 8.93369 (32.3) 0.00004 8.97812 8.97812 (33.1) 0.00003 
1.20 5.15563 5.15563 (32.1) 0.00006 5.16779 5.16779 (33.2) 0.00006 
1.30 3.86831 3.86831 (32.5) 0.00003 3.87415 3.87415 (32.9) 0.00005 
1.40 3.21459 3.21459 (31.8) 0.00009 3.21811 3.21811 (32.5) 0.00003 
1.50 2.81664 2.81664 (31.4) 0.00005 2.81905 2.81905 (32.1) 0.00004 
2.00 1.99276 1.99276 (32.1) 0.00004 1.99357 1.99357 (31.8) 0.00005 
3.00 1.54429 1.54429 (31.9) 0.00006 1.54461 1.54461 (32.2) 0.00008 
4.00 1.38052 1.38052 (31.8) 0.00007 1.38071 1.38071 (32.3) 0.00007 
5.00 1.29378 1.29378 (32.2) 0.00008 1.29393 1.29393 (32.6) 0.00006 
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Table 3. Comparison of ARL0 and ARL1 for EWMA control chart by explicit expression with numerical integral 

equation for ARFIMAX(1,0.3,1) process with ϕଵ ൌ െ0.1, θଵ ൌ 0.1, and λ ൌ 0.01 
Parameter value of EWMA chart 

for ARL0=370 b = 0.02236853 and for ARL0=500 b = 0.02237498 

β 
ARL0=370 

Diff(%) 
ARL0=500 

Diff(%) 
Explicit expression IE (Time used: second) Explicit expression IE (Time used: second) 

1.00 370.085 370.085 (31.4) 0.00005 500.224 500.224 (32.4) 0.00004 
1.01 133.610 133.61 (30.7) 0.00008 147.216 147.216 (32.8) 0.00007 
1.02 81.2722 81.2722 (31.2) 0.00006 86.0315 86.0315 (31.7) 0.00003 
1.03 58.2966 58.2966 (31.7) 0.00003 60.6655 60.6655 (32.3) 0.00005 
1.04 45.4027 45.4027 (30.5) 0.00004 46.8035 46.8035 (33.1) 0.00004 
1.05 37.1582 37.1582 (32.1) 0.00005 38.0760 38.0760 (32.3) 0.00005 
1.06 31.4385 31.4385 (30.4) 0.00003 32.0824 32.0824 (32.5) 0.00003 
1.07 27.2419 27.2419 (31.6) 0.00007 27.7164 27.7164 (33.2) 0.00009 
1.08 24.0344 24.0344 (31.9) 0.00008 24.3971 24.3971 (31.8) 0.00004 
1.09 21.5054 21.5054 (31.3) 0.00005 21.7907 21.7907 (32.9) 0.00005 
1.10 19.4616 19.4616 (32.2) 0.00007 19.6914 19.6914 (32.6) 0.00008 
1.20 10.0995 10.0995 (31.8) 0.00006 10.1524 10.1524 (32.5) 0.00006 
1.30 6.97878 6.97878 (31.2) 0.00003 7.00074 7.00074 (33.1) 0.00003 
1.40 5.44556 5.44556 (32.5) 0.00004 5.45734 5.45734 (33.4) 0.00004 
1.50 4.54225 4.54225 (32.1) 0.00007 4.54957 4.54957 (32.6) 0.00009 
2.00 2.7909 2.79090 (31.8) 0.00004 2.7927 2.79270 (31.6) 0.00007 
3.00 1.93752 1.93752 (31.4) 0.00008 1.93806 1.93806 (32.2) 0.00005 
4.00 1.64682 1.64682 (30.7) 0.00002 1.64712 1.64712 (32.5) 0.00008 
5.00 1.49685 1.49685 (30.5) 0.00003 1.49705 1.49705 (32.7) 0.00007 

 

 The results from Tables 1 to 3 show that these methods are in good agreement.  Our analytical results 
agree with the numerical approximation per an absolute percentage difference of less than 0. 01%  for m ൌ 1000 
iterations and computational durations of approximately 30 seconds. The computational durations for the proposed 
analytical explicit expression are less than 1 second. 
 

5. CONCLUSION 
We derived explicit expression formulas for the ARL of EWMA control chart in the case of ARFIMAX ( 1,d,1) 

process with exponential white noise. We have shown that our formulas are very accurate as well as being easy to 
calculate and programmable.  In addition, explicit expression consumes much less computational time compared 
to numerical integral equation. 
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