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บทคัดย่อ 
ข้ันตอนวิธีของหวัง-ลันเดาว์เป็นข้ันตอนวิธีหนึ่งในเทคนิคมอนติคาร์โลท่ีใช้ในงานฟิสิกส์เชิงสถิติ ข้ันตอนวิธีนี้มีประสิทธิภาพ

อย่างมากในการประมาณค่าความหนาแน่นสถานะของแบบจําลองสปินชนิดไม่ต่อเนื่อง โดยเฉพาะในระบบขนาดใหญ่ ปัจจุบันนับได้ว่า
ข้ันตอนวิธีของหวัง-ลันเดาว์เป็นท่ียอมรับอย่างกว้างขวาง โดยมีงานวิจัยมากกว่า 1,000 ชิ้นท่ีนําข้ันตอนวิธีนี้ไปประยุกต์ใช้กับตัวแบบ
ต่าง ๆ เช่น แบบจําลองพอตส์ แบบจําลองไอซิง การม้วนพับของสายโปรตีน การศึกษาลักษณะของโฮโมพอลิเมอร์ และการหาค่า
ปริพันธ์ในหลายมิติ ในบทความชิ้นนี้ ผู้เขียนได้รวบรวมหลักการทํางานของขั้นตอนวิธีของหวัง-ลันเดาว์ จุดเด่นของข้ันตอนวิธี ข้อจํากัด
ในการทํางาน การปรับปรุงข้ันตอนวิธี รวมท้ังการนําข้ันตอนวิธีไปประยุกต์ใช้ในงานต่าง ๆ 
 

ABSTRACT 
 The Wang–Landau algorithm is one of the Monte Carlo techniques used in statistical physics. This algorithm 
is very efficient for approximating the density of states of discrete spin models, especially in a large system. 
Nowadays, the method has been widely accepted.  There have been more than 1,000 research papers citing and 
using this method to solve various problems such as Potts models, Ising models, protein folding, homopolymers 
and multidimensional integrals.  In this article, we focus on the main principle of the Wang- Landau algorithm, its 
advantages and limitations, improved algorithms and its applications. 
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1. บทนํา 

ฟิสิกส์เชิงสถิติ (Statistical physics) เป็นศาสตร์หนึ่งของวิชาฟิสิกส์ ซ่ึงใช้ทฤษฎีความน่าจะเป็น หลักการทางสถิติ และ
เคร่ืองมือทางคณิตศาสตร์ ในการศึกษาคุณสมบัติทางอุณหพลศาสตร์ (Thermodynamics) ของระบบในระดับอนุภาค (Widom, 
2002; Landau, 2009) การศึกษาในระดับอนุภาคน้ัน ถึงแม้ว่าจะพิจารณาระบบท่ีมีขนาดเล็ก รูปแบบการเรียงตัวของอนุภาคท่ีเป็นไป
ได้กลับเพ่ิมข้ึนอย่างมหาศาล เพ่ือให้เข้าใจการเพิ่มข้ึนของรูปแบบการเรียงตัวของสปินดังกล่าว จะพิจารณาแบบจําลองแบบไอซิง (Ising 
model) ของระบบขนาด 2 1  มิติ ดังนี้  

กําหนดให้ลูกศรแทนสปิน (Spin) ของอะตอม ทิศทางของสปินเป็นไปได้เพียงสองทิศ คือชี้ข้ึน (Spin up) หรือชี้ลง (Spin 
down) เส้นตรงท่ีเชื่อมระหว่างลูกศรแทน พันธะระหว่างสปิน (Interaction) การจัดเรียงตัวของสปิน (Configuration) สามารถเป็นไป
ได้ 4 รูปแบบ (Patterns) หรือสถานะ (States) ดังรูปท่ี 1 
 
 
 

  (ก)              (ข)              (ค)             (ง) 
รูปท่ี 1 การจัดเรียงตัวของสปินขนาด 2 1  มิติ 

 

ค่าพลังงานของสถานะสามารถคํานวณได้จากฟังก์ชันฮามิลโทเนียน (H) นิยามโดย  
 

 

  ij i j
ij

H J       (1) 

เม่ือ i  แทนสถานะของสปินตัวท่ี i  โดยมีค่าเป็น 1 เม่ือสปินมีทิศชี้ข้ึนและมีค่าเป็น 1 เม่ือสปินมีทิศชี้ลง  
และ ijJ  แทนพันธะระหว่างสปิน เพ่ือความสะดวกในการคํานวณสําหรับแบบจําลองไอซิงเบื้องต้น จะกําหนดให้พันธะ

ระหว่างสปินเป็นค่าคงตัว นั่นคือ ให้ ijJ J   
จากรูปท่ี 1 เราสามารถคํานวณค่าระดับพลังงานของทั้งสี่สถานะ โดยใช้สมการท่ี (1) และได้ค่าเท่ากับ ,J ,J J  และ  J  

ตามลําดับ  
ฟังก์ชันแบ่งกั้น (The Partition Function) (Landau, 2009) เป็นฟังก์ชันท่ีมีความสําคัญทางอุณหพลศาสตร์ นิยามโดย 



  B

E
k T

configurations

Z e       (2) 

เม่ือ E  แทนพลังงาน (Energy)  
T  แทนอุณหภูมิ (Temperature)  

Bk  แทนค่าคงตัวโบลต์มันน์ (Boltzmann constant) และ 
        

configurations
 แทนผลบวกบนสถานะท่ีเป็นไปได้ท้ังหมด 

หากพิจารณาแบบจําลองไอซิงขนาด L L  มิติ รูปแบบของการจัดเรียงสปินท่ีเป็นไปได้ท้ังหมดจะมีมากถึง 2L L  สถานะ นั่น
คือการเพ่ิมข้ึนของจํานวนสถานะอยู่ในรูปของฟังก์ชันเลขชี้กําลัง โดยท่ัวไปการหาสมบัติทางอุณหพลศาสตร์จะพิจารณาเม่ือ L  
ซ่ึงเป็นไปได้ยากท่ีจะแจกแจงสถานะที่เป็นไปได้ท้ังหมด  

อย่างไรก็ตามสถานะท่ีต่างกันอาจให้ค่าพลังงานระดับเดียวกันได้ ตัวอย่างเช่น จากรูปท่ี 1 มีระดับพลังงานท่ีเป็นไปได้สอง
ระดับคือ รูป (ก) และ (ง) จะได้ค่าพลังงาน  1E J  และรูป (ข) และ (ค) จะได้ค่าพลังงาน 2E J  

ค่าความหนาแน่นสถานะ (The Density of States) เขียนแทนด้วย ( )g E  คือจํานวนสถานะท่ีเป็นไปได้ท้ังหมดท่ีให้ระดับ
พลังงาน E  เราสามารถนิยามฟังก์ชันแบ่งก้ันจากสมการท่ี (2) ในรูปของค่าความหนาแน่นสถานะได้ดังนี้ 
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สําหรับสมการท่ี (3) การคํานวณผลบวกจะทําบนปริภูมิพลังงาน (Energy space) ซ่ึงมีจํานวนพจน์น้อยกว่าผลบวกบนจํานวน
สถานะท่ีเป็นไปได้ท้ังหมด ดังนั้นจะเห็นได้ว่าการหาค่าความหนาแน่นสถานะจึงเป็นสิ่งจําเป็นท่ีจะช่วยให้การคํานวณค่าต่าง ๆ ทําได้ง่าย
ข้ึน 
 จากค่าฟังก์ชันแบ่งก้ัน ค่าทางอุณหพลศาสตร์สามารถคํานวณได้ดังตารางท่ี 1 
ตารางท่ี 1 สูตรการคํานวณค่าสําคัญทางอุณหพลศาสตร์ 

ค่าที่พิจารณา สูตรที่ใช้ในการคํานวณ 

พลังงานภายใน (Internal Energy) 
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พลังงานอิสระ (Free Energy)  ( ) log( )BF T k T Z  

ความร้อนจําเพาะ (Specific Heat) 
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เอนโทรปี (Entropy) 
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 ในบทความนี้จะกล่าวถึง ข้ันตอนวิธีของหวัง-ลันเดาว์ ซ่ึงเป็นข้ันตอนวิธีสําหรับการคํานวณค่าความหนาแน่นสถานะ ว่ามี
ข้ันตอนการทํางานอย่างไร งานวิจัยท่ีเก่ียวข้องกับการนําข้ันตอนวิธีไปใช้ จุดเด่นและข้อจํากัดของข้ันตอนวิธี การปรับปรุงข้ันตอนวิธี 
การประยุกต์ใช้ และปัญหาท่ีน่าสนใจ 
 

2. ขั้นตอนวิธีของหวัง-ลันเดาว์ (The Wang-Landau Algorithm) 
ข้ันตอนวิธีของหวัง-ลันเดาว์ เพ่ือใช้ในการหาค่าความหนาแน่นสถานะได้รับการเสนอคร้ังแรกในปี ค.ศ. 2001 (Wang and 

Landau, 2001) โดยแนวคิดของข้ันตอนวิธีนี้ใช้การเดินสุ่ม (Random walks) เช่นเดียวกับวิธีมอนติคาร์โล (Monte Carlo methods) 
แต่เป็นการเดินสุ่มบนปริภูมิพลังงานหรือปริภูมิเรนจ์ (Range space) แทนการเดินสุ่มบนปริภูมิสถานะหรือปริภูมิโดเมน (Domain 
space) และจะทําการตรวจสอบว่าการเดินสุ่มเดินไปท่ัวถึงทุกระดับพลังงานหรือไม่ โดยใช้การตรวจสอบความเรียบของฮิสโตแกรม โดย 
ฮิสโตแกรมนี้ใช้สะสมจํานวนคร้ังในการเดินสุ่มไปยังระดับพลังงานนั้น ๆ 

ข้ันตอนวิธีหวัง-ลันเดาว์สามารถสรุปข้ันตอนการทํางานได้ดังนี้ 
ข้อมูลนําเข้า (Input):  
ค่าคงตัวท่ีใช้ในการปรับค่าความหนาแน่นสถานะ ( )f  และเกณฑ์ท่ีใช้วัดความเรียบของฮิสโตแกรม ( )p  
ขั้นตอนวิธี (Algorithm): 
1. คํานวณค่าระดับพลังงานท่ีเป็นไปได้ท้ังหมด ( )E  
2. ในข้ันแรก เนื่องจากเรายังไม่ทราบค่าความหนาแน่นสถานะของแต่ละระดับพลังงาน ดังนั้นจะกําหนดให้ค่าความหนาแน่น

สถานะ เ ท่ า กั บ  1  เ ห มื อน กัน ทุ ก ร ะดั บพลั ง ง าน  และกํ าหนด ใ ห้ ค่ า ฮิ ส โ ตแก รมขอ ง ทุ ก ร ะดั บพลั ง ง าน เ ท่ า กั บ  0 
  ( ( ) : 1, ( ) : 0, )i i ig E H E E  

3. สุ่มเลือกรูปแบบการเรียงตัวของสปินข้ึนมา แล้วนําไปคํานวณค่าระดับพลังงาน กําหนดให้เป็น oldE  
4. สุ่มเลือกสปินข้ึนมา 1 สปิน และทําการสลับทิศของสปินนั้น ซ่ึงจะได้สถานะใหม่ แล้วนําไปคํานวณค่าระดับพลังงาน 

กําหนดให้เป็น newE  
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5. คํานวณค่าความน่าจะเป็นในการเดินจากระดับพลังงาน oldE  ไป newE  โดยเป็นสัดส่วนกับค่าความหนาแน่นสถานะ 
กล่าวคือ ถ้าค่า ( )newg E  มากกว่าหรือเท่ากับ ( )oldg E  ระบบจะตัดสินใจอยู่ท่ีสถานะเดิม มิฉะน้ันระบบการเลือกเดินไปท่ีระดับ
พลังงานใหม่ ดังสมการ 

 
   

 

( )( ) min 1,
( )

old
old new

new

g EP E E
g E

     (4) 

หากเลือกท่ีจะเปลี่ยนไปสถานะใหม่  เราจะทําการปรับค่าความหนาแน่นสถานะและค่าฮิสโตแกรมของระดับพลังงานใหม่ 
ดังนี้ 

( ) : ( ) , ( ) : ( ) 1new new new newg E g E f H E H E    
หากเลือกท่ีจะอยู่ท่ีสถานะเดิม เราจะทําการปรับค่าความหนาแน่นสถานะและค่าฮิสโตแกรมของระดับพลังงานเดิม ดังนี้  

  ( ) : ( ) , ( ) : ( ) 1old old old oldg E g E f H E H E  
6. ทําซํ้าข้ันท่ี 4-5 จนกระท่ังค่าฮิสโตแกรมของทุกระดับพลังงานใกล้เคียงกัน (Flat Histogram) ซ่ึงจะวัดจากเกณฑ์ความ

เรียบท่ีกําหนดไว้ 
7. ล้างค่าในฮิสโตแกรมท้ังหมดให้เป็นศูนย์ และลดค่า f ลง เร่ิมข้ันท่ี 3-6 อีกคร้ัง จนกระท่ัง f จะมีค่าเข้าใกล้ 1 หยุดการ

ทํางาน 
ผลลัพธ์ท่ีได้ (Output): ค่าความหนาแน่นสถานะ g(E) 
การใช้ความน่าจะเป็นในการเดินสุ่มตามสมการท่ี (4) เป็นการเลือกเดินไปยังระดับพลังงานท่ีมีจํานวนคร้ังในการเดินสุ่มไปถึง

น้อย มากกว่าจะเดินไปยังระดับพลังงานท่ีถูกเลือกบ่อยคร้ัง ซ่ึงทําให้การเดินสุ่มบนปริภูมิพลังงานเป็นไปอย่างท่ัวถึง ซ่ึงเป็นหัวใจสําคัญ
ของข้ันตอนวิธีหวัง-ลันเดาว์ 

เพ่ือให้การเดินสุ่มไปยังแต่ละสถานะมีจํานวนท่ีใกล้เคียงกัน ในข้ันตอนวิธีจึงมีฮิสโตแกรมสําหรับเก็บข้อมูลจํานวนคร้ังสะสมใน
การเดินสุ่มไปถึงแต่ละระดับพลังงาน และใช้เกณฑ์วัดความเรียบของฮิสโตแกรม ในการทํางานจริงนั้น การท่ีจํานวนคร้ังการเดินสุ่มไปยัง
แต่ละระดับพลังงานจะเท่ากันท้ังหมด เป็นไปได้ยาก คําว่า “เรียบ” ในท่ีนี้จึงหมายถึงจํานวนคร้ังท่ีใกล้เคียงกัน เพ่ือให้เข้าใจเกณฑ์การ
วัดความเรียบของฮิสโตแกรม จะพิจารณาตัวอย่างต่อไปน้ี 

สมมติให้ฮิสโตแกรมของการเดินสุ่มเป็นดังรูปท่ี 2 
 

 
 

รูปท่ี 2 ตัวอย่างฮิสโตแกรม 
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ค่าเฉลี่ยของฮิสโตแกรมคือ 

( ) (11 9 10 8 10) / 5 9.6H E        
ถ้ากําหนดให้ เกณฑ์ท่ีใช้วัดความเรียบของฮิสโตแกรม  0.7p  ซ่ึงหมายความว่าฮิสโตแกรมแต่ละระดับพลังงานต้องอยู่

ในช่วงไม่ตํ่ากว่า 70% ของค่าเฉลี่ย และไม่เกิน 130% ของค่าเฉลี่ย หรือ 6.72 ( ) 12.48iH E   ดังนั้นหากใช้  0.7p  เป็นเกณฑ์
วัดความเรียบ จะได้ว่า ฮิสโตแกรมในตัวอย่างนี้เรียบแล้ว 

หากเปล่ียนเกณฑ์ความเรียบเป็น  0.9p  (แต่ละค่าของฮิสโตแกรมต้องอยู่ในช่วงไม่ตํ่ากว่า 90% ของค่าเฉลี่ยและไม่เกิน 
110% ของค่าเฉลี่ยหรือ 8.64 ( )iH E  10.56  ดังนั้นหากใช้  0.9p  เป็นเกณฑ์วัดความเรียบ จะได้ว่าฮิสโตแกรมนี้ยังไม่เรียบ 
เนื่องจากมีค่า 1( ) 11H E  อยู่นอกช่วง  

กําหนดเกณฑ์ความเรียบ p  เรากล่าวว่า ฮิสโตแกรมมีความเรียบก็ต่อเม่ือ สอดคล้องกับเงื่อนไข 
    ( ) ( ) (1 (1 )) ( ) ,i ip H E H E p H E E      (5) 

เม่ือ ( )H E  คือ ค่าเฉลี่ยของฮิสโตแกรม 
สําหรับในระบบขนาดใหญ่ การต้ังเกณฑ์ความเรียบท่ีสูงเกินไปอาจทําให้ข้ันตอนวิธีใช้เวลาในการทํางานนาน หรือโปรแกรม

ทํางานไม่หยุด ในทางตรงกันข้ามหากเราต้ังเกณฑ์ความเรียบไว้ตํ่าเกินไป อาจทําให้เกิดค่าคลาดเคลื่อน เนื่องจากการเดินสุ่มยังไปไม่
ท่ัวถึง ทําให้การปรับค่าความหนาแน่นสถานะในแต่ละรอบยังไม่เพียงพอ เราจึงจําเป็นต้องกําหนดเกณฑ์ความเรียบของฮิสโตแกรมนี้ให้
เหมาะสมกับขนาดของระบบท่ีกําลังพิจารณา และความแม่นยําของค่าความหนาแน่นสถานะท่ีต้องการ เช่น แบบจําลองไอซิงสองมิติ 
ขนาด  32L  สามารถกําหนดเกณฑ์ความเรียบได้สูงถึง 95% (Wang and Landau, 2001) การหาค่าประมาณของปริพันธ์ในหนึ่ง
หรือสองมิติ สามารถกําหนดเกณฑ์ความเรียบได้ต้ังแต่ 60 - 90 % (Li et al., 2007) อย่างไรก็ตาม เราควรกําหนดเกณฑ์ความเรียบให้
สูงไว้ก่อน (90 - 95%) เม่ือโปรแกรมใช้เวลาในการทํางานนานเกินไป จึงค่อยปรับลดลง 

ในข้ันตอนวิธีของหวัง-ลันเดาว์ หลังจากการเดินสุ่มในปริภูมิพลังงานทุกคร้ัง ค่าความหนาแน่นสถานะจะถูกปรับด้วยการคูณ
ค่าคงตัว f หรือเราเรียกว่า ค่าคงตัวในการปรับ (Modification Factor) เพ่ือช่วยในการปรับค่าความหนาแน่นสถานะให้ลู่เข้าสู่ความ
แม่นตรง เนื่องจากค่าความหนาแน่นสถานะส่วนใหญ่มีค่ามาก ในทางปฏิบัติ การเขียนโปรแกรมจะใช้ฟังก์ชันลอการิทึมมาช่วย เพ่ือทํา
ให้การคาํนวณมีความแม่นยําข้ึน การปรับค่าความหนาแน่นสถานะจึงสามารถเขียนในรูปลอการิทึมฐานธรรมชาติได้ดังนี้ 

    log ( ) : log ( ) log( )g E g E f       (6) 
และเพ่ือความสะดวกในการเขียนโปรแกรม ค่าคงตัวในการปรับเร่ิมต้น ( 0f ) จะถูกกําหนดให้เท่ากับ e  

เม่ือฮิสโตแกรมสอดคล้องกับเกณฑ์ความเรียบท่ีต้ังไว้จะมีการลดค่า f ลง เพ่ือให้การปรับค่า ( )g E  ละเอียดมากข้ึน โดย
ฟังก์ชันท่ีใช้ในการปรับลดค่า f สามารถเป็นฟังก์ชันใดก็ได้ แต่ต้องมีสมบัติเป็นฟังก์ชันลดลงทางเดียวและเข้าสู่ 1 (Monotonically to 
1) เช่น ฟังก์ชันรากท่ี n  1

n
i if f  โดยค่า n สามารถเลือกได้ ให้สอดคล้องกับเวลาท่ีมีและค่าความแม่นยําท่ีต้องการ โดยท่ัวไป เรา

จะเลือกค่า  2n  ในทํานองเดียวกัน เพ่ือความสะดวกในการเขียนโปรแกรม การปรับค่า f สามารถเขียนในรูปฟังก์ชันลอการิทึมได้ 
โดย 

 1 2
i

i
FF  เม่ือ  log( )F f       (7) 

เม่ือค่า f  ลดลงจนค่าเข้าใกล้ 1 แสดงว่า ค่าความหนาแน่นสถานะนั้นถูกปรับไปเพียงเล็กน้อย โปรแกรมจะสิ้นสุดการทํางาน
และให้ผลลัพธ์คือค่า ( )g E  
 

3. ผลการทํางาน 
งานวิจัยท่ีเสนอข้ันตอนวิธีของหวัง-ลันเดาว์เป็นคร้ังแรก (Wang and Landau, 2001) ผู้วิจัยได้ใช้ข้ันตอนวิธีในการหาค่า

ความหนาแน่นสถานะของของแบบจําลองพอตส์ 10 สถานะ สองมิติ ขนาด  60L  ถึง  200L  ซ่ึงเป็นแบบจําลองท่ีมีการเปลี่ยน
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สถานะอันดับหนึ่ง (First-order phase transition) เม่ือคํานวณค่าฟังก์ชันแบ่งก้ัน เพ่ือหาค่าพลังงานภายใน พลังงานอิสระและค่า 
เอนโทรปี และพิจารณาอุณหภูมิวิกฤต (Critical Temperature: CT ) ของตัวแบบ จะได้ค่าอุณหภูมิวิกฤตท่ีได้มีความแม่นยําและ
สอดคล้องกับค่าแม่นตรง 

นอกจากน้ัน ในงานวิจัยยังได้แสดงการนําข้ันตอนวิธีไปประยุกต์ใช้กับแบบจําลองแบบไอซิง ใน 2 มิติ ขนาด L L  เม่ือ 
 32L  ถึง  256L  ซ่ึงเป็นแบบจําลองท่ีมีการเปล่ียนสถานะอันดับสอง (Second-order phase transition) โดยข้ันตอนวิธี

สามารถหาค่าความหนาแน่นสถานะ และคํานวณค่าทางอุณหพลศาสตร์ท่ีอุณหภูมิต่าง ๆ ได้อย่างแม่นยํา 
Tröster และ Dellago (Tröster and Dellago, 2005) ได้ริเร่ิมการนําข้ันตอนวิธีหวัง-ลันเดาว์ ในการใช้หาค่าสูงสุดและตํ่าสุด

ของฟังก์ชันท่ีจะนํามาใช้ในการหาค่าปริพันธ์ โดยวิธีการปรับช่วงค่าสูงสุดและตํ่าสุดเอง (Self-adaptive range) และนําข้ันตอนวิธี
ดังกล่าวมาประมาณค่าปริพันธ์ อย่างไรก็ตาม งานวิจัยชิ้นนี้มีข้อจํากัดว่า ค่าตํ่าสุดของปริพัทธ์ (Integrand) ต้องมีค่ามากกว่าศูนย์ 

ต่อมามีการเสนอวิธีการปรับปรุงการทํางานของข้ันตอนวิธีของหวัง-ลันเดาว์ (Lee et al., 2006) โดยในงานวิจัยได้แสดงว่า
การลดค่า f  หลังจากโปรแกรมทํางานไประยะหนึ่ง ไม่ส่งผลต่อความแม่นยําของค่าความหนาแน่นสถานะท่ีได้ โดยเฉพาะในกรณีท่ีค่า
ความต่างระหว่างค่าสูงสุดและค่าตํ่าสุดของฮิสโตแกรมไม่เปลี่ยนแปลง และยังแสดงให้เห็นว่าค่าความต่างนั้นเป็นสัดส่วนกับค่าคงตัวท่ีใช้
ในการปรับค่าความหนาแน่นสถานะ พร้อมท้ังเสนอข้ันตอนวิธีการลด f  อีกรูปแบบหนึ่ง โดยได้นําไปใช้กับแบบจําลองไอซิงในสองมิติ
ขนาด 8 8,  16 16  และ 32 32  ซ่ึงพบว่าข้ันตอนวิธีท่ีนําเสนอให้ค่าคลาดเคล่ือนลดลง 

Li และคณะ (Li et al., 2007) นําข้ันตอนวิธีของหวัง-ลันเดาว์มาประยุกต์ใช้ในการหาค่าประมาณปริพันธ์ในหนึ่งและสองมิติ 
นิยามโดย  

2
5 3 2

1
2

( 4 ) sin(4 )DI x x x x x dx


         (8) 

1 1
6 3 2

2 1 1 2 1 2 1 1 2 1 2
1 1

( 2 ) sin(4 1) cos(4 )DI x x x x x x x x dx dx
 

         (9) 

โดยค่านี้สามารถหาค่าแม่นตรงได้ เพ่ือใช้ในการเปรียบเทียบความแม่นยําของข้ันตอนวิธี 
ผลการทํางานนั้นพบว่า ปัจจัยมีผลต่อความแม่นยําของค่าประมาณข้ึนอยู่กับการกําหนดค่า dy  ให้มีค่าเล็กลง มากกว่าการ

กําหนดเกณฑ์ความเรียบของฮิสโตแกรมให้สูงข้ึน 
นอกจากนั้น ในงานวิจัยชิ้นนี้ ยังนําข้ันตอนวิธีของหวัง-ลันเดาว์มาประมาณค่าพลังงานของแบบจําลองแอนเดอร์สัน 

(Anderson model) ซ่ึง Blankenbecler และคณะ (Blankenbecler et al., 1987) ได้เสนอไว้ต้ังแต่ปี ค.ศ. 1987 ค่าพลังงานของ
แบบจําลองนี้อยู่ในรูปของปริพันธ์จํากัดเขตในหลายมิติ โดยท่ีปริพัทธ์เป็นฟังก์ชันท่ีมีลักษณะเป็นกราฟท่ีมีจุดยอดหลายจุดและมีความ
ชันมาก ซ่ึงเป็นข้อจํากัดของการใช้การประมาณค่าปริพันธ์โดยวิธีเชิงตัวเลขวิธีอ่ืน ผลจากการทํางานพบว่าข้ันตอนวิธีของหวัง-ลันเดาว์
สามารถประมาณค่าพลังงานได้ใกล้เคียงกับค่าแม่นตรง ซ่ึงวิธีเชิงตัวเลขวิธีอ่ืนทําไม่ได้ จุดเด่นอีกประการของข้ันตอนวิธีท่ีนําเสนอใน
งานวิจัยนี้คือการลดข้อกําจัดเร่ืองค่าตํ่าสุดของปริพัทธ์ ซ่ึงเดิมจํากัดว่าค่าตํ่าสุดนี้จะต้องมากกว่าศูนย์ แต่ในงานวิจัยนี้ ค่าตํ่าสุดของ 
ปริพัทธ์จะมีค่าเท่าใดก็ได้ 

ความเชื่อมโยงระหว่างการหาค่าความหนาแน่นสถานะในปัญหาทางฟิสิกส์เชิงสถิติกับปัญหาการประมาณค่าปริพันธ์ในหลาย
มิติสามารถสรุปได้ดังตารางท่ี 2 
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ตารางท่ี 2 ตารางเปรียบเทียบการใช้ข้ันตอนวิธีของหวัง-ลันเดาว์ในระบบแบบไม่ต่อเนื่องและต่อเนื่อง 

ปัญหาทางฟิสิกส์เชิงสถิติ ปัญหาการประมาณค่าปริพันธ ์
1. โดเมนของปัญหาคือ รูปแบบการเรียงตัวของสปิน (Spin configurations) 
เป็นค่าไม่ต่อเนื่อง 

1. โดเมนของปัญหาคือ ค่า x ที่อยู่ในช่วงขอบเขตของการอินทิเกรต เป็น
ค่าต่อเนื่อง  

2. เรจน์ของปัญหาคือ ปริภูมิพลังงานเป็นค่าไม่ต่อเนื่อง 2. เรจน์ของปัญหาคือ ค่า y  ที่สอดคล้องกับฟังก์ชันเป็นค่าต่อเนื่อง 
       ดังนั้นในการขั้นตอนวิธีของหวัง-ลันเดาว์ ต้องมีการแบ่งค่า y 
ออกเป็นช่วงย่อย ๆ กําหนดให้ แต่ละช่วงกว้าง dy 

3. ค่าความหนาแน่นสถานะ ( ( ))g E  คือจํานวนสถานะท่ีมีระดับพลังงาน
เท่ากับ E 

3. ค่าความหนาแน่นสถานะหรือ ( )g y  คือจํานวนค่า x ที่อยู่ในโดเมน 
[a,b]  มีค่า y อยู่ในช่วงที่พิจารณา 

[ , ],
( ) ( )

x a b
g y x y y x y dy

  
 
  


   

 

4. การเดินสุ่มทําบนปริภูมิพลังงาน 4. การเดินสุ่มทําบนปริภูมิเรนจ์ 
5. ฟังก์ชันแบ่งก้ันคือ 

( ) B

E
k T

E

z g E e


  

5. ค่าประมาณของปริพันธ์คือ  

 ( ).
y

I g y y  

 

ต่อมามีการนําข้ันตอนวิธีของหวัง-ลันเดาว์มาวิเคราะห์ค่าคลาดเคลื่อนและปรับปรุง โดย Belardinelli และ Peereyra 
(Belardinelli and Peereyra, 2007) ได้นําเสนอข้ันตอนวิธี 1/t ซ่ึงมีแนวคิดเดียวกับข้ันตอนวิธีของหวัง-ลันเดาว์ เพ่ือลดปัญหาการ
อ่ิมตัวของค่าคลาดเคล่ือน (Error saturation)  

ความแตกต่างระหว่างข้ันตอนวิธีของหวัง-ลันเดาว์กับข้ันตอนวิธี 1/t คือ วิธีการปรับลดค่า f จากเดิม การปรับค่า f จะทําเม่ือ
ฮิสโตแกรมสอดคล้องกับเกณฑ์ความเรียบ เป็นการปรับค่า f เม่ือการเดินสุ่มไปครบปริภูมิ y นั่นคือ  ( ) 0,iH E i  นอกจากน้ันยัง
เปลี่ยนเงื่อนไขในการลดค่า F จากเดิมท่ีลดลงคร่ึงหน่ึงเสมอซ่ึงไม่ข้ึนกับจํานวนรอบในการทํางาน เป็นการลดค่าแบบข้ึนกับจํานวนรอบ
ในการทํางาน ( )t  ซ่ึงเป็นท่ีมาของช่ือของข้ันตอนวิธีนี้ 

ในงานวิจัยยังได้นําข้ันตอนวิธี 1/t ไปใช้กับแบบจําลองพอตส์ 10 สถานะ ในสองมิติ ขนาด 40L   ถึง 120L  และ
แบบจําลองไอซ่ิงในสองมิติ ขนาด L L  เม่ือ 8L  และ 50L   

ในปีต่อมา Belardinelli และคณะ (Belardinelli et al., 2008) ได้นําข้ันตอนวิธีแบบ 1/t มาประยุกต์ใช้กับการประมาณค่า
ปริพันธ์ในหลายมิติ ในการวิจัยได้พิจารณาการประมาณค่า 1DI  และ 2DI  เปรียบเทียบกับผลท่ีได้จากข้ันตอนวิธีของหวัง-ลันเดาว์ และ
พิจารณาปริพันธ์ในหนึ่งมิติเพ่ิมข้ึนคือ 

1
2

0

4 1I x dx         (10) 

ค่าแม่นตรงของปริพันธ์คือ I   พร้อมท้ังพิจารณาปริพันธ์ใน 3-6 มิติ เพ่ิมเติม โดยมีนิยามดังนี้ 
1 1 1

1 2
10 0 0

... cos( ) ...
n

nD i n
i

I ix dx dx dx


         (11) 

โดยท่ีปริพันธ์นี้มีค่าแม่นตรงคือ 
1

sin( )n
i

nD
i

ixI
i

   

ผลลัพธ์ของงานวิจัยนี้ได้แสดงให้เห็นว่าค่าความหนาแน่นสถานะท่ีได้จากขั้นตอนวิธี 1/t ลู่เข้าสู่ค่าแม่นตรง แต่สาเหตุท่ีค่า
คลาดเคลื่อนยังคงเกิดการอ่ิมตัว เกิดจากวิธีการแบ่งช่วงบนปริภูมิ y เพ่ือแปลงระบบต่อเนื่องให้เป็นระบบไม่ต่อเนื่อง  

วันหยกและพศิน (Atisattapong and Maruphanton, 2016) ได้นําข้ันตอนวิธี 1/t มาปรับปรุง เพ่ือหาค่าปริพันธ์ในหลายมิติ 
โดยเสนอให้ใช้ค่าเฉลี่ยของช่วงแทนใช้ค่าก่ึงกลาง ซ่ึงส่งผลให้ค่าคลาดเคล่ือนของข้ันตอนวิธีไม่เกิดการอ่ิมตัว ท้ังนี้ได้เสนอวิธีพิสูจน์ เพ่ือ
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ยืนยันว่าค่าคลาดเคล่ือนในการประมาณค่าจะไม่ข้ึนกับขนาดของช่วงย่อย ซ่ึงทําให้เวลาในการคํานวณจะลดลงตามจํานวนรอบการเดิน
สุ่มท่ีลดลง ผลของงานวิจัยนี้ทําให้เกิดแนวคิดว่า สําหรับปริภูมิเรนจ์ท่ีเป็นค่าต่อเน่ือง การแบ่งเป็นช่วงย่อยให้มีจํานวนช่วงมาก ๆ นั้นไม่
จําเป็น และเนื่องจากค่าคลาดเคล่ือนท่ีไม่ข้ึนกับขนาดของช่วงย่อย เพ่ือให้สะดวกในการคํานวณ เราควรแบ่งปริภูมิเรนจ์ให้มีขนาดใหญ่
ท่ีสุด นั่นคือ แบ่งปริภูมิเรนจ์ออกเป็นสองช่วงย่อยก็เพียงพอ 

จิรารัตน์และวันหยก (Chairat and Atisattapong, 2016) ได้ศึกษาเงื่อนไขการหยุดของขั้นตอนวิธีหวัง-ลันเดาว์ และได้เสนอ
เงื่อนไขการหยุดท่ีข้ึนกับการอ่ิมตัวของค่าคลาดเคลื่อนแทนการปรับลดค่า f  แบบเดิม เม่ือนําเงื่อนไขการหยุดนี้ไปใช้ในการประมาณ
ค่าปริพันธ์ในสมการท่ี (10) พบว่า เวลาในการคํานวณลดลง 83.91% ในขณะท่ีค่าคลาดเคล่ือนสัมพัทธ์ของค่าประมาณเพ่ิมข้ึนเพียง 
5.29% เม่ือเทียบกับการใช้เงื่อนไขการหยุดแบบเดิม นั่นคือเงื่อนไขการหยุดแบบใหม่สามารถชว่ยลดเวลาในการคํานวณได้ 

วันหยกและพศิน (Atisattapong and Maruphanton, 2017) ได้นําแนวคิดจากข้ันตอนวิธี 1/t ท่ีเสนอไว้ มาใช้ในการหาค่า
ปริพันธ์ของฟังก์ชันท่ีมีลักษณะพิเศษคือมีจุดยอดชันมาก เม่ือนําข้ันตอนวิธีท่ีปรับปรุงมาเพ่ิมเติมการแบ่งสถานะท่ีลดลง โดยแทนท่ีจะ
แบ่งเป็นหลายสถานะตามค่า dy ก็ปรับลดลงเหลือเพียงสองสถานะ ผลของงานวิจัยแสดงให้เห็นว่า ข้ันตอนวิธีแบบสองสถานะนั้น
สามารถหาค่าปริพันธ์ของฟังก์ชัน Gaussian ring และ Setting sun Feynman diagram ได้ ในขณะท่ีงานวิจัยก่อนหน้าไม่สามารถทํา
ได้ ท้ังนี้การหาปริพันธ์ในข้ันตอนวิธีแบบสองสถานะไม่จําเป็นต้องหาค่าสูงสุดหรือตํ่าสุดของปริพัทธ์ ซ่ึงเป็นเร่ืองท่ียุ่งยาก เพียงแต่
กําหนดค่าท่ีใช้ในการแบ่งสถานะ ข้ันตอนวิธีนี้จะสามารถทํางานได้อย่างมีประสิทธิภาพ 
 

4. บทสรุปและข้อเสนอแนะ 
 การศึกษาขั้นตอนวิธีหวัง-ลันเดาว์มีหลายส่วน ท้ังการนําข้ันตอนวิธีมาประยุกต์ใช้ การวิเคราะห์ค่าคลาดเคลื่อนของผลลัพธ์ 
และการปรับปรุงพัฒนาข้ันตอนวิธี ซ่ึงในบทความวิจัยนี้ ได้เลือกอภิปรายเพียงส่วนหนึ่งของแนวทางการพัฒนาข้ันตอนวิธี โดยมุ่งเน้นท่ี
การหาค่าปริพันธ์ในหลายมิติ ซ่ึงเป็นปัญหาพ้ืนฐานและมีความซับซ้อนในงานทางด้านคณิตศาสตร์และวิศวกรรม อย่างไรก็ตามข้ันตอน
วิธีนี้ยังมีการพัฒนาและศึกษาในเชิงอ่ืนอีกมาก โดยเฉพาะปัญหาทางฟิสิกส์เชิงสถิติ ท้ังการใช้ในแบบจําลองพอตส์ แบบจําลองไอซิง 
และการม้วนพับของสายโปรตีน 
 ปัญหาท่ีเหมาะกับการนําข้ันตอนวิธีหวัง-ลันเดาว์ไปแก้ปัญหามีลักษณะสําคัญ คือโดเมนของปัญหามีหลายมิติ แต่เรนจ์ของ
ปัญหาเป็นค่าในหนึ่งมิติ เม่ือเพ่ิมมิติของโดเมน ทําให้เกิดความยุ่งยากในการคํานวณ ซ่ึงข้ันตอนวิธีหวัง-ลันเดาว์เลือกท่ีจะแก้ปัญหาโดย
การพิจารณาบนปริภูมิเรนจ์ การแก้ปัญหาท่ีมีโดเมนหลายมิติ ข้ันตอนวิธีนี้จึงยังคงใช้งานได้อย่างมีประสิทธิภาพ 

แนวคิดหน่ึงท่ีน่าสนใจและสามารถนําข้ันตอนวิธีไปต่อยอดได้ คือการคํานวณค่าความน่าเชื่อถือของเครือข่าย (Network 
reliability) (Cook and Ramierz-Marquez, 2007; Gertsbakh and Shpungin, 2010) โดยเฉพาะในเครือข่ายท่ีมีขนาดใหญ่ เนื่องจาก
การประมาณค่าโดยใช้ข้ันตอนวิธีมอนติคาร์โลแบบด้ังเดิมขาดประสิทธิภาพสําหรับเครือข่ายขนาดใหญ่ท่ีมีความน่าเชื่อถือสูง การนํา
ข้ันตอนวิธีของหวัง-ลันเดาว์มาแก้ปัญหาดังกล่าวจึงเป็นอีกแนวทางหนึ่งท่ีสามารถศึกษาเพ่ิมเติมได้ต่อไป 
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