
ว.วิทย. มข. 47(1) 167-176 (2562)  KKU Sci. J. 47(1) 167-176 (2019) 

 

 

 

 
 

การปรับปรุงระบบรหัสลับเอ็ลกามอลไลก์ด้วยตัวดำเนินการทีละบิตแบบเป็นคาบ 

An Improvement of ElGamal-like Cryptosystem with 

Periodic Bitwise Operations 
 

Wanchaloem Nadda1 and Thotsaphon Thongjunthug1* 

1Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand 
*Corresponding Author, Email: thotho@kku.ac.th 

 

Received: 16 February 2018 | Revised: 31 July 2018 | Accepted: 9 August 2018 

 

บทคัดย่อ 

Hwang et al. (2002) ได้นำเสนอระบบรหัสลับเอ็ลกามอลไลก์ ซึ่งมีวัตถุประสงค์เพื่อปรับปรุงประสิทธิภาพของระบบรหัส

ลับเอ็ลกามอลสำหรับการเข้ารหัสลับข้อความขนาดใหญ่ โดยเฉพาะอย่างยิ่งในแง่ของความซับซ้อนในการคำนวณและหน่วยเก็บ

ข้อความรหัสลับ ต่อมา Wang et al. (2006) ได้พิสูจน์ว่าระบบรหัสลับเอ็ลกามอลไลก์มีความปลอดภัยน้อยกว่าระบบรหัสลับเอ็ลกา

มอล และนำเสนอวิธีการปรับปรุงเพื่อเพิ่มความปลอดภัย ในบทความวิจัยนี้ จะได้แสดงวิธีการปรับปรุงระบบรหัสลับของ Wang et al. 

(2006) โดยใช้การดำเนินการทีละบิตที่แตกต่างกันในการเข้ารหัสลับแต่ละบล็อกของข้อความปกติ ซึ่งกำหนดโดยอาศัยลำดับเป็นคาบ

บางลำดับ ผลการศึกษาแสดงให้เห็นว่า ระบบรหัสลับที่ปรับปรุงใหม่นั้นสามารถเพิ่มความยาวคาบของสัมประสิทธิ์สำหรับการเข้ารหัส

ลับ และยังสามารถป้องกันการโจมตีแบบทราบข้อความรหัสลับเท่านั้น และการโจมตีแบบทราบข้อความปกติ ได้ดีกว่าระบบรหัสลับ

ของ Wang et al. (2006) 
 

ABSTRACT 

Hwang et al. (2002) proposed an ElGamal-like cryptosystem which aimed to improve effectiveness of the 

ElGamal cryptosystem for encrypting large messages, particularly in terms of computational complexity and the 

storage of ciphertext.  Later, Wang et al.  (2006) proved that the ElGamal-like cryptosystem is less secure than the 

ElGamal cryptosystem, and then proposed an improved version to increase the security. In this paper, we improve 

the scheme of Wang et al.  ( 2006)  by using different bitwise operations, which are assigned according to a certain 

periodic sequence, while encrypting different blocks of plaintext.  The results show that our scheme can provide 

larger period length of the coefficients for encryption and more resistance to a ciphertext-only attack and a known-

plaintext attack than the scheme of Wang et al. (2006). 
 

คำสำคัญ: ระบบรหัสลับแบบกุญแจสาธารณะ  ลำดับเป็นคาบ  ระบบรหัสลับเอ็ลกามอลไลก ์

Keywords: Public-key cryptosystem, Periodic sequence, ElGamal-like cryptosystem 
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1. INTRODUCTION 

The concept of public-key cryptosystem was first introduced by Diffie and Hellman (1976), whose scheme, 

later known as Diffie- Hellman key exchange method, is based on discrete logarithm problem.  ElGamal ( 1985) 

proposed another public- key cryptosystem, later known as the ElGamal cryptosystem, which is one of many 

effective public- key cryptosystems used in practice nowadays.  Its security still relies on the difficulty of solving 

discrete logarithm problem. However, when the ElGamal cryptosystem is used to encrypt large message, its security 

will decrease, for using the same parameters to encrypt different plaintext makes the cipher vulnerable to a known-

plaintext attack (Hwang et al., 2002). Moreover, sending a message using the ElGamal cryptosystem has drawbacks 

in terms of bandwidth because the length of ciphertext is twice as long as the length the plaintext ( Wang et al. , 

2006). 

Hwang et al.  ( 2002)  proposed an ElGamal- like cryptosystem for encrypting large messages by dividing a 

message into several blocks. Their proposed cryptosystem sets only two default parameters and other parameters 

are calculated from both parameters. Nevertheless, Wang et al. (2006) showed that the ElGamal-like cryptosystem 

is not as secure as the ElGamal cryptosystem since its default parameters cannot generate all the possible 

parameters.  In particular, the period of the function for calculating parameters is less than 𝑝 − 1, where 𝑝 is a 

prime used as the modulus in the scheme.  Wang et al.  ( 2006)  then improved the ElGamal- like cryptosystem in 

order to increase the period of the function for calculating parameters and to decrease probability of fail case for 

the decryption.  Chang et al.  (2012)  proved that the scheme of Wang et al.  (2006)  can be attacked by a chosen-

plaintext attack, and then a new scheme was proposed. 

In this paper, we will improve the scheme of Wang et al.  ( 2006)  in order to increase the period length of 

the coefficients for encryption, which will provide higher security against a ciphertext- only attack and a known-

plaintext attack.  Our method relies on the use of different bitwise operations, which are assigned according to a 

certain periodic sequence, while encrypting different blocks of plaintext. 
 

2. RESEARCH METHODOLOGY 

2.1 The cryptosystem of Wang et al. (2006) 

We shall first give an overview of the cryptosystem of Wang et al.  ( 2006) , which consists of three main 

parts, namely, key generation, encryption algorithm, and decryption algorithm. 

2.1.1 Key generation 

The scheme of Wang et al.  ( 2006)  generates all private keys and public keys in a similar way to 

the ElGamal cryptosystem (ElGamal, 1985). The key generation consists of the following steps: 

1. Choose a prime number 𝑝 and a primitive root 𝑔 modulo 𝑝. 

2. Suppose that there are 𝑛 recipients. For 	𝑖 = 1, 2, … , 𝑛, the 𝑖th recipient choose a private key 

𝑑- ∈ {1, 2, … , 𝑝 − 1}. 
3. For 𝑖 = 1, 2, … , 𝑛, compute 𝑦- = 𝑔23	mod	𝑝. 

4. The public key of the 𝑖th recipient is (𝑝, 𝑔, 𝑦-) and the corresponding private key is 𝑑-. 
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2.1.2 Encryption algorithm 

To send an encrypted message to the 𝑖th recipient using the scheme of Wang et al. (2006), a sender 

needs to complete the following steps:  

1. Divide a large message into 𝑡  blocks of equal length.  Then convert each block into its 

corresponding integer value, say, 𝑀;,𝑀<,… ,𝑀=. 

2. Choose session keys 𝑟;, 𝑟< ∈ {1,2, … , 𝑝 − 1} and compute 

𝑏; = 𝑔@A	mod	𝑝,

𝑏< = 𝑔@B	mod	𝑝.
 

3. For 𝑗 = 1, 2, … , 𝑡, compute the 𝑗th ciphertext block 𝐶E by 

𝐶E = 𝑀E𝐹E	mod	𝑝, 
where 

 𝐹E = GH𝑦-
@A	mod	𝑝I ⊕ KH𝑦-

@BIE	mod	𝑝LM 	mod	𝑝 (1) 

and ⊕ is the bitwise exclusive-or of two integers. We call 𝐹;, 𝐹<, … , 𝐹= the coefficients for encryption. 

4. The ciphertext is (𝑏;, 𝑏<, 𝐶;, 𝐶<, … , 𝐶=). 
2.1.3 Decryption algorithm 

Once the ciphertext (𝑏;, 𝑏<, 𝐶;, 𝐶<, … , 𝐶=) encrypted using the scheme of Wang et al. (2006) is 

received, the 𝑖th recipient can decrypt it by computing 

𝑀E = 𝐶E𝐹EN;	mod	𝑝, 

where 𝐹EN; is the multiplicative inverse of 𝐹E modulo 𝑝 for all 𝑗 = 1, 2, … , 𝑡.  Note that the 𝑖th recipient can 

compute 𝐹E	without any knowledge of the session keys 𝑟;,	𝑟<	set by the sender, for 

𝐹E = GH𝑦-
@A	mod	𝑝I ⊕ KH𝑦-

@BIE	mod	𝑝LM 	mod	𝑝

= K(𝑔23@A	mod	𝑝)⊕ H(𝑔23@B)E	mod	𝑝IL 	mod	𝑝

= OH𝑏;
23	mod	𝑝I ⊕ KH𝑏<

23I
E
	mod	𝑝LP 	mod	𝑝.

 

Then the 𝑖th recipient converts 𝑀;,𝑀<,… ,𝑀= into blocks of letters and combine them to recover the message. 

Unfortunately, the coefficients for encryption 𝐹E defined by ( 1 )  may not be invertible modulo 𝑝 

for some 𝑗 = 1, 2, … , 𝑡. This is one of major drawbacks to be mended in our proposed scheme. 

2.2 Our modification 

Our modification to the scheme of Wang et al. (2006) consists of the following three main steps: 

1. Create a number of different bitwise operations to be used for encrypting different blocks of plaintext. 

2. Modify the existing encryption algorithm proposed by Wang et al. (2006) so that using different bitwise 

operations for encrypting different blocks is allowed. 

3. Derive the decryption algorithm associated to our modified encryption algorithm. 

2.2.1 Defining bitwise operations 

For 𝑘 = 0, 1, 2, … , 15, we define a bitwise operation ⊕T as shown in Table 1.  In addition, for 

all 𝑎, 𝑏 ∈ ℕ ∪ {0}, we define 
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𝑎⊕T 𝑏 = X(𝑎- ⊕T 𝑏-)2-
YN;

-Z[

, 

where (𝑎YN;𝑎YN< …𝑎;𝑎[)<  and (𝑏YN;𝑏YN< …𝑏;𝑏[)<  are the binary expansions of 𝑎 and 𝑏, respectively, 

padded with zero if necessary to make their length equal. 
 

Table 1 Bitwise operations ⊕T for 𝑘 = 0, 1, 2, … , 15 

𝑎 𝑏 𝑎⊕[ 𝑏 𝑎⊕; 𝑏 𝑎⊕< 𝑏 𝑎⊕\ 𝑏 𝑎⊕] 𝑏 𝑎⊕^ 𝑏 𝑎⊕_ 𝑏 𝑎⊕` 𝑏 

0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 1 1 1 1 
1 0 0 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 1 0 1 

𝑎 𝑏 𝑎⊕a 𝑏 𝑎⊕b 𝑏 𝑎⊕;[ 𝑏 𝑎⊕;; 𝑏 𝑎⊕;< 𝑏 𝑎⊕;\ 𝑏 𝑎⊕;] 𝑏 𝑎⊕;^ 𝑏 

0 0 1 1 1 1 1 1 1 1 
0 1 0 0 0 0 1 1 1 1 
1 0 0 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 1 0 1 

 

Next, we will describe our encryption and decryption algorithms, where all private keys and public keys 

are generated in a similar way as in the scheme of Wang et al. (2006). 

2.2.2 Encryption algorithm 

In our modified cryptosystem, a sender can send an encrypted message to the 𝑖th recipient, whose 

public key is (𝑝, 𝑔, 𝑦-), via the following steps:  

1. Divide a message into 𝑡 blocks of equal length. Then convert each block into its corresponding 

integer value, say, 𝑀;,𝑀<,… ,𝑀=. 

2. Choose session keys 𝑟;, 𝑟< ∈ {1, 2, … , 𝑝 − 1} and compute 

𝑏; = 𝑔@A	mod	𝑝,

𝑏< = 𝑔@B	mod	𝑝.
 

3. Let 𝑐; = 𝑦-
@A	mod	𝑝 and 𝑐< = 𝑦-

@B	mod	𝑝.  

4. For 𝑗 = 1, 2, … , 𝑡, let 

 𝑎E = GKH(𝑐< + 𝑗)	mod	𝑐;I + H(𝑐;𝑗)	mod	𝑐<IL 	mod	15M + 1. (2) 

Observe that 𝑎E ∈ {1, 2, … ,15}. 
5. For 𝑗 = 1, 2, … , 𝑡, compute 

 𝐹E = G𝑐; ⊕ef H𝑐<
E 	mod	𝑝IM 	mod	𝑝. (3) 

6. For 𝑗 = 1, 2, … , 𝑡, compute the 𝑗th ciphertext block 𝐶E by 

 𝐶E = g
H𝑀E + 𝐹EI	mod	𝑝 if	𝐹E	is even,

𝑀E𝐹E	mod	𝑝 if	𝐹E	is odd.
  (4) 

7. The ciphertext is (𝑏;, 𝑏<, 𝐶;, 𝐶<, … , 𝐶=). 
2.2.3 Decryption algorithm 

In our scheme, the ciphertext (𝑏;, 𝑏<, 𝐶;, 𝐶<, … , 𝐶=)	can be decrypted by the 𝑖th recipient via 

the following steps: 

1. Compute 𝑐; and 𝑐< using the fact that 
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𝑐; = 𝑦-
@A	mod	𝑝	 = 𝑔23@A	mod	𝑝 = 𝑏;

23	mod	𝑝, 

𝑐< = 𝑦-
@B	mod	𝑝	 = 𝑔23@B	mod	𝑝 = 𝑏<

23	mod	𝑝. 

2. For 𝑗 = 1, 2, … , 𝑡, define 𝑎E as in (2). 

3. For 𝑗 = 1, 2, … , 𝑡, compute 𝐹E as in (3). 

4. For 𝑗 = 1, 2, … , 𝑡, compute 

 𝑀E = g
H𝐶E − 𝐹EI	mod	𝑝 if	𝐹E	is even,

H𝐶E𝐹EN;I	mod	𝑝 if	𝐹E	is odd.
 (5) 

5. Convert all blocks 𝑀E into blocks of letters and combine them to form the message. 

One major advantage of our scheme is that every block of ciphertext can be decrypted regardless 

of the multiplicative invertibility of 𝐹E.  To be precise, if 𝐹E is odd, then 𝐹EN; modulo 𝑝 always exists and so 𝑀E 

can be obtained. On the other hand, if 𝐹E = 0, then both 𝑀E and 𝐶E are identical. 
 

3. RESULTS 

In this section, we will prove some number- theoretic results which are essential to the determination of 

the period length of the coefficients for encryption, and then illustrate some examples of encryption and decryption 

using our scheme. 

Theorem 1. For 𝑐;, 𝑐< ∈ ℕ, let 𝑚 = iAiB
jkl	(iAB,iB)

. Then 𝑚 is the smallest positive integer such that 𝑐; ∣ 𝑚 and 

𝑐< ∣ 𝑐;𝑚. 

Proof.  Since 𝑚 = iAiB
jkl	(iAB,iB)

 and gcd(𝑐;<, 𝑐<) ∣ 𝑐< , we have 
iB

jkl	(iAB,iB)
∈ ℕ and so 𝑐; ∣ 𝑚.  Moreover, since 

𝑐;𝑚 = iABiB
jkl	(iAB,iB)

 and gcd(𝑐;<, 𝑐<) ∣ 𝑐;<, we have 
iAB

jkl	(iAB,iB)
∈ ℕ and so 𝑐< ∣ 𝑐;𝑚. 

Let 𝑛 ∈ ℕ such that 𝑐; ∣ 𝑛 and 𝑐< ∣ 𝑐;𝑛.  Then 𝑛 = 𝑐;𝑘 for some 𝑘 ∈ ℕ and so 𝑐;𝑛 = 𝑐;<𝑘.  Since 

𝑐< ∣ 𝑐;𝑛, we have 𝑐;𝑛 = 𝑐<𝑘′ for some 𝑘′ ∈ ℕ. Hence, 

 𝑐;<𝑘 = 𝑐<𝑘′. (6) 

Let 𝑑 = gcd	(𝑐;<, 𝑐<).  Then 𝑐;< = 𝑑𝐴 and 𝑐< = 𝑑𝐵 for some 𝐴, 𝐵 ∈ ℕ with gcd(𝐴, 𝐵) = 1.  From ( 6) , we 

have 
𝑑𝐴𝑘 = 𝑑𝐵𝑘′
𝐴𝑘 = 𝐵𝑘′,  

that is, 𝐵 ∣ 𝐴𝑘. Since gcd(𝐴, 𝐵) = 1, it follows that 𝐵	|	𝑘. Thus 𝑘 = 𝑘′′𝐵 for some 𝑘′′ ∈ ℕ. This implies that 

𝑛 = 𝑐;𝑘 = 𝑐;(𝑘′′𝐵) = 𝑘′′ K
𝑐;𝑐<
𝑑 L = 𝑘′′O

𝑐;𝑐<
gcd(𝑐;<, 𝑐<)

P = 𝑘′′𝑚, 

and so 𝑚	|	𝑛. Thus 𝑚 is the smallest positive integer such that 𝑐; ∣ 𝑚 and 𝑐< ∣ 𝑐;𝑚. q 
 

Theorem 2. For 𝑏, 𝑐;, 𝑐<, 𝑗 ∈ ℕ, let   

𝑎E = KH(𝑐< + 𝑗)	mod	𝑐;I + H(𝑐;𝑗)	mod	𝑐<IL 	mod	𝑏 

and	𝑚 = iAiB
jkl	(iAB,iB)

. Then 𝑎E = 𝑎Est for all 𝑗 ∈ ℕ. In other words, the period length of the sequence u𝑎EvEZ;
∞

 

is a factor of 𝑚. 

Proof. For all 𝑗 ∈ ℕ, we have 
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𝑎Est = GKH𝑐< + (𝑗 + 𝑚)I	mod	𝑐;L + KH𝑐;(𝑗 + 𝑚)I	mod	𝑐<LM 	mod	𝑏. 

By Theorem 1, we have 𝑐; ∣ 𝑚 and 𝑐< ∣ 𝑐;𝑚. Hence, 

 𝑎Est = KH(𝑐< + 𝑗)	mod	𝑐;I + H(𝑐;𝑗)	mod	𝑐<IL 	mod	𝑏 = 𝑎E. q 
 

The next examples illustrate how encryption and decryption is done using our scheme. 

Example 1.  To encrypt the message “ PASSWORD_IS_AB01”  using our scheme with public key (𝑝, 𝑔, 𝑦;) =
(16487, 5, 14216), the sender must first choose session keys 𝑟;,	𝑟<. Here, we suppose that 𝑟; = 11237 and 

𝑟< = 8600. 

Suppose that the sender splits the message into eight blocks of two letters and uses the American Standard 

Code for Information Interchange ( ASCII)  table ( Weiman, 2012)  for conversion.  Then 𝑀;,𝑀<,… ,𝑀a can be 

computed as shown in Table 2. 
 

Table 2 Conversion of blocks of plaintext into integers 

𝑗 Letter ASCII code 𝑀E 

1 “PA” (80, 65) 80(128) + 65 = 10305 

2 “SS” (83, 83) 83(128) + 83 = 10707 

3 “WO” (87, 79) 87(128) + 79 = 11215 

4 “RD” (82, 68) 82(128) + 68 = 10564 

5 “_I” (95, 73) 95(128) + 73 = 12233 

6 “S_” (83, 95) 83(128) + 95 = 10719 

7 “AB” (65, 66) 65(128) + 66 = 8386 

8 “01” (48, 49) 48(128) + 49 = 6193 
 

Next, the sender calculates 

𝑏; = 𝑔@A	mod	𝑝 = 434, 𝑏< = 𝑔@B	mod	𝑝 = 6453,

𝑐; = 𝑦;
@A	mod	𝑝 = 3251, 𝑐< = 𝑦;

@B	mod	𝑝 = 10298.
 

For 𝑗 = 1, 2, … , 8, the sender computes 𝑎E,	𝐹E, and 𝐶E using ( 2) , ( 3) , and ( 4) , respectively, as shown in Table 3. 

Thus, the ciphertext is (434, 6453, 16458, 6684, 7860, 13812, 7143, 15933, 12493, 3563). 
 

Table 3 Encryption of 𝑀;,𝑀<,… ,𝑀a using our scheme 

𝑗 𝑀E 𝑎E 𝐹E 𝐶E 
1 10305	 3 3251 16458 
2 10707	 15 8191 6684 
3 11215	 12 13132 7860 
4 10564	 1 3248 13812 
5 12233	 13 15311 7143 
6 10719	 10 5214 15933 
7 8386	 14 8013 12493 
8 6193	 11 3323 3563 

 

Example 2. To decrypt the ciphertext  

(434, 6453, 16458, 6684, 7860, 13812, 7143, 15933, 12493, 3563) 
obtained from Example 1 using our scheme, the recipient first computes 𝑐; and 𝑐< using 𝑏;,	𝑏< obtained from the 

ciphertext and his private key, say, 𝑑;. Here, one can verify that 𝑑; = 9253 and 
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𝑐; = 𝑏;
2A	mod	𝑝 = 3251,			𝑐< = 𝑏<

2A	mod	𝑝 = 10298. 
For 𝑗 = 1, 2, … , 8, the recipient computes 𝑎E, 𝐹E, and 𝑀E using ( 2) , ( 3) , and (5) , respectively, as shown in Table 

4.  Converting each 𝑀E to base 128 and using the ASCII table ( Weiman, 2012) , the recipient obtains blocks of 

decrypted message as in Table 5. Thus, the message “PASSWORD_IS_AB01” is recovered.  
 

Table 4 Decryption of 𝐶;, 𝐶<, … , 𝐶a using our scheme 

𝑗 𝐶E 𝑎E 𝐹E 𝑀E 

1 16458 3 3251 10305 
2 6684 15 8191 10707 
3 7860 12 13132 11215 
4 13812 1 3248 10564 
5 7143 13 15311 12233 
6 15933 10 5214 10719 
7 12493 14 8013 8386 
8 3563 11 3323 6193 

 

Table 5 Conversion integers into blocks of plaintext 

𝑗 𝑀E ASCII code Letters 

1 10305 (80, 65) “PA” 
2 10707 (83, 83) “SS” 
3 11215 (87, 79) “WO” 
4 10564 (82, 68) “RD” 
5 12233 (95, 73) “_I” 
6 10719 (83, 95) “S_” 
7 8386 (65, 66) “AB” 
8 6193 (48, 49) “01” 

 

4. DISCUSSION 

4.1 The period length of coefficients for encryption 

For the scheme of Wang et al. (2006), recall from (1) that the 𝑗th coefficient for encryption is defined by  

𝐹E = GH𝑦-
@A	mod	𝑝I⊕ KH𝑦-

@BIE	mod	𝑝LM 	mod	𝑝. 

It is obvious that the period of the sequence u𝐹EvEZ;
∞

 is equal to the order of 𝑦-
@B modulo 𝑝, that is, the smallest 

positive integer 𝑘 such that H𝑦-
@BIT ≡ 1	mod	𝑝 ( Burton, 2007) .  Since 𝑦-

@B ≡ 𝑔23@B	(mod	𝑝) where 𝑔 is a 

primitive root modulo 𝑝, it follows from elementary number theory that such order equals 
~N;

jkl	(23@B,~N;)
 (Burton, 

2007) .  This implies that the sequence u𝐹EvEZ;
∞

 cannot generate all elements in {1, 2, … , 𝑝 − 1}  unless 

gcd(𝑑-𝑟<, 𝑝 − 1) = 1.  In fact, there are only 𝜙(𝑝 − 1) elements in {1, 2, … , 𝑝 − 1} which can be chosen 

as 𝑟< and 𝑑- in order to make gcd(𝑑-𝑟<, 𝑝 − 1) = 1, where 𝜙 ∶ 	ℕ → ℕ is the Euler’ s phi- function ( Burton, 

2007). 

In contrast, recall from (2) and (3) that the 𝑗th coefficient for encryption of our scheme is  

𝐹E = G𝑐; ⊕ef H𝑐<
E 	mod	𝑝IM 	mod	𝑝, 
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where  

𝑎E = KH(𝑐< + 𝑗)	mod	𝑐;I + H(𝑐;𝑗)	mod	𝑐<IL 	mod	15 + 1 

with 𝑐; = 𝑦-
@A	mod	𝑝 and 𝑐< = 𝑦-

@B	mod	𝑝. It is easy to see that the period length of the sequence u𝐹EvEZ;
∞

 is 

now equal to lcm K ~N;
jkl(23@B,~N;)

,𝑚L, where 𝑚 is the period length of the sequence u𝑎EvEZ;
∞

. By Theorem 2, we 

know that 𝑚 = iAiB
jkl	(iAB,iB)

 is the best- case scenario.  Thus, the sequence of the coefficients for encryption of our 

scheme can have larger period length than that of the scheme of Wang et al. (2006). 

4.2 A ciphertext-only attack 

A ciphertext- only attack is an attack where an opponent possesses only the encryption algorithm and a 

ciphertext ( Stallings, 2011) .  Chang et al.  ( 2012)  analyzed the scheme of Wang et al.  ( 2006)  using the following 

theorem on the Legendre symbol. 

Theorem 3 ( Chang et al. , 2012) .  There exists a prime number 𝑝 which satisfies the following conditions for all 

𝑎, 𝑏 ∈ {1, 2, … , 𝑝 − 1}: 

1. If Ke
~
L K�

~
L = 1, then (𝑎 ⊕ 𝑏)	mod	𝑝 is either zero or a quadratic non-residue of 𝑝. 

2. If Ke
~
L K�

~
L = −1, then (𝑎 ⊕ 𝑏)	mod	𝑝 is either zero or a quadratic residue of 𝑝. 

Since the key (𝑝, 𝑔, 𝑦-) is publicly known, an opponent can find K�
~
L and K�3

~
L. Moreover, the opponent 

can see 𝑏;  and 𝑏<  from the ciphertext and then find K�A
~
L  and K�B

~
L.  Since 𝑏; = 𝑔@A	mod	𝑝  and 𝑏< =

𝑔@B	mod	𝑝, the opponent can also determine the parity of the session keys 𝑟;  and 𝑟< , which will lead to 

successful determination of G
�3
�A	��l	~

~
M and G

�3
�B	��l	~

~
M. 

In the scheme of Wang et al. (2006), if 𝑝 satisfies Theorem 3, then the opponent can find K�f
~
L for all 𝑗 =

1, 2, … , 𝑡, where 𝐹E is defined as in (1), that is, 

𝐹E = GH𝑦-
@A	mod	𝑝I⊕ KH𝑦-

@BIE	mod	𝑝LM 	mod	𝑝. 

Recall that 𝐶E = 𝑀E𝐹E.  Since the opponent knows 𝐶E for all 𝑗 = 1, 2, … , 𝑡, each K�f

~
L can be found using the 

multiplicative property of the Legendre symbol (Burton, 2007), that is, 

G
𝐶E
𝑝 M = G

𝑀E

𝑝 M G
𝐹E
𝑝 M. 

In our scheme, however, even when the public key and the ciphertext are known, the opponent still 

cannot determine K�f

~
L. This is because we use two operations, namely, addition and multiplication, for encryption 

(see (4)) and the opponent does not know which operation is used when each block of plaintext is encrypted. 

4.3 A known-plaintext attack 

A known-plaintext attack is an attack where an opponent possesses one or more plaintext-ciphertext pairs 

in addition to the encryption algorithm and the ciphertext ( Stallings, 2011) .  Apart from the public key (𝑝, 𝑔, 𝑦-), 
now we suppose that the opponent knows the ciphertext (𝑏;, 𝑏<, 𝐶;, 𝐶<, … , 𝐶=) and two blocks of plaintext, 

say, 𝑀t and 𝑀Y for some 𝑚, 𝑛 ∈ {1, 2, … , 𝑡}	with 𝑚 ≠ 𝑛. 

For 𝑗 = 1, 2, … , 𝑡, recall that the 𝑗th block of ciphertext in the scheme of Wang et al. (2006) is 
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𝐶E = 𝑀E GH𝑦-
@A	mod	𝑝I ⊕ KH𝑦-

@BIE	mod	𝑝LM 	mod	𝑝

𝐶E𝑀E
N;	mod	𝑝 = GH𝑦-

@A	mod	𝑝I⊕ KH𝑦-
@BIE	mod	𝑝LM 	mod	𝑝.

 

Since 0 ≤ H𝑦-
@A	mod	𝑝I ⊕ KH𝑦-

@BIE	mod	𝑝L ≤ 2𝑝, we have 

 𝐶E𝑀E
N;	mod	𝑝 = GH𝑦-

@A	mod	𝑝I ⊕ KH𝑦-
@BIE	mod	𝑝LM − 𝑘E𝑝 (7) 

where 

𝑘E = �
0 if	0 ≤ GH𝑦-

@A	mod	𝑝I⊕ KH𝑦-
@BIE	mod	𝑝LM < 𝑝,

1 if	𝑝 ≤ GH𝑦-
@A	mod	𝑝I⊕ KH𝑦-

@BIE	mod	𝑝LM < 2𝑝.
  (8) 

For 𝑗 = 𝑚, we have 

 H𝐶t𝑀t
N;	mod	𝑝I + 𝑘t𝑝 = H𝑦-

@A	mod	𝑝I ⊕ HH𝑦-
@BIt	mod	𝑝I. (9) 

Similarly, for 𝑗 = 𝑛, we have 

 H𝐶Y𝑀Y
N;	mod	𝑝I + 𝑘Y𝑝 = H𝑦-

@A	mod	𝑝I ⊕ HH𝑦-
@BIY	mod	𝑝I. (10) 

Computing the exclusive-or of (9) and (10), we have 

KH𝐶t𝑀t
N;	mod	𝑝I + 𝑘t𝑝L⊕ KH𝐶Y𝑀Y

N;	mod	𝑝I + 𝑘Y𝑝L

															= KH𝑦-
@A	mod	𝑝I ⊕ HH𝑦-

@BIt	mod	𝑝IL ⊕ KH𝑦-
@A	mod	𝑝I⊕ HH𝑦-

@BIY	mod	𝑝IL

															= HH𝑦-
@BIt	mod	𝑝I⊕ HH𝑦-

@BIY	mod	𝑝I.

 

Hence, we can change from solving Diffie-Hellman problem to solving the exclusive-or equation. 

Since the exclusive- or operation behaves somewhat similar to addition or subtraction, we can rewrite the 

exclusive- or operation of integers 𝑎 , 𝑏  as 𝑎⊕ 𝑏 = 𝑎 + 𝑏 − 2Ω(𝑎, 𝑏) for some Ω(𝑎, 𝑏) ∈ ℤ with 0 ≤
Ω(𝑎, 𝑏) ≤ min	(𝑎, 𝑏). In the scheme of Wang et al. (2006), if 𝑑-,	𝑟;, 𝑟< are not well selected, that is,   

HH𝑦-
@BIt	mod	𝑝I ⊕ HH𝑦-

@BIY	mod	𝑝I = HH𝑦-
@BIt	mod	𝑝I + HH𝑦-

@BIY	mod	𝑝I, 
then one can find 𝑦-

@B	mod	𝑝 by solving the equation 

 𝐴t,Y = HH𝑦-
@BIt	mod	𝑝I + HH𝑦-

@BIY	mod	𝑝I, (11) 

where  

𝐴t,Y = KH𝐶t𝑀t
N;mod	𝑝I + 𝑘t𝑝L⊕ KH𝐶Y𝑀Y

N;mod	𝑝I + 𝑘Y𝑝L 

and 𝑘t ,	𝑘Y are chosen from the set {0, 1}.  If ( 11)  has no solution, then we will choose new 𝑘t, 𝑘Y ∈ {0, 1} 
and try again. If (11) has no solution for all 𝑘t, 𝑘Y ∈ {0, 1}, then this implies that 

HH𝑦-
@BIt	mod	𝑝I ⊕ HH𝑦-

@BIY	mod	𝑝I ≠ HH𝑦-
@BIt	mod	𝑝I + HH𝑦-

@BIY	mod	𝑝I. 
However, if (11) has a solution, then we will obtain the value of 𝑦-

@B	mod	𝑝 and thus the value of 𝑦-
@A	mod	𝑝. In 

particular, if 𝑦-
@A	mod	𝑝 and 𝑦-

@B	mod	𝑝 satisfy (8) and (7), then they are likely to be used for encryption. 

In our scheme, however, even when the public key, the ciphertext, and the plaintext are known, the 

opponent still cannot find 𝑦-
@A	mod	𝑝 and 𝑦-

@B	mod	𝑝. Again, this is because we use addition, multiplication, and 

15 bitwise operations, namely, ⊕;,⊕<,… ,⊕;^ , for encryption.  The opponent also does not know which 

operation is used when each block of plaintext is encrypted. 
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5. CONCLUSIONS 

In this paper, we propose a modification of the cryptosystem developed by Wang et al.  ( 2006) .  Our 

methodology uses the periodic sequence {𝑎E}EZ;∞ , where 𝑎E is defined by 

𝑎E = (((𝑐< + 𝑗)	mod	𝑐; + (𝑐;𝑗)	mod	𝑐<)	mod	15) + 1, 
to select the bitwise operation ⊕ef for encrypting the 𝑗th block of plaintext.  The results show that the period 

length of the sequence {𝐹E}EZ;∞  of our scheme is equal to lcm K ~N;
jkl	(23@B,~N;)

,𝑚L, where 𝑚 is the period length 

of the sequence {𝑎E}EZ;∞ .  For the best- case scenario, we have 𝑚 = iAiB
jkl	(iAB,iB)

.  In contrast, the period length of 

{𝐹E}EZ;∞  provided by the scheme of Wang et al.  ( 2006)  is merely equal to 
~N;

jkl	(23@B,~N;)
.  Moreover, we find that 

our scheme can provide higher security against a ciphertext- only attack and a known- plaintext attack than the 

scheme of Wang et al. (2006). 
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