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ABSTRACT

Hwang et al. (2002) proposed an ElGamal-like cryptosystem which aimed to improve effectiveness of the
ElGamal cryptosystem for encrypting large messages, particularly in terms of computational complexity and the
storage of ciphertext. Later, Wang et al. (2006) proved that the ElGamal-like cryptosystem is less secure than the
ElGamal cryptosystem, and then proposed an improved version to increase the security. In this paper, we improve
the scheme of Wang et al. (2006) by using different bitwise operations, which are assigned according to a certain
periodic sequence, while encrypting different blocks of plaintext. The results show that our scheme can provide
larger period length of the coefficients for encryption and more resistance to a ciphertext-only attack and a known-

plaintext attack than the scheme of Wang et al. (2006).

Addny: SruusERULUUNaIEsSaNe aviuduau ssuusiaduidaniuealan

Keywords: Public-key cryptosystem, Periodic sequence, ElGamal-like cryptosystem



168 KKU Science Journal Volume 47 Number 1 Research

1. INTRODUCTION

The concept of public-key cryptosystem was first introduced by Diffie and Hellman (1976), whose scheme,
later known as Diffie-Hellman key exchange method, is based on discrete logarithm problem. ElGamal (1985)
proposed another public-key cryptosystem, later known as the ElGamal cryptosystem, which is one of many
effective public-key cryptosystems used in practice nowadays. Its security still relies on the difficulty of solving
discrete logarithm problem. However, when the ElGamal cryptosystem is used to encrypt large message, its security
will decrease, for using the same parameters to encrypt different plaintext makes the cipher vulnerable to a known-
plaintext attack (Hwang et al., 2002). Moreover, sending a message using the ElGamal cryptosystem has drawbacks
in terms of bandwidth because the length of ciphertext is twice as long as the length the plaintext (Wang et al.,
2006).

Hwang et al. (2002) proposed an ElGamal- like cryptosystem for encrypting large messages by dividing a
message into several blocks. Their proposed cryptosystem sets only two default parameters and other parameters
are calculated from both parameters. Nevertheless, Wang et al. (2006) showed that the ElGamal-like cryptosystem
is not as secure as the ElGamal cryptosystem since its default parameters cannot generate all the possible
parameters. In particular, the period of the function for calculating parameters is less than p — 1, where p is a
prime used as the modulus in the scheme. Wang et al. (2006) then improved the ElGamal-like cryptosystem in
order to increase the period of the function for calculating parameters and to decrease probability of fail case for
the decryption. Chang et al. (2012) proved that the scheme of Wang et al. (2006) can be attacked by a chosen-
plaintext attack, and then a new scheme was proposed.

In this paper, we will improve the scheme of Wang et al. (2006) in order to increase the period length of
the coefficients for encryption, which will provide higher security against a ciphertext-only attack and a known-
plaintext attack. Our method relies on the use of different bitwise operations, which are assigned according to a

certain periodic sequence, while encrypting different blocks of plaintext.

2. RESEARCH METHODOLOGY
2.1 The cryptosystem of Wang et al. (2006)
We shall first give an overview of the cryptosystem of Wang et al. (2006), which consists of three main
parts, namely, key generation, encryption algorithm, and decryption algorithm.
2.1.1 Key generation
The scheme of Wang et al. (2006) generates all private keys and public keys in a similar way to
the ElGamal cryptosystem (ElGamal, 1985). The key generation consists of the following steps:
1. Choose a prime number p and a primitive root g modulo p.
2. Suppose that there are 1 recipients. For i = 1,2, ..., n, the i" recipient choose a private key
d,€f{1,2,..,p—1}.
3.Fori=1,2,..,n compute y;, = g% modp.
4. The public key of the i"" recipient is (p, g,¥,) and the corresponding private key is d;.



MUY MIEATINGNFNERNS 1Y, VN 47 Laua 1 169

2.1.2 Encryption algorithm
To send an encrypted message to the i" recipient using the scheme of Wang et al. (2006), a sender
needs to complete the following steps:
1. Divide a large message into t blocks of equal length. Then convert each block into its
corresponding integer value, say, M1, M, ..., M.
2. Choose session keys 71,75 € {1,2, ..., p — 1} and compute
by = g"*modp,
b, = g2 modp.
3. Forj =1,2,...,t, compute the j" ciphertext block Cj by
C; = M;F; mod p,

where

F; = ((yl.r1 mod p) ((y:Z)j mod p)) mod p (1)

and € is the bitwise exclusive-or of two integers. We call Fq, F, ..., F¢ the coefficients for encryption.

4. The ciphertext is (b1, by, C1, C5, ..., Cy).

2.1.3 Decryption algorithm

Once the ciphertext (bq, by, C1, C5, ..., C;) encrypted using the scheme of Wang et al. (2006) is
received, the i recipient can decrypt it by computing
M; = Cij_l mod p,
where Fj_l is the multiplicative inverse of F; modulo p for all j = 1,2, ...,t. Note that the i"" recipient can

compute Fj without any knowledge of the session keys 11, 'y set by the sender, for
j
F; = <(y:1 mod p) @ ((ylrz) mod p)) mod p
= ((gdirl mod p) ® ((g%"2)’ mod P)) mod p

- <(bfi mod p) @ ((b5)’ mod p)> mod p.

Then the " recipient converts M1, M5, ..., M into blocks of letters and combine them to recover the message.
Unfortunately, the coefficients for encryption Fj defined by (1) may not be invertible modulo p
for some j = 1,2, ..., t. This is one of major drawbacks to be mended in our proposed scheme.
2.2 Our modification
Our modification to the scheme of Wang et al. (2006) consists of the following three main steps:
1. Create a number of different bitwise operations to be used for encrypting different blocks of plaintext.
2. Modify the existing encryption algorithm proposed by Wang et al. (2006) so that using different bitwise
operations for encrypting different blocks is allowed.
3. Derive the decryption algorithm associated to our modified encryption algorithm.
2.2.1 Defining bitwise operations
Fork =0,1,2,...,15, we define a bitwise operation @} as shown in Table 1. In addition, for
all a, b € N U {0}, we define
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n-1

a®, b= Z(ai @, b2,
i=0

where (,_10p_3 --A109)7 and (by_1by_5 ...b1bg), are the binary expansions of @ and b, respectively,

padded with zero if necessary to make their length equal.

Table 1 Bitwise operations @y fork = 0,1, 2, ..., 15

a b ayb a@,b aé, b aP;b a@,b asb aeb a®-,b
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1
a b a®gh a®ob a®ib a1 b a®i; b a®izb a®iab a®isb
0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

Next, we will describe our encryption and decryption algorithms, where all private keys and public keys
are generated in a similar way as in the scheme of Wang et al. (2006).
2.2.2 Encryption algorithm
In our modified cryptosystem, a sender can send an encrypted message to the i recipient, whose
public key is (p, g,¥;), via the following steps:
1. Divide a message into t blocks of equal length. Then convert each block into its corresponding
integer value, say, M1, M, ..., M;.
2. Choose session keys 71,75 € {1,2, ..., p — 1} and compute
by = g"modp,
b, = g2 modp.
3. Letc; =y, modpand ¢, = y;* mod p.

4.Forj=1,2,..,t let

a; = ((((02 + j) mod cl) + ((clj) mod cz)) mod 15) + 1 )
Observe that a; € {1,2,...,15}.
5.Forj=1,2,..,t, compute

F;= (cl EBaj (cé mod p)) mod p. (3)
6. For j = 1,2, ..., t, compute the j" ciphertext block Cj by
{(Mj +F;)modp ifFjiseven,
M;F; mod p if Fj is odd.
7. The ciphertext is (bq, b, C1, Co, ..., C¢).

J

2.2.3 Decryption algorithm
In our scheme, the ciphertext (by, b3, Cq, C, ..., C¢) can be decrypted by the i recipient via
the following steps:

1. Compute ¢4 and €, using the fact that
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¢ =y, 'modp = g% modp = b% mod p,
c; =y ’modp = g%"2modp = b3 mod p.
2.Forj=1,2,..,t, define a; as in (2).
3.Forj=1,2,...,t, compute Fj as in (3).
4. Forj =1,2,..,t, compute
(Cj — Fj) mod p if Fjis even,
{ (C;F; ) modp it Fjisodd.

5. Convert all blocks Mj into blocks of letters and combine them to form the message.

One major advantage of our scheme is that every block of ciphertext can be decrypted regardless
of the multiplicative invertibility of F;. To be precise, if Fj is odd, then Fj_l modulo p always exists and so M;
can be obtained. On the other hand, if Fj = 0, then both Mj and Cj are identical.

3. RESULTS

In this section, we will prove some number-theoretic results which are essential to the determination of
the period length of the coefficients for encryption, and then illustrate some examples of encryption and decryption

using our scheme.
C1C2

Theorem 1. For ¢1,¢5 EN, let m = m

Then m is the smallest positive integer such that ¢, | m and

c, |l cgm.
C1C2

2
ged (2,cz) and ged(ct, ¢2) | ¢, we have

2

Proof. Since m = € N and so ¢; | m. Moreover, since

C2
gcd (c%,cz)
__ co 2 2 c1
cem = m and ng(Cl' CZ) | ci, we have m

Let n € N such that ¢; | mand ¢, | ¢;n. Then n = ¢,k for some k € N and so c;n = c?k. Since

€ Nandsocy | cym.

¢y | ¢1m, we have ¢;n = ¢,k for some k € N. Hence,
2k = c,k. (6)
Let d = ged (¢?,¢;). Then ¢ = dA and ¢, = dB for some A, B € N with gcd(4,B) = 1. From (6), we

have

dAk = dBk
Ak = Bk,
thatis, B | Ak. Since gcd(4, B) = 1, it follows that B | k. Thus k = k’B for some k” € N. This implies that

k=c,(kB) = k (—Clcz) o —22 )k

n == C = C ” = " = ” = ”m’

! ! d ng(C%' CZ)

and so m | n. Thus m is the smallest positive integer such that ¢; | mand ¢, | c;m. Q

Theorem 2. For b,c4,C,] € N, let

a; = (((c2 + j) mod cl) + ((clj) mod cz)) mod b
G = q. i ‘ 1
gcd (o) Then @j = QAjm forall ] € N. In other words, the period length of the sequence {a]}j=1

is a factor of m.

andm =

Proof. For all j € N, we have
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Ajpm = (((cz +(+ m)) mod cl) + ((cl(j + m)) mod Cz)) mod b.

By Theorem 1, we have ¢; | mand ¢, | ¢;m. Hence,

Ajim = (((c2 + j) mod ¢; ) + ((c1j) mod cz)) mod b = a;. Q

The next examples illustrate how encryption and decryption is done using our scheme.
Example 1. To encrypt the message “PASSWORD IS ABO1” using our scheme with public key (p, g, yl) =
(16487,5,14216), the sender must first choose session keys 1y, T'y. Here, we suppose that 7y = 11237 and
r, = 8600.

Suppose that the sender splits the message into eight blocks of two letters and uses the American Standard
Code for Information Interchange (ASCI) table (Weiman, 2012) for conversion. Then My, M, ..., Mg can be

computed as shown in Table 2.

Table 2 Conversion of blocks of plaintext into integers

j Letter ASCIl code M;

1 “PA” (80, 65) 80(128) + 65 = 10305
2 “SS” (83,83) 83(128) + 83 = 10707
3 “WO” (87,79) 87(128) + 79 = 11215
4 “RD” (82,68) 82(128) + 68 = 10564
5 “” (95,73) 95(128) + 73 = 12233
6 “s 7 (83,95) 83(128) + 95 = 10719
7 “AB” (65,66) 65(128) + 66 = 8386
8 “01” (48,49) 48(128) + 49 = 6193

Next, the sender calculates
b; =g"*modp =434, b, = g"2 modp = 6453,
c; =y, modp =3251, ¢, =y;> modp = 10298.
Forj = 1,2,...,8, the sender computes a;, Fj, and Cj using (2), (3), and (4), respectively, as shown in Table 3.
Thus, the ciphertext is (434, 6453,16458,6684,7860,13812,7143,15933,12493,3563).

Table 3 Encryption of M4, M5, ..., Mg using our scheme

j M; a; F; G

1 10305 3 3251 16458
2 10707 15 8191 6684
3 11215 12 13132 7860
4 10564 1 3248 13812
5 12233 13 15311 7143
6 10719 10 5214 15933
7 8386 14 8013 12493
8 6193 11 3323 3563

Example 2. To decrypt the ciphertext
(434,6453,16458,6684,7860,13812,7143,15933,12493,3563)

obtained from Example 1 using our scheme, the recipient first computes ¢; and ¢, using by, b, obtained from the

ciphertext and his private key, say, d;. Here, one can verify that d; = 9253 and
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1= bfl mod p = 3251, ¢, = bgl mod p = 10298.
Forj = 1,2, ...,8, the recipient computes a;, Fj, and Mj using (2), (3), and (5), respectively, as shown in Table
4. Converting each M; to base 128 and using the ASCIl table (Weiman, 2012), the recipient obtains blocks of
decrypted message as in Table 5. Thus, the message “PASSWORD IS AB01” is recovered.

Table 4 Decryption of Cq, Cs, ..., Cg using our scheme

j C; a; F; M;

1 16458 3 3251 10305
2 6684 15 8191 10707
3 7860 12 13132 11215
4 13812 1 3248 10564
5 7143 13 15311 12233
6 15933 10 5214 10719
7 12493 14 8013 8386
8 3563 11 3323 6193

Table 5 Conversion integers into blocks of plaintext

j M; ASCIl code Letters
1 10305 (80, 65) “PA”
2 10707 (83,83) “ss”
3 11215 (87,79) “Wo”
4 10564 (82,68) “RD”
5 12233 (95,73) “
6 10719 (83,95) “s 7
7 8386 (65,66) “AB”
8 6193 (48,49) “01”
4. DISCUSSION

4.1 The period length of coefficients for encryption

For the scheme of Wang et al. (2006), recall from (1) that the jth coefficient for encryption is defined by

T T ]
F; = <(yi1 mod p) fan) ((in) mod p)) mod p.
It is obvious that the period of the sequence {Fj}j_l is equal to the order of y:z modulo P, that is, the smallest

positive integer K such that (y:z)k = 1 mod p (Burton, 2007). Since y:z = g%"2 (mod p) where g is a
__p71
ged (dirz,p—1)
2007) . This implies that the sequence {Fj};;l cannot generate all elements in {1, 2, v, D — 1} unless

primitive root modulo p, it follows from elementary number theory that such order equals (Burton,
ged(d;ry, p— 1) = 1. In fact, there are only ¢p(p — 1) elements in {1, 2, ..., p — 1} which can be chosen
as 1, and d; in order to make gcd(d;r,, p —1) = 1, where ¢ : N — N is the Euler’ s phi-function (Burton,
2007).

In contrast, recall from (2) and (3) that the jth coefficient for encryption of our scheme is

Fj= (cl @, (¢} mod p)) mod p,
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where

aj = (((c2 +j) mod ¢;) + ((cy)) mod cz)) mod 15+ 1
with ¢; = yir1 mod p and ¢, = y?z mod p. It is easy to see that the period length of the sequence {Fj};;l is

p—-1
ged(dirz,p-1)’
C1C2

gcd(cfcz)
scheme can have larger period length than that of the scheme of Wang et al. (2006).

now equal to lcm ( m), where m is the period length of the sequence {aj}j—l' By Theorem 2, we

know that m = is the best-case scenario. Thus, the sequence of the coefficients for encryption of our
4.2 A ciphertext-only attack
A ciphertext-only attack is an attack where an opponent possesses only the encryption algorithm and a
ciphertext (Stallings, 2011). Chang et al. (2012) analyzed the scheme of Wang et al. (2006) using the following
theorem on the Legendre symbol.
Theorem 3 (Chang et al., 2012). There exists a prime number P which satisfies the following condlitions for all
abe{l,2,..,p—1}
b
1 If (g) (;) =1, then (a @ b) mod p is either zero or a quadratic non-residue of p.
b
2. If (g) (;) = —1, then (a @ b) mod p is either zero or a quadratic residue of p.
Since the key (p, g, yi) is publicly known, an opponent can find (%) and (%) Moreover, the opponent

b b
can see by and b, from the ciphertext and then find (?1) and (?2) Since by = g"* mod p and b, =

g"? mod p, the opponent can also determine the parity of the session keys 7y and T, which will lead to
1 T2
y.  modp y.“modp
successful determination of (‘T) and (‘T)
Fj

In the scheme of Wang et al. (2006), if P satisfies Theorem 3, then the opponent can find (?) forall j =
1,2, ..., t, where Fj is defined as in (1), that is,
F; = ((y?l mod p) @ ((yirz)j mod p)) mod p.
Recall that C; = M;F;. Since the opponent knows Cj forall j = 1,2, ..., ¢, each (%) can be found using the
multiplicative property of the Legendre symbol (Burton, 2007), that is,
H-GIE)
p p/\p/

In our scheme, however, even when the public key and the ciphertext are known, the opponent still
cannot determine (%) This is because we use two operations, namely, addition and multiplication, for encryption
(see (4)) and the opponent does not know which operation is used when each block of plaintext is encrypted.

4.3 A known-plaintext attack

A known-plaintext attack is an attack where an opponent possesses one or more plaintext-ciphertext pairs
in addition to the encryption algorithm and the ciphertext (Stallings, 2011). Apart from the public key (p, g, yi)’
now we suppose that the opponent knows the ciphertext (b, by, Cq, C5, ..., Ct) and two blocks of plaintext,
say, M,,, and M,, for some m,n € {1, 2, ..., t} with m # n.

Forj = 1,2, ..., ¢t recall that the jth block of ciphertext in the scheme of Wang et al. (2006) is
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G =M ((yfl mod p) @ ((¥*)’ mod p)) mod p
C;M;y'modp = ((y:l mod p) @ ((y?z)j mod p)) mod p.
since 0 < (" mod p) @ ((y?z)j mod p) < 2p, we have
CiM;* modp = ((y?1 mod p) @ ((yirz)j mod p)) —kip (7)
where
0 70 ((} modp) ® () modp)) <p.

ki = .
1 ifp< ((y:l mod p) @ ((leZ)] mod p)) < 2p.

]

For j = m, we have

(CmMs; mod p) + kyyp = ()" mod p) @ ((yirz)m mod p). 9)
Similarly, for j = n, we have
(€M7 mod p) + knp = (y;* modp) ® ((yirz)n mod p). (10)

Computing the exclusive-or of (9) and (10), we have
((CmM,_n1 mod p) + kmp) @D ((CnMgl mod p) + knp)
r r\m r 2\
= (()’il mod p) @ ((y;?)" mod p)) @ ((yl.1 mod p) @ ((¥]?) mod p))
ro\Mm 2\
= ((yiz) mod p) @ ((yiz) mod p).
Hence, we can change from solving Diffie-Hellman problem to solving the exclusive-or equation.

Since the exclusive-or operation behaves somewhat similar to addition or subtraction, we can rewrite the
exclusive- or operation of integers @, b as a@ b =a+ b — 2Q(a, b) for some Q(a,b) € Z with 0 <
Q(a, b) < min (a, b). In the scheme of Wang et al. (2006), if d;, 71, T, are not well selected, that is,

r\m 2\ r\m 2\
()" modp) @ ((v;*) modp) = ((y;*)" modp) + ((¥;*)" modp),
then one can find y;z mod p by solving the equation

ro\m ronT
Apn = ((yiz) mod p) + ((yiz) mod p), (11)
where
Apn = ((CmM,_nlmod p) + kmp) &b ((CnMﬁlmod p) + knp)

and Kk, k,, are chosen from the set {0, 1}. If (11) has no solution, then we will choose new k,,, k,, € {0, 1}
and try again. If (11) has no solution for all k,y,, k,, € {0, 1}, then this implies that

r2\Mm 2\ ry\m o\
()" modp) @ ((v;*) modp) = ((y;*)" modp) + ((¥;*)" modp).
However, if (11) has a solution, then we will obtain the value of y?z mod p and thus the value of y;l mod p. In
particular, if yir1 mod p and y:z mod p satisfy (8) and (7), then they are likely to be used for encryption.

In our scheme, however, even when the public key, the ciphertext, and the plaintext are known, the
opponent still cannot find y:l mod p and y:z mod p. Again, this is because we use addition, multiplication, and
15 bitwise operations, namely, @1,B,, ...,@;5, for encryption. The opponent also does not know which

operation is used when each block of plaintext is encrypted.
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5. CONCLUSIONS
In this paper, we propose a modification of the cryptosystem developed by Wang et al. (2006). Our

methodology uses the periodic sequence {aj}?ﬂ, where @; is defined by
a; = (((cz +j) mod ¢; + (¢1j) mod c;) mod 15) + 1,
to select the bitwise operation @aj for encrypting the jth block of plaintext. The results show that the period
bt
ged (djr2p-1)°
C1C2
ged (c2,¢5)

length of the sequence {F;}j-; of our scheme is equal to lcm ( m), where m is the period length

of the sequence {aj};;l. For the best-case scenario, we have m = In contrast, the period length of
__pt
ged (dirz,p-1)
our scheme can provide higher security against a ciphertext-only attack and a known-plaintext attack than the

scheme of Wang et al. (2006).

{Fj};f;l provided by the scheme of Wang et al. (2006) is merely equal to Moreover, we find that
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