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บทคัดยอ 

หลุมดําในปริภูมิเวลาแอนไทเดอซิทเตอร ไดกลายเปนหัวขอวิจัยที่แพรหลาย เนื่องจากหลักการความสอดคลองกันระหวาง

ทฤษฎีสัมพัทธภาพทั่วไปในปริภูมิเวลาแอนไทเดอซิทเตอร กับ ทฤษฎีสนามคงรูป ที่ทําใหสามารถศึกษาระบบควอนตัมได โดยผาน

การศึกษาปริภูมิเวลาแอนไทดิซทิเตอรที่มีหลุมดํา งานวิจัยนี้เปนการศึกษาและคํานวณเชิงวิเคราะหหา ควอซีนอรมอลโหมด ซึ่งคือ คลื่น

สเกลารที่สอดคลองกับเงื่อนไขขอบเขตที่ขอบฟา กับ ที่ไกลจากหลุมดํา ผลการคํานวณของควอซีนอรมอลโหมดที่ไมมีมวล แสดงการลู

ออก ของคลื่นท่ีไกลจากหลุมดํา ซึ่งสามารถจํากัดออก ไดดวยเงื่อนไขขอบเขตดังกลาว ทําใหความถ่ีควอซีนอรมอล มีคาไมตอเนื่อง ผล

การคํานวณเชิงวิเคราะหกับผลการคํานวณเชิงตัวเลข นั่นสอดคลองกัน 
 

ABSTRACT 

The anti de Sitter black holes have recently become a popular research topic due to the correspondence 

between the theory of general relativity in the anti de Sitter spacetime and the conformal field theory, which gives 

us an opportunity to study a quantum system through a corresponding anti de Sitter ( AdS)  spacetime, containing 

black holes. In this work we study and analytically approximate the quasinormal modes of massless scalar wave in 

AdS spacetime, solutions to the wave equation, which satisfy the boundary conditions at the horizon and at distant 

region.  The massless scalar wave at distant region exhibits some divergence.  By choosing appropriate boundary 

conditions, not only the divergence is removed, but the qusinormal modes become polynomials their frequencies 

are discrete. Our analytical result is compared to the numerical result, which shows some similarity. 
 

คําสําคัญ: ควอซีนอรมอลโหมด  ความถี่ควอซีนอรมอล  หลุมดําแอนไทเดอซิทเตอร 

Keywords: Quasinormal mode, Quasinormal frequency, Anti de Sitter black hole,  
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INTRODUCTION 

Black holes are regions that the gravitational field is so strong that even light cannot escape. Theoretically, 

every mass has its own critical radius, in a simple case called Schwarzschild radius. When a mass is contracted into 

a region smaller than its Schwarzschild radius, the gravitational field is getting stronger until the escape velocity is 

equal to the speed of light at the Schwarzschild radius. Black holes have caused many contractions among physics 

principles.  For example ( Hawking, 2005) , the information loss paradox had been topics of argument for decades, 

until Hawking has accepted that the information of particles falling into the black holes might be not kept inside 

the black holes forever, but it has been released as radiation through quantum proceeds. The assumption used to 

solve this problem is the correspondence between quantum theory in the d dimensions and the general relativity 

in the d+1 dimensional anti de Sitter spacetime, AdS, whose cosmological constant is negative, (Maldacena, 1998). 

The correspondence implies that the general relativity in the d+1 dimensional AdS spacetime is equivalent to the 

d dimensional quantum theory on the boundary the AdS spacetime. The correspondence has been become topics 

of interest since it has been proposed in the 90’s. Many works on these topics have been studied to gain a better 

understanding of the nature of quantum gravity.  

The wave and particle behaviors in the AdS spacetime with black holes have been studied numerically in 

many works e.g. (Horowitz, et al., 2000; Cardoso, et al., 2003). For analytical work, a method, called monodromy, 

has been proposed (Motl, et al. , 2003) , which maps the variable, radius r, to be a complex variable, and takes 

certain contour paths as boundary conditions in order to solve for quasinormal frequencies of scalar field in 

Schwarzschild spacetime. Its approximated result is the same as those in the numerical work (Hod, S., 1998). The 

quasinormal modes and frequencies in the large AdS Schwarzschild black hole spacetime have been perturbatively 

calculated by monodromy method in many research e.g. , (Cardoso, et al. , 2004; Musiri, et al. , 2005) .  However, in 

the non-extremal cases and the massless scalar field in the AdS Schwarzschild spacetime, the monodromy method 

could not give the solutions as in (Siopsis, 2007), in which contrary with the numerical result in this model that has 

given the frequencies, (Cardoso, et al., 2003). Also there are some analytical solutions of a scalar field but only for 

an extremal de- Sitter Schwarzschild spacetime, e. g.  ( Cardoso, et al. , 2003) .  In this work, with no exploiting 

monodromy method and non- extremal black hole case, we analytically study the massless scalar field in the 4 

dimensional AdS Schwarzschild black hole spacetime by taking out the singularities and matching boundary 

conditions. Then we compare our result to the numerical from other research work. The difficulty of the massless 

problem is the divergence of the wave solution at the two boundaries, one at the black hole surface, called the 

horizon and the other boundary is the very far away from the black holes, ( Siopsis, 2007) .  The wave solutions, 

called the quasinormal modes, satisfy the two boundary conditions (Horowitz, et al., 2000), one is the only ingoing 

wave into the black hole at horizon, and the other one is ether the outgoing wave or a decaying wave at the very 

far away from the black hole depend on the potential in the regions. (in this case, decaying wave). The frequencies 

of the scalar wave are also called quasinormal frequencies.  We will show later in this work the finite scalar wave 

solutions and compare the frequencies to those from numerical work. 
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OBJECTIVES 

The correspondence between general relativity and quantum theory has allowed us to solve the problems 

by the relativity theory methods and then take the results to the quantum theory. In this work we solve the wave 

equation of the massless scalar wave under the influence of the Schwarzschild black in the 4 dimensional AdS 

spacetimes. However most of the problems in general relativity could not be solved exactly, and there are number 

of numerical calculation on these problems, possibly due to divergences from the analytic calculation of the 

massless paticle wave function at the horizon and at the far away zone.  Nevertheless, in this work we can obtain 

a finite massless wave solution and its frequencies.  The scalar wave in this curved spacetime has to satisfy two 

boundary conditions, (Horowitz, et al., 2000). The first condition is, only ingoing wave at the horizon falling into the 

black holes. The second is either only outgoing wave at the far away region from the black holes, or only decaying 

wave allowed if the potential at the far away zone is so great.  In this research, the potential far away from is 

diverged, and then we take the decaying scalar wave as the far away boundary condition.  The wave that satisfies 

these boundary conditions is called quasinormal modes and its frequencies, quasinormal frequencies.  The 

quasinormal modes and frequencies are discrete, due to the boundary conditions.  

In this paper has been arranged in the next section as the following 

Section Methods:  We start from the Lagrangian density in the anti de Sitter spacetime with a scalar wave. 

We write down the metric and Hawking temperature at the horzon and the wave equation of the massless scalar 

wave, which we will attempt to solve.  To simplify the problem we change variable from radius r to new variable 

defined by rrx /1 , where 1r  is the horizon radius of the black holes.  We separate the solution to the second 

order partial differential equation, and obtain the radial part of the separated solution needed solved next.  The 

differential equation of the radial scalar wave could not be exactly solved; therefore, we take the approximated 

ingoing wave solution at the horizon, as the hypergometric function. Then we expand the hypergeometric function 

to the far away zone and keep only the decaying wave in this region.  The two boundary conditions cause the 

solutions and frequencies discrete. 

Results:  We write down the quasinormal modes and their frequencies and compare them to a numerical 

result. 
 

RESEARCH METHODODOLOGY 

From (Gubser, 2008), the Lagrangian density ,  , of the Anti de sitter Schwarzschild spacetime with a scalar 

field   is  

  
222

2

6
 m

L
R        (1) 

R is the scalar curvature, L  is the anti de sitter radius, and m is the mass of the scalar field, however in 

our work we consider for the massless case, m= 0, in order to be able to compare our analytical results to the 

numerical results in ( Horowitz, et al. , 2000) .  From the Lagrangian density in eq( 1) , the metric of the AdS 

Schwarzschild black hole in the 4 dimensions is (Horowitz, et al., 2000) 

 2222222 sin
)(

1
)(  ddrdr

rf
dtrfds     (2) 
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where the function )(rf  is 

r

M

L

r
rf

2
1)(

2

2

      (3) 

L  is the Anti de Sitter radius which is defined from the negative cosmological constant (  ) ,  /3L   M is 

the black hole mass. The Hawking Temperature is calculated by (Uchikata, el at, 2011) 
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There are three solutions of 0)( rf  in eq(2), which are called 1r , 2r  and 3r .  One can choose one of 

the solution 1r  to be positive real number, called the horizon, and the rest two solutions are complex number. 

Because we interest only the behavior of the scalar wave outside the black holes,  rr1  , it is convenient 

to define a new variable and parameters  
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The range of x  is 

10  x      (6) 

The function )(rf  can be changed to be a function of x as 
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From eq(7) one can fine the relation equations of the solutions of )(rf  as 
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There are also three solutions to eq(8) from eq(5) 11 x  or 
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and the others two solutions are 
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and the relation between 1x , 2x , 3x  and parameters 1r  and M  are  
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The wave equation of the scalar field can be obtained from the Lagrangian density eq(1), as 

0 
       (12) 

To solve eq(12) one can separate the variables ),,,( rt  as  
)(),(),,,( rYert lm

ti         (13) 

 is the frequency of the scalar field, ),( imY  is the harmonic function and ( r)  is the radial part function of 

the scalar field in which will be investigated.  After substitute  eq( 13)  into the wave equation eq( 12) , one can 

obtain the differential equation of the function(r) as 
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)(rV  can be consider as an effective potential, where for large r ,  )(rV , V  is diverged, which 

means that the scalar   has to decay in the far away region.  

 (r) 0      (16) 

The anther boundary condition is the only ingoing wave at the horizon ( 1rr   or 11 x ). The boundary 

condition can be considered as following. Start from defining a new variable  
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One can perform the integration in eq(17) and would obtain the result as 
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Then the wave equation eq(14) would change to 
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At the horizon, 11 x  or 1rr  , 0)( 1  rrV , therefore solution to eq(19) can be approximated to 
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The only ingoing to the horizon corresponds to the negative sign of the parameter 1 in eq(21.1), however 

there are choices of the signs () for the parameter 2 and  3 in eq(21.2) and eq(21.3) 
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To simplify the problem let change the variable radius r to x in the wave equation eq( 14)  and rearrange 

the equation to 
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At the far way region r , or x , there are two independent solutions which are proportional to 
12    ,)0(  xxx . However from the behavior of the function (x) in eq(15) and eq(16) has to vanish in 

this region. Therefore, the only solution that survives in this zone is 
2)0( xx  +….      (23) 

To solve eq(22), one reduce the problem by assuming the solution as  
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where  
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After we have taken out the singularities at 1x , 2xx  , 3xx  , and 0x  from eq(24). Now we can 

approximate the solution at the horizon, 1x , where only going wave equation is allowed. Near x=1 the solution 

can be approximated as, where we change the variable x  to  

xy 1        (26) 
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Where 0y  at the horizon. Therefore near the horizon eq(25) would be approximated to 
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where )1)(1( 321 xxa   

Eq(27) is actually the hypergeometric functions, (Abramowitz, et al., 1972), which is of the form 
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For our case the parameters a , b and c  are 
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At the horizon we approximate the solution as the hypergeometric function 
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From the property of the hypergeometric functions, (Abramowitz, et al. ,1972), which expand the function 

between two regions at the horizon 0y  and at the far away region 01  yx .  At the horizon we 

approximate the solution as the hypergeometric function 
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where )(a  is the Gamma function and )(a  is the Digamma function, (Abramowitz, et al., 1972) 
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From eq(32) )(x  in the far away region is proportional to 

........)()1()( 212 1 xxxKxxx  
 

where the lowest power of x  in the first term in eq(32)  is 1x  while the lowest power of x  in the second term 

in eq(32) is 2x . From the behavior of the function 2)0( xx  , eq(23), then one needs to eliminate the first 

term in eq(32) by setting 

na       (34) 

where ,...3,2,1,0n  , which makes the Gamma function  )( n  diverge. However there are two terms 

in the second of eq(32) also diverged, one in the denominator and the other one in the dominator 

)3()3(  na     (35) 
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The summation inside )( jn  diverges when 

1 jnk      (37) 

Actually the second term in eq(32) is finite, which can be calculated by the L’Hospital’s rule method 
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Our analytical solution of the scalar wave, quasinormal modes, is approximated as 

),4,,()()()() ( 12321

2 321 xbnFxxxxxxxx  
 (39) 

The function );4;,(12 xbnF   is therefore a polynomial degree n. Finally from eq(34) and eq(30) , one 

can calculate the frequency  , i.e., 
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1s , 2s , and 3s  are the signs of the frequencies, 1 , 2  and 3  respectively, where 1s  has to be 

negative sign due to the boundary condition at the horizon, only the going wave travelling into the black hole, 

while 2s , and 3s  still have choices either to be positive or negative. 
 

RESULTS 

To compare the frequencies we parameterize the quantity Lrr /11   and 

)/2/()/(2/ 233

1

23

1 LMLrMLr   to be dimensionless numbers. In Table 1, the numerical results, (Cardoso, 
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et al. , 2003) , for the case 1/1 Lr  and 0l .  There are many choices of signs, 1s , 2s , and 3s , which give 

different results. The closest analytical result to the numerical frequency has the signs to be 11 s , 12 s , and 

13 s , therefore we choose those signs in the comparison as the following.  

Table 1 Comparison the frequencies between the numerical work ( Cardoso, et al. , 2003)  and our analytical 

results 

n The Numerical Results () n The Analytical Results () 

0 2.7982-2.6712i 0 

1 

1.78154-2.5573i 

3.2374-4.11876i 

1 4.79849-5.03757i 

 

2 

3 

4.56443-5.60847i 

5.84587-7.07548i 

2 6.71927-7.39449i 4 7.10558-8.53208i 

3 8.46153-9.74852i 

 

5 

6 

8.35316-9.98299i 

9.59327-11.4304i 

4 10.6467-12.1012i 7 10.8284-12.8756i 

5 12.6121-14.4533i 

 

8 

9 

12.0602-14.31921i 

13.2894-15.7616i 

6 14.5782-16.8049i 

 

10 

11 

14.5168-17.2032i 

15.7428-18.6442i 

7 

8 

 

9 

 

10 

16.5449-19.1562i 

18.5119-21.5073i 

 

20.4792-23.8583i 

 

22.44671-26.20913i 

12 

13 

14 

15 

16 

17 

16.9676-20.0846i 

18.1916-21.5246i 

19.4148-22.9643i 

20.6374-24.4038i 

21.8595-25.843i 

23.0812-27.282i 
 

The pattern of both results has some similarities, but only the n number different.  The frequencies are 

proportional to the number n, when n is large. Both results can be represent in graph as 

Imaginary ( ) 

 
Real( )  

Figure 1 show the plot of the frequencies with 1/1 Lr  and 0l .  The horizontal axis represents the real 

part of frequency, while the vertical axis represents the imaginary part of frequency.  The symbol   

represents the numerical frequencies and the symbol 0 represents our analytical results. 
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From Table 1 and Figure 1, one would notice that the analytical results have more modes than the 

numerical works do.  The reason might be that in our analytical works we have more boundary conditions at the 

outer and inner horizons, 1xx  , 2xx   and 3xx   to satisfy than in the numerical works which only considers 

at the ingoing wave at the outer horizon, 1xx  .  Also in the zero mode ( 0n  )  there is some discrepancy 

differences between the analytical and the numerical frequencies. These might be due to the differential equation 

eq(25)  can not been analytically exactly solved.  Therefore, we approximate its solutions near the horizon and at 

far distant regions and, then match them together by the use of the hypergeometric function properties.  These 

approximations would make the results not exactly in agreement with the numerical results.  If there are some 

frequency differences, it should be either at small modes, e. g. 0n  , or at large modes depending on the input 

parameters ( in this research, i. e. , Lr /1  and l ) .  As one could see in Figure 2, we take 100/1 Lr , one would 

expect more differences at large modes n .  

The next picture, the frequency is plotted for the parameters 100/1 Lr  and 0l . 

Imaginary ( )   

 
Real( )  

Figure 2 show the plot of the frequency with 100/1 Lr  and 0l . The horizontal axis represents the real 

part of frequency, while the vertical axis represents the imaginary part of frequency.  The symbol   

represents the numerical frequencies and the symbol 0 represents our analytical results. The number 

15,...,0n  . 
 

From Figure 2, when the parameters, 100/1 Lr , and the large number n get larger, the difference of 

numerical and analytical frequencies go bigger as we are expected.  
 

DISCUSSION 

1 .  We study the massless scalar wave in the anti de Sitter spacetime with the Schwarzschild black holes. 

We analytically calculate the solution, quasinormal modes and its frequencies by applying the boundary conditions, 

i.e. only ingoing wave at the horizon and the decaying wave far away from the black hole.  

2. The approximated solution at the horizon is the hypergeometric function, eq(28). We then expand this 

solution to the far away zone, eq( 32) .  Due to its massless property, the far away solution diverges.  To eliminate 

the divergence, the allowed wave frequencies become discrete, eq(34) and eq(40). 



งานวิจัย วารสารวิทยาศาสตร มข. ปที่ 46 เลมที่ 4 707 

 

3 .  We compare our analytical frequencies to the numerical result.  However, there are choices of either 

ingoing wave or outgoing wave near singularizes other than the horizon, eq( 21. 2)  and eq( 21. 3) .  Each choice 

corresponds different set of discrete frequencies. For example, the parameter 1/1 Lr , our choice of signs at the 

three singularities are 11 s , 12 s , and 13 s  , whose analytical frequencies are very good in agreement 

with the numerical frequencies as in Figure 1. We also compare for the case 100/1 Lr  as in the Figure 2, which 

seems having less agreement when Lr /1  and the number n get bigger. 

4. Our analytical solution is approximated at the horizon and seems working well at small Lr /1 . It would 

be very interesting to take this approximated solution as the zero order perturbation, and then perform the first 

order perturbation and then compare this new result to numerical work again.  If this method has good result, it 

would mean that one can take these solutions and its analytical method to study other kind of curved spacetimes. 
 

CONCLUSIONS 

Our result has show the similarity to the numerical work as in table 1. However, when the number n gets 

large the difference goes bigger. It would be interesting to take perturbation methods to collect all those vanishing 

terms at the horizon but not anywhere else, to see our result would get closer to the numerical work or not. 
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