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ABSTRACT

The anti de Sitter black holes have recently become a popular research topic due to the correspondence
between the theory of general relativity in the anti de Sitter spacetime and the conformal field theory, which gives
us an opportunity to study a quantum system through a corresponding anti de Sitter (AdS) spacetime, containing
black holes. In this work we study and analytically approximate the quasinormal modes of massless scalar wave in
AdS spacetime, solutions to the wave equation, which satisfy the boundary conditions at the horizon and at distant
region. The massless scalar wave at distant region exhibits some divergence. By choosing appropriate boundary
conditions, not only the divergence is removed, but the qusinormal modes become polynomials their frequencies

are discrete. Our analytical result is compared to the numerical result, which shows some similarity.
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INTRODUCTION

Black holes are regions that the gravitational field is so strong that even light cannot escape. Theoretically,
every mass has its own critical radius, in a simple case called Schwarzschild radius. When a mass is contracted into
a region smaller than its Schwarzschild radius, the gravitational field is getting stronger until the escape velocity is
equal to the speed of light at the Schwarzschild radius. Black holes have caused many contractions among physics
principles. For example (Hawking, 2005), the information loss paradox had been topics of argument for decades,
until Hawking has accepted that the information of particles falling into the black holes might be not kept inside
the black holes forever, but it has been released as radiation through quantum proceeds. The assumption used to
solve this problem is the correspondence between quantum theory in the d dimensions and the general relativity
in the d+1 dimensional anti de Sitter spacetime, AdS, whose cosmological constant is negative, (Maldacena, 1998).
The correspondence implies that the general relativity in the d+1 dimensional AdS spacetime is equivalent to the
d dimensional quantum theory on the boundary the AdS spacetime. The correspondence has been become topics
of interest since it has been proposed in the 90’s. Many works on these topics have been studied to gain a better
understanding of the nature of quantum gravity.

The wave and particle behaviors in the AdS spacetime with black holes have been studied numerically in
many works e.g. (Horowitz, et al., 2000; Cardoso, et al., 2003). For analytical work, a method, called monodromy,
has been proposed (Motl, et al., 2003), which maps the variable, radius r, to be a complex variable, and takes
certain contour paths as boundary conditions in order to solve for quasinormal frequencies of scalar field in
Schwarzschild spacetime. Its approximated result is the same as those in the numerical work (Hod, S., 1998). The
quasinormal modes and frequencies in the large AdS Schwarzschild black hole spacetime have been perturbatively
calculated by monodromy method in many research e.g., (Cardoso, et al., 2004; Musiri, et al., 2005). However, in
the non-extremal cases and the massless scalar field in the AdS Schwarzschild spacetime, the monodromy method
could not give the solutions as in (Siopsis, 2007), in which contrary with the numerical result in this model that has
given the frequencies, (Cardoso, et al., 2003). Also there are some analytical solutions of a scalar field but only for
an extremal de-Sitter Schwarzschild spacetime, e.g. (Cardoso, et al., 2003). In this work, with no exploiting
monodromy method and non-extremal black hole case, we analytically study the massless scalar field in the 4
dimensional AdS Schwarzschild black hole spacetime by taking out the singularities and matching boundary
conditions. Then we compare our result to the numerical from other research work. The difficulty of the massless
problem is the divergence of the wave solution at the two boundaries, one at the black hole surface, called the
horizon and the other boundary is the very far away from the black holes, (Siopsis, 2007). The wave solutions,
called the quasinormal modes, satisfy the two boundary conditions (Horowitz, et al., 2000), one is the only ingoing
wave into the black hole at horizon, and the other one is ether the outgoing wave or a decaying wave at the very
far away from the black hole depend on the potential in the regions. (in this case, decaying wave). The frequencies
of the scalar wave are also called quasinormal frequencies. We will show later in this work the finite scalar wave

solutions and compare the frequencies to those from numerical work.
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OBJECTIVES

The correspondence between general relativity and quantum theory has allowed us to solve the problems
by the relativity theory methods and then take the results to the quantum theory. In this work we solve the wave
equation of the massless scalar wave under the influence of the Schwarzschild black in the 4 dimensional AdS
spacetimes. However most of the problems in general relativity could not be solved exactly, and there are number
of numerical calculation on these problems, possibly due to divergences from the analytic calculation of the
massless paticle wave function at the horizon and at the far away zone. Nevertheless, in this work we can obtain
a finite massless wave solution and its frequencies. The scalar wave in this curved spacetime has to satisfy two
boundary conditions, (Horowitz, et al., 2000). The first condition is, only ingoing wave at the horizon falling into the
black holes. The second is either only outgoing wave at the far away region from the black holes, or only decaying
wave allowed if the potential at the far away zone is so great. In this research, the potential far away from is
diverged, and then we take the decaying scalar wave as the far away boundary condition. The wave that satisfies
these boundary conditions is called quasinormal modes and its frequencies, quasinormal frequencies. The
quasinormal modes and frequencies are discrete, due to the boundary conditions.

In this paper has been arranged in the next section as the following

Section Methods: We start from the Lagrangian density in the anti de Sitter spacetime with a scalar wave.
We write down the metric and Hawking temperature at the horzon and the wave equation of the massless scalar
wave, which we will attempt to solve. To simplify the problem we change variable from radius r to new variable
defined by x =7 /7, where 7, is the horizon radius of the black holes. We separate the solution to the second
order partial differential equation, and obtain the radial part of the separated solution needed solved next. The
differential equation of the radial scalar wave could not be exactly solved; therefore, we take the approximated
ingoing wave solution at the horizon, as the hypergometric function. Then we expand the hypergeometric function
to the far away zone and keep only the decaying wave in this region. The two boundary conditions cause the
solutions and frequencies discrete.

Results: We write down the quasinormal modes and their frequencies and compare them to a numerical

result.

RESEARCH METHODODOLOGY
From (Gubser, 2008), the Lagrangian density , O, of the Anti de sitter Schwarzschild spacetime with a scalar
field @ is
6 2 2 2
0=R-—-V,0 -m’|0| (1)
L H
R is the scalar curvature, L is the anti de sitter radius, and m is the mass of the scalar field, however in
our work we consider for the massless case, m=0, in order to be able to compare our analytical results to the

numerical results in (Horowitz, et al., 2000). From the Lagrangian density in eq( 1), the metric of the AdS

Schwarzschild black hole in the 4 dimensions is (Horowitz, et al., 2000)

ds* =—f(r)dt’ +%a’r2 + 7”2(61’6’2 +sin” l9d¢2) )
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where the function f(l’) is

r’ 2M
f(’”)=?+1—

L is the Anti de Sitter radius which is defined from the negative cosmological constant (A), L=~+-3/A Mis

— (3)
7

the black hole mass. The Hawking Temperature is calculated by (Uchikata, el at, 2011)

1 (d 1 (3r. 1
T,=—|— =—| —=+— 4
" 47z(drf(r)j 47[(L2+l"j @

+

There are three solutions of f(7) =0 in eq(2), which are called 1, 1, and 7;. One can choose one of
the solution 7, to be positive real number, called the horizon, and the rest two solutions are complex number.
Because we interest only the behavior of the scalar wave outside the black holes, 7| <r <00, itis convenient

to define a new variable and parameters
x=—, x,=—=1, x,=—, x;=—, (5)

The range of X is
0<x<l1 6)
The function f(#) can be changed to be a function of x as
1
fr) =E(r—r1)(r—r2)(r—r3)
2M 1

== (@)X - x,) )
n X

XM 1| 5 o, K
=———|x = x° = >
noXx 2M 2ML

From eq(7) one can fine the relation equations of the solutions of f(7) as

X - x°— =0
2M 2MR? (8)

There are also three solutions to eq(8) from eq(5) X, =1 or

3 2\7!
LR -=0, or = 1+i2
2M  2M. 2M L ©)

and the others two solutions are

rI L 4 r/L

X,, X, = — ——— i ———\J4+31" /R’
20477 /0) " 20+ /1) (10)
and the relation between X;, X,, X; and parameters ¥, and M are
h r
XX, +X;=——, XX, +xXX,+X,%, =0, xx,x, = (11)
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The wave equation of the scalar field can be obtained from the Lagrangian density eq(1), as

v Vid=0 (12)
To solve eq(12) one can separate the variables (¢,7,6, @) as
O(t,r,0,4)=e Y, (0,)¥(r) (13)

@ is the frequency of the scalar field, Y, (6,¢) is the harmonic function and W(r) is the radial part function of
the scalar field in which will be investigated. After substitute @ eq(13) into the wave equation eq(12), one can

obtain the differential equation of the function'(r) as

f(y—{f<fﬂ“”]+kf—vvﬂwoo=o "
Vir)=f(r ){I(HD 233/[ +%} = (%H— 2]:[]{1(1; b, 2:;[ +%} (15)

V(I”) can be consider as an effective potential, where for large 7, V(I’ —> OO) — 00,V is diverged, which
means that the scalar W has to decay in the far away region.
Y r—00—>0 (16)
The anther boundary condition is the only ingoing wave at the horizon (¥ =17, or X, = 1). The boundary

condition can be considered as following. Start from defining a new variable

d d 1
fr)y—=—orrn=| dr (17)
dr dr, f(r)
One can perform the integration in eq(17) and would obtain the result as
2
v, a a a
0 1/ a 2)1/ z(x_x3)1/ 3 (18)
1
Then the wave equation eq(14) would change to
d*¥
GG IGR 19
dr.
At the horizon, X, = lorr= r, V(I” = 71) =0, therefore solution to eq(19) can be approximated to
Y(r—r)~e™ =(x—x)"(x—x,)"(x—x,)" (20)
. or’ /M)
o, = (21.1)
) —x)
.o /(2M
a, =i M) (21.2)
(xz - xl)(xz - x3)
2
.o (M
o, ==ti L /eM) (21.3)
(X3 - xl)(x3 - xz)

The only ingoing to the horizon corresponds to the negative sign of the parameter &, in eq(21.1), however

there are choices of the signs () for the parameter &, and ¢; in eq(21.2) and eq(21.3)
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To simplify the problem let change the variable radius r to x in the wave equation eq(14) and rearrange

the equation to

xz(’x_’xl)(x_xz)(x_x3)%(x_x1)(x_x2)(x_x3)g

ACHS
2M

At the far way region r — 00, or x = o, there are two independent solutions which are proportional to

2

(22)
r’ r
W+ (x—xl)(x—)cz)()c—)c3){l(l+l)+mx2 +x° + Ml }‘I’ =0

LI”()C —)0) R xz, X', However from the behavior of the function Y(x) in eq(15) and eq(16) has to vanish in

this region. Therefore, the only solution that survives in this zone is

P(x—0)=x"+.. (23)
To solve eq(22), one reduce the problem by assuming the solution as
P(x)=x"(x—x)" (x—x,)* (x—x,)" K(x) (24)

| 1 1
Substitute eq(24) in to eq(22) and divide the eq(22) by X’ (x—=x)""(x—x,)"" (x—x,)“" and after
some algebra, one would obtain the
d’K

2

x(x—x,)

(1+2a,)  (+2a) | d&

+14(x—x)+(1+2a )x+(x—x,)x

X=X, X — X, dx
+ 2142, + (x —x,) (1+2a2)+(1+2a3) K (25)
X—X, X— X,

X
+
(x—xz)(x—x3)
(o, +a, +a,)’ CK 3 [aiz—(aj+ak)2]

(x—x,)(x—x,) iz (X =x,)(x —X,)

{[12 +z—2]L+3x}K
oM

xxK =0

1

where

23:(1+206~)(x—x‘,~)(x—xk) = (1420 ) (= 2, ) (= 23) + (14 20, ) (x = 2, )(x = x3)

J#k=1

+(1+20;)(x—x)(x—x,)
i[aiz —(CZ/. +ak)2]Xi = (0(12 —(CZ2 +a3)2)xl +(0(22 _(a1 +a3)2)x2 +(0(32 _(a1 +a2)2)

i# j#k=1
After we have taken out the singularities at x =1, x = X,, X=X;,and X= 0 from eq(24). Now we can
approximate the solution at the horizon, X =1, where only going wave equation is allowed. Near x=1 the solution

can be approximated as, where we change the variable X to

y=l-x (26)
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Where y =0 at the horizon. Therefore near the horizon eq(25) would be approximated to

W= EE 120, - [5+20 9K
dy dy

{2(1 +2a,)+— . [(l ? M }}K @7

3
—al(ocl +a,+a)' K- Y|’ (e, +ak)2]£K =0

| i# j#k=1 al
where @, = (1 —x,)(1-x;)
Eq(27) is actually the hypergeometric functions, (Abramowitz, et al., 1972), which is of the form

(- )d (y) {c—(1+a+b)} FO) _ abr(y)=0 (28)
dy
where
F(y)=,F(a,b;c;y) = i(a)() y, 1+a—by+a(a+1)b(b+1)y—2+... (29)

o (), J c c(c+1) 2!
(a), =1, (a),=a, (a),=a(a+]1), (a),=ala+])..(a+n-1)

For our case the parameters a , b and ¢ are

a,b=2+a,+\2+a) -J (30.1)

c=a+b-3 (30.2)

{2(1+2a )+ — [(l2 +1- 2)W+3}}

(30.3)
1 2 S 2 X
+—(a, +a, +a,)’ + Z[ai —(a, +a,) ]—
a, i# j#k=1 a
At the horizon we approximate the solution as the hypergeometric function
)~ x" (=1 (x —x,)" (x—x,)" K(x)
(31)

zxz(x_l)al (x_xz)az (x_x3)a3zE(aab;a +b_3=y)
From the property of the hypergeometric functions, (Abramowitz, et al.,1972), which expand the function
between two regions at the horizon ) =~ (0 and at the far away region x=1—y ~(. At the horizon we

approximate the solution as the hypergeometric function

. Y I'(a+b- 3) L8 (@=3),(6-3), Y.
F(a,b;a+b-3;y)= I )r(b) -y) & -3), (I-y)
(-)"T(a+b-3) (a);(D), =) 7
-D)"T'(a+b- = (a), ,
- > I=y)|-w(j+D)-w(+3+1)
r HB-3)3) = 1(7+3)!
(a=3)F(b-3)T(3) 7 1 +3) @t )b

where F(a) is the Gamma function and l//(a) is the Digamma function, (Abramowitz, et al., 1972)
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=01 1
a+j)=) | ————|-0.5772156649.. (33)
vla+)) kz:‘ k k+a+j-1

From eq(32) l//(x) in the far away region is proportional to
Yx)=x'(x=1D)"K(x)=x"..+x".....
where the lowest power of X in the first term in eq(32) is x~" while the lowest power of X in the second term
in eq(32) is x”. From the behavior of the function W(x =~ 0) ~ x?, eq(23), then one needs to eliminate the first
term in eq(32) by setting
a=-n (34)
where n =0,1,2,3,... , which makes the Gamma function F(—n) —> 00 diverge. However there are two terms

in the second of eq(32) also diverged, one in the denominator and the other one in the dominator
I'a-3)=I'(-n-3) (35)
: N G| ] 1
yla+)=y(n+j)=y | ———
=k k—n+ ] -1
The summation inside l//(—n +]) diverges when
k=n—-j+1 (37)

—0.5772156649..  (36)

Actually the second term in eq(32) is finite, which can be calculated by the L’Hospital’s rule method

-n+j
YEREI) _ (Cqysi(ng3)) (38)
I'(-n-3)
Our analytical solution of the scalar wave, quasinormal modes, is approximated as
Y(x)~x’(x—x)" (x—x,)*(x—x,)* , F.(-n,b,4,x) (39)

The function 2E(—n,b;4;x) is therefore a polynomial degree n. Finally from eq(34) and eq(30) , one

can calculate the frequency @, i.e.,

o __ B 1 g g ianen =D 43 @0
1+r2 24 24 a,
2
A=i(i+S—Z+S—3)2 L 23: X, S—Z—(S—2+S—’Z) . B=2(n+2)>t
a a a, a, a, === | A, A, a4, a,
a :(l_xz)(l_xs) ) azz(xz_l)(xz_xs) - :(x3_1)(x3_x2)
s, =-1, s, ==%I, s, ==1, (41)
S, 8,, and §, are the signs of the frequencies, &, &, and &, respectively, where §, has to be

negative sign due to the boundary condition at the horizon, only the going wave travelling into the black hole,

while §,, and §, still have choices either to be positive or negative.

RESULTS

To compare the frequencies we  parameterize the quantity F —)I"I/L and

7’13 /2]\4[;2 —> (7’13 /L3)/(2M/L2) to be dimensionless numbers. In Table 1, the numerical results, (Cardoso,
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et al., 2003), for the case rl/L =1and [ =0. There are many choices of signs, S,, §,,and §,, which give

different results. The closest analytical result to the numerical frequency has the signs to be s, =—1, s, =1, and
s, = —1, therefore we choose those signs in the comparison as the following.
Table 1 Comparison the frequencies between the numerical work (Cardoso, et al., 2003) and our analytical
results
n The Numerical Results (@) n The Analytical Results (@)
0 2.71982-2.6712i 0 1.78154-2.5573j
1 3.2374-4.11876i
1 4.79849-5.03757i 2 4.56443-5.60847i
3 5.84587-7.07548i
2 6.71927-7.39449i [ 7.10558-8.53208i
3 8.46153-9.74852i 5 8.35316-9.98299i
6 9.59327-11.4304i
a4 10.6467-12.1012i 7 10.8284-12.8756i
5 12.6121-14.4533j 8 12.0602-14.31921i
9 13.2894-15.7616i
6 14.5782-16.8049i 10 14.5168-17.2032i
11 15.7428-18.6442i
7 16.5449-19.1562i 12 16.9676-20.0846i
8 18.5119-21.5073i 13 18.1916-21.5246i
14 19.4148-22.9643i
9 20.4792-23.8583i 15 20.6374-24.4038i
16 21.8595-25.843i
10 22.44671-26.20913i 17 23.0812-27.282i

The pattern of both results has some similarities, but only the n number different. The frequencies are

proportional to the number n, when n is large. Both results can be represent in graph as

Imaginary (@)

0 T ¥ ]
[ OA
o
L OA
[

= 0 1

[ 4

OA

r o
—0f oa, ]

L A 3

i ‘s

L UA()
—30F i

30 ] 0*)
QO
]
—40F Ay ]
(2]
(:’A()
bt 1 L L L L I L L A
0 10 20 30 40
Real( @)

Figure 1 show the plot of the frequencies with #, /L=1 and [ =0. The horizontal axis represents the real
part of frequency, while the vertical axis represents the imaginary part of frequency. The symbol [

represents the numerical frequencies and the symbol 0 represents our analytical results.
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From Table 1 and Figure 1, one would notice that the analytical results have more modes than the
numerical works do. The reason might be that in our analytical works we have more boundary conditions at the
outer and inner horizons, X = X,, X =X, and X = X, to satisfy than in the numerical works which only considers
at the ingoing wave at the outer horizon, X = x,. Also in the zero mode (n=0) there is some discrepancy
differences between the analytical and the numerical frequencies. These might be due to the differential equation
eq(25) can not been analytically exactly solved. Therefore, we approximate its solutions near the horizon and at
far distant regions and, then match them together by the use of the hypergeometric function properties. These
approximations would make the results not exactly in agreement with the numerical results. If there are some
frequency differences, it should be either at small modes, e.g. n =0, or at large modes depending on the input
parameters (in this research, i.e., 7, /L and [). As one could see in Figure 2, we take 7, /L =100, one would
expect more differences at large modes 1.

The next picture, the frequency is plotted for the parameters /L =100 and [=0.
Imaginary (@)

O =T T T =
[ 0 A
[ o
=500 Ao 4
[ o
[ A o
[ 0 ]
~1000 |- A 0 :
[ & 0 1
[ 0
r A o 1
-1500 0 8
[ A o ]
[ . ? 2 ]
~2000 - & .
[ A ]
<2000y . o ¥ e W w F oo g Ao ow o B g oo g o w5 o]
0 200 400 600 800 1000 1200 1400
Real( @)

Figure 2 show the plot of the frequency with # /L=100 and [ = 0. The horizontal axis represents the real
part of frequency, while the vertical axis represents the imaginary part of frequency. The symbol [

represents the numerical frequencies and the symbol 0 represents our analytical results. The number

n=0,..15.

From Figure 2, when the parameters, I”I/L =100, and the large number n get larger, the difference of

numerical and analytical frequencies go bigger as we are expected.

DISCUSSION

1. We study the massless scalar wave in the anti de Sitter spacetime with the Schwarzschild black holes.
We analytically calculate the solution, quasinormal modes and its frequencies by applying the boundary conditions,
i.e. only ingoing wave at the horizon and the decaying wave far away from the black hole.

2. The approximated solution at the horizon is the hypergeometric function, eq(28). We then expand this
solution to the far away zone, eq(32). Due to its massless property, the far away solution diverges. To eliminate

the divergence, the allowed wave frequencies become discrete, eq(34) and eq(40).
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3. We compare our analytical frequencies to the numerical result. However, there are choices of either
ingoing wave or outgoing wave near singularizes other than the horizon, eq(21.2) and eq(21.3). Each choice
corresponds different set of discrete frequencies. For example, the parameter # /L =1, our choice of signs at the
three singularities are s, =—1, 5, =1, and s; =—1, whose analytical frequencies are very good in agreement
with the numerical frequencies as in Figure 1. We also compare for the case 7,/ L =100 as in the Figure 2, which
seems having less agreement when 7 / L and the number n get bigger.

4. Our analytical solution is approximated at the horizon and seems working well at small / L . It would
be very interesting to take this approximated solution as the zero order perturbation, and then perform the first
order perturbation and then compare this new result to numerical work again. If this method has good result, it

would mean that one can take these solutions and its analytical method to study other kind of curved spacetimes.

CONCLUSIONS

Our result has show the similarity to the numerical work as in table 1. However, when the number n gets
large the difference goes bigger. It would be interesting to take perturbation methods to collect all those vanishing

terms at the horizon but not anywhere else, to see our result would get closer to the numerical work or not.
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