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บทคัดยอ 

เราศึกษาพีชคณิตพัวสซอง A = ℂ[x, y, z] พรอมดวย {−, −}஺ บางรูป และแสดงวา พีชคณิตพัวสซอง A นี้มี ไอดีลใหญสุด

เฉพาะกลุมพัวสซองเพียง 2 ตัวกลาวคือ Jଵ และ Jଶ เราทราบวา  J Jଶൗ   มีโครงสรางของพีชคณิตลี เมื่อ J คือ ไอดีลใหญสุดเฉพาะกลุม

พัวสซองของ A แนวคิดนี้นําไปสูการหามอดูลพัวสซองเชิงเดียวท่ีมีมิติจํากัดของพีชคณิตพัวสซอง A ผลที่ไดสําหรับ  Jଵ  คือ ทุกๆ มอดูล

พัวสซองเชิงเดียวของพีชคณิตพัวสซอง  A ที่ถูกกําจัดดวย Jଵ จะมีเพียง 1 มิต ิและผลท่ีไดสําหรับ Jଶ คือ สําหรับแตละ 𝑑 ≥ 1, มีมอดูล

พัวสซองเชิงเดียวของพีชคณิตพัวสซอง  A ที่ถูกกําจัดดวย 𝐽ଶ อยูเพียง 1 ตัวท่ีมี 𝑑 มิต ิ
 

ABSTRACT 

We examine a Poisson algebra of the form  A = ℂ[x, y, z] with a certain bracket  {−, −}஺, and show that 

there are only two Poisson maximal ideals of  A, namely  Jଵ and Jଶ. It is known that  J Jଶൗ   has a natural Lie algebra 

structure where J is a Poisson maximal ideal of  A . This idea leads to determine the finite-dimensional Simple 

Poisson A-modules. For the maximal ideals Jଵ of A, we show that every finite-dimensional simple Poisson module 

over A annihilated by Jଵ is one-dimensional. For the maximal ideals Jଶ of A, we show that for 𝑑 ≥ 1, there is a 

unique 𝑑-dimensional simple Poisson module over 𝐴 annihilated by 𝐽ଶ. 

 

คําสําคัญ: พีชคณิตพัวสซอง  ไอดีลพัวสซอง  ไอดีลใหญที่สุดเฉพาะกลุมพัวสซอง  พีชคณิตอนุพัทธ  มอดูลพัวสซอง 
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1. INTRODUCTION 

A Poisson algebra is the associative algebra having a Lie algebra structure together with the Leibniz law. 

Sasom (2006) considered Poisson A-modules in the aspect of Farkas (2000) and Oh (1999) by using direct method 

to classify the finite-dimensional simple Poisson modules for the Poisson algebra A =  ℂ[x, y, z] with Poisson 

bracket:  

{x, y} =  yx +  z,  {y, z} =  zy +  x  and {z, x} =  xz +  y , 

for all x, y, z ∈ A. 

The aim of this research is to classify the finite-dimensional simple Poisson modules for the Poisson 

algebra with the certain Poisson bracket, namely, the Poisson algebra A =  ℂ[x, y, z] with Poisson bracket: 

{x, y} = yx + x + y + z,  {y, z} = zy + x + y + z  and {z, x} = xz + x + y + z , 

for all x, y, z ∈ A. 

The more complicated Poisson bracket is the obstacle to classify the finite-dimensional simple Poisson 

modules for A if we use the direct method appeared in Sasom (2006). We find the new method in order to apply 

it to obtain this research results. This method is presented by Jordon (2010). We can see that if 𝐽 is a Poisson 

maximal ideal of 𝐴, then  
J

Jଶൗ   has a natural Lie algebra structure. The valuable result is shown in Jordan (2010) 

stating that there is a bijection, which preserves dimension, between the isomorphism classes of finite-

dimensional simple Poisson A-modules and pairs  ൫𝐽, 𝑀෡൯ where  𝐽 is a Poisson maximal ideal of  𝐴 and 𝑀෡ is an 

isomorphism class of finite-dimensional modules over the Lie algebra  
J

Jଶൗ  . In this bijection, the simple Poisson 

modules in a class corresponding to the pairs  ൫𝐽, 𝑀෡൯ are annihilated by  𝐽. Hence if the Poisson maximal ideals J 

of A can be identified and the representation theory of the Lie algebra ℊ(J) is known, then the finite-dimensional 

simple Poisson A-modules can be seen. 

Note that a ℂ-algebra  T  is called  𝑡-homogeneous if, for each positive integer  𝑑, there are, up to 

isomorphism, precisely  𝑡  simple (left)  T-modules of dimension  𝑑 and that a Poisson algebra is  𝑡-homogeneous 

if it has the analogous Poisson property. 
 

2. PRELIMINARIES 

In this topic, it contains some of the materials that will be used throughout this work. The main topics 

are Lie algebra, Derived algebra, Low-dimensional Lie algebra, Poisson algebra and Poisson module and Jordan’s 

result shown in Jordan (2010). 

 We now give the definition of Lie algebra which is the foundation of the main topic, a Poisson Algebra. 

Definition 2.1  Let F  be a field. A Lie algebra over  F is an F-vector space  L, together with a bilinear map, the 

Lie bracket L × L ⟶ L  given by (x, y) ↦ [x, y] satisfying the following properties: 

1) [x, x] = 0  for all x ∈ L, 

2) [x, [y, z]] + ൣy, [z, x]൧ + [z, [x, y]] = 0 for all x, y, z ∈ L. 

Example 2.2 The well-known vector space of all n × n matrices over a field F, denoted by gl(n, F), has the 

Lie bracket defined by [x, y] = xy − yx, where xy is the usual product of the matrices x and y. So (gl(n, F), [−, −]) 
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is a Lie algebra. It is called general linear algebra. Another well-known algebra is the subspace of gl(n, F) 

consisting of all n × n matrices of trace  0 named as the special linear algebra and denoted by sl(n, F). 

 The derived algebra is one of the tools for investigating the results. Let  I and J be ideals of a Lie algebra 

L. The product of ideals [I, J] is the span of the commutators of elements of I and J, that is  [I, J] ≔ Span 

{[x, y]: x ∈ I, y ∈ J}. 

Definition 2.3 If I = J = L , then the ideal [L, L] is called the derived algebra of L. 

Example 2.4 [gl(n, F), gl(n, F)] = sl(n, F) and [sl(n, F), sl(n, F)] = sl(n, F). 

Low-dimensional Lie algebra 

 The basic way to find how many non-isomorphic Lie algebras there are in order to classify them is to 

understand the low-dimensions. The reason to work on the low-dimensional Lie algebras is that they often 

appear as subalgebras of the larger Lie algebras. We shall look at the Lie algebras of dimension 1, 2 and 3. All the 

results provided in this topic is from Erdmann and Wildon (2006). 

 We can see easily that every 1 dimensional Lie algebras is abelian. For any field  F, up to isomorphism, 

there is a unique 2-dimensional non-abelian Lie algebra over  F. This Lie algebra has a basis {x, y}  such that its Lie 

bracket is described by  [x, y] = x. The center of this Lie algebras is 0. For 3-dimensional Lie algebras, we focus 

here for 2 cases. For other cases, one can study more in Erdmann and Wildon (2006). 

 Firstly, the 3 dimensional Lie algebra  L which its derived algebra  [L, L] has dimension 1 and  [L, L] ⊆

Z(L), the center of L, appears uniquely and it has a basis  {f, g, h} where [f, g] = h ∈ Z(L). This Lie algebra is 

known as the Heisenberg algebras. For another one, suppose that  L is a complex Lie algebra of dimension 3 

such that [L, L] = L. Up to isomorphism, sl(2, ℂ) is the unique 3-dimensional Lie algebras L with  [L, L] = L.  

Definition 2.5 Let 𝐴 be a finitely generated commutative algebra over ℂ. A Poisson bracket on 𝐴 is a Lie 

algebra bracket {−, −} satisfying the Leibniz rule: {𝑎𝑏, 𝑐} = 𝑎{𝑏, 𝑐}  + {𝑎, 𝑐}𝑏 for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. The pair 

(𝐴, {−, −}) is called a Poisson algebra. 

Definition 2.6 A subalgebra 𝐵 of 𝐴 is a Poisson subalgebra  of 𝐴 if  {𝑏, 𝑐} ∈ 𝐵 for all 𝑏, 𝑐 ∈ 𝐵. An ideal 𝐼 of a 

Poisson subalgebra 𝐴 is a Poisson ideal if {𝑖, 𝑎} ∈ 𝐼 for all 𝑖 ∈ 𝐼 and all 𝑎 ∈ 𝐴. 

If 𝐼 is a Poisson ideal of 𝐴 then 𝐴/𝐼 is a Poisson algebra in the natural way:  
{𝑎 + 𝐼, 𝑏 + 𝐼} = {𝑎, 𝑏}  + 𝐼 

Definition 2.7 An ideal 𝐼 of a Poisson algebra 𝐴 is said to be a Poisson maximal ideal if 𝐼 is a maximal ideal of 

𝐴 and also a Poisson ideal. 

In the literature, there is a similar definition to the Poisson maximal ideal. We will mention it here. By 

maximal Poisson ideal, we shall mean a Poisson ideal 𝐼 of 𝐴 such that if 𝐽 is a Poisson ideal and  𝐼 ⊆ 𝐽 then 

𝐽 = 𝐴. For example, let 𝐴 = ℂ[𝑥, 𝑦] which is a Poisson algebra with the Poisson bracket {𝑥, 𝑦} = 1. Then 0 is a 

maximal Poisson ideal but is not a Poisson maximal ideal. 

Next, it is the important Theorem concerning the maximal ideal of a polynomial ring. 

Theorem 2.8 (Hilbert’s Nullstellensatz Theorem) Let F[xଵ, xଶ, xଷ, … , x୬] be that polynomial ring over a field F 

in the inderminates xଵ, xଶ, xଷ, … , x୬. The ideal  M is a maximal ideal if and only if there exist aଵ, a, aଷ, … , a୬ such 

that M = 〈xଵ − aଵ, xଶ − aଶ, xଷ − aଷ, … , x୬ − a୬〉. 
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Proof. See Sharp (2000) Theorem 14.6. 

Next, we will give the definition of Poisson module. There is more than one definition of Poisson module 

in the literature. We shall use the one introduced in Farkas (2000) and Oh (1999). 

Definition 2.9  A module  M over a Lie algebra ℊ (M is also called  ℊ-module) is a ℂ-vector space together with 

a bilinear form [−, −]ெ ∶  ℊ × 𝑀 → 𝑀 such that 
ൣ[𝑎, 𝑏], 𝑚൧

ெ
= [𝑎, [𝑏, 𝑚]]ெ − [𝑏, [𝑎, 𝑚]]ெ 

for all a, b ∈ ℊ and 𝑚 ∈ 𝑀. A subspace 𝑉 of 𝑀 is a submodule of 𝑀 if [𝑎, 𝑣]ெ ∈ 𝑉 for all a ∈ ℊ and all 𝑣 ∈ 𝑉.  𝑀 

is simple if 𝑀 ≠ 0 and its only submodules are only 0  and 𝑀. 

Definition 2.10 Let 𝐴 be a commutative Poisson algebra with Poisson bracket {−, −}.  An 𝐴-module 𝑀 is a 

Poisson 𝐴-module if there is a bilinear form {−, −}ெ: 𝐴 × 𝑀 → 𝑀 such that the following axioms hold for all 

 𝑎, 𝑎ᇱ  ∈ 𝐴 and all 𝑚 ∈ 𝑀: 

(i) {𝑎, 𝑎ᇱ}ெ = {𝑎, 𝑎ᇱ} 𝑚 + 𝑎ᇱ{𝑎, 𝑚}ெ ; 

(ii) {𝑎𝑎ᇱ, 𝑚}ெ = 𝑎 {𝑎ᇱ, 𝑚}ெ + 𝑎ᇱ{𝑎, 𝑚}ெ ; 

(iii) {{𝑎, 𝑎ᇱ} , 𝑚}ெ = {𝑎 , {𝑎ᇱ, 𝑚}ெ}ெ − {𝑎ᇱ , {𝑎, 𝑚}ெ}ெ  

A submodule 𝑁 of a Poisson module 𝑀 is called a Poisson submodule if {𝑎, 𝑛}ெ ∈ 𝑁 for all 𝑎 ∈ 𝐴 and 𝑛 ∈ 𝑁. 

Definition 2.11 Let 𝑁 be a left module over a ring 𝑅. Give any subset 𝑋 ⊆ 𝑁, the annihilator of 𝑋 is the set 

𝑎𝑛𝑛ோ(𝑋) = {𝑟 ∈ 𝑅 ∶  𝑟𝑥 = 0 for all 𝑥 ∈ 𝑋}, which is a left ideal of 𝑅. 

Let 𝑀 be a Poisson module over a Poisson algebra 𝐴 and let 𝑆 ⊆ 𝑀. In the module sense, we denote 

the annihilator of 𝑆 in 𝐴 by 𝑎𝑛𝑛஺(𝑆). And we denote 

 𝑃𝑎𝑛𝑛஺(𝑆) = {𝑎 ∈ 𝐴 ∶  {𝑎, 𝑚}ெ = 0  for all 𝑚 ∈ 𝑆}. 

Lemma 2.12 Let 𝐴 be a Poisson algebra and  𝑀 be a Poisson 𝐴-module. 

1. The annihilator 𝑎𝑛𝑛஺(𝑀) is a Poisson ideal of 𝐴. 

2. if 𝑀 is a finite-dimensional simple Poisson module then 𝑎𝑛𝑛஺(𝑀)  is a Poisson maximal ideal of 𝐴. 

3. ℂ + 𝐽ଶ ⊆ 𝑃𝑎𝑛𝑛஺𝑀. 

Proof. See Jordan (2010) Lemma 1. 

Let (𝐴, {−, −}) be Poisson algebra and let 𝐼 and 𝐽 be Poisson ideals of 𝐴. Then 𝐼𝐽 is a Poisson ideal of 𝐴. 

Of course 𝐼 and 𝐽 are Lie subalgebra of 𝐴 under {−, −}. If 𝐼 ⊆ 𝐽, then 𝐼 is a Lie ideal of 𝐽 and  J Iൗ   is a Lie algebra. 

In particular,  J Jଶൗ   is always a Lie algebra. 

Studying Poisson modules, one natural way to find Poisson modules is, for 𝐼 and 𝐽 are Poisson ideals of 

𝐴 with 𝐼 ⊆ 𝐽, the factor  J Iൗ   is a Poisson 𝐴-module with, for 𝑎 ∈ 𝐴 and 𝑗 ∈ 𝐽, 

{𝑎, 𝑗 + 𝐼}
 
୎

୍ൗ  
= {𝑎, 𝑗}௃ + 𝐼. 

We can check that {−, −}௃/ூ is well-defined, and all the axioms for a Poisson module are hold. By above 

argument,  
J

Iൗ   is also a Lie algebra. Every Poisson subalgebra of  
J

Iൗ   is a Lie ideal, so if  
J

Iൗ   is simple as a Lie 

algebra, then it is simple as a Poisson module. If 𝐴 is affine and 𝐽 is a Poisson maximal ideal, so that 𝐴 = 𝐽 + ℂ, 

then the converse is also true because every Lie ideal of  
J

Iൗ   is then a Poisson 𝐴-submodule. If 𝐼 and 𝐽 are 

Poisson ideals of a Poisson algebra 𝐴, then  I IJൗ   and  
J

IJൗ  are Poisson modules (by affine Poisson algebra, we 

mean a Poisson algebra that is finitely generated as a ℂ-algebra). 
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The following is the main result by Jordan (2010). We use this result to tackle the later research 

problems. Jordan proves the result giving a method to determine the finite-dimensional simple Poisson modules 

over any affine Poisson algebra as the following Theorem. 

Theorem 2.13 Let 𝐴 be an affine generated Poisson algebra. 

(i) Let 𝑀 be a finite-dimensional simple Poisson 𝐴 -module and let 𝐽 = 𝑎𝑛𝑛஺(𝑀). There is a simple 

module    𝑀∗ for the Lie algebra ℊ(𝐽) such that  𝑀∗ = 𝑀, as ℂ-vector space, and  [𝑗 + 𝐽ଶ, 𝑚]ெ∗ =

{𝑗, 𝑚}ெ for all 𝑗 ∈ 𝐽 and 𝑚 ∈ 𝑀. 

(ii) Let 𝐽 be a Poisson maximal ideal   𝐴 of and let 𝑁 be a finite-dimensional simple ℊ(𝐽)-module. There 

exist a simple Poisson 𝐴-module 𝑁ᇱ and a Lie homomorphism 𝑓: 𝐴 → ℊ(𝐽) such that 𝑁ᇱ = ௙𝑁 $ as 

a Lie module over 𝐴 and 𝐽 = 𝑎𝑛𝑛஺(𝑁ᇱ). 

(iii) For all finite-dimensional simple Poisson modules 𝑀,  𝑀∗ᇱ = 𝑀. For all Poisson maximal ideals 𝐽 of 

 𝐴 and all finite-dimensional simple ℊ(𝐽)-modules 𝑁, 𝑁ᇱ = 𝑁. 

(iv) The procedure in (i) and (ii) establish a bijection Γ from the set of isomorphism classes of finite-

dimensional simple Poisson module over 𝐴 to the set of pairs (𝐽, 𝑁෡), where 𝐽 is a Poisson maximal 

ideal of 𝐴 and 𝑁 is a finite-dimensional simple ℊ(𝐽)-module, given by Γ൫𝑀෡൯ = (𝑎𝑛𝑛஺(𝑀), 𝑀∗෢ ). 

Proof. See Jordan (2010) Theorem 1. 
 

3. MAIN RESULTS 

In this section, we classify the finite-dimensional simple Poisson modules over the certain Poisson 

algebra A. Let we start by giving S as the  ℂ-algebra generated by x, y, z, q and qିଵ subject to the relations 
xy − qyx = (q − 1)(x + y + z), 

yz − qzy = (q − 1)(x + y + z), 

zx − qxz = (q − 1)(x + y + z), 

xq = qx, yq = qy, zq = qz, and qqିଵ = 1 = qିଵq. 

Then  q is a central element of  S. Let  A = S
(q − 1)Sൗ ≃ ℂ[x, y, z], which is a commutative algebra. The 

induced Poisson bracket on  A is such that  

{x, y} =
ଵ

୯ିଵ
[x, y] =

ଵ

୯ିଵ
(xy − yx) =

ଵ

୯ିଵ
൫qyx − yx + (q − 1)(x + y + z)൯ = yx + x + y + z. 

Similarly, we obtain {y, z} = zy + x + y + z and {z, x} = xz + x + y + z. Hence, these are the Poisson 

brackets on A : 

{x, y} = yx + x + y + z, 

{y, z} = zy + x + y + z,        (3.1) 

{z, x} = xz + x + y + z. 

Next, we examine the Poisson maximal ideals of  A with the Poisson brackets (3.1). 

Lemma 3.1 Let A be the Poisson algebra with the Poisson brackets (3.1). There are only two Poisson 

maximal ideals of  A. More precisely, they are: 

Jଵ = xA + yA + zA and  Jଶ = (x + 3)A + (y + 3)A + (z + 3)A. 
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Proof.  By Theorem 2.8, we have J = (x − a)A + (y − b)A + (z − c)A as a Poisson maximal ideal of  A, for 

suitable  a, b, c ∈ ℂ. Since J is a Poisson ideal, {x, J} ⊆ J, {y, J} ⊆ J and {z, J} ⊆ J. Observe that  
J ⊇ {x, y − b} = {x, y} − {x, b} = {x, y} = yx + x + y + z, 

J ⊇ {y, z − c} = {y, z} − {y, c} = {y, z} = zy + x + y + z, 

J ⊇ {z, x − a} = {z, x} − {z, a} = {z, x} = xz + x + y + z. 

By the above three equations, we obtain  

ab + a + b + c = 0,      (3.2) 

bc + a + b + c = 0,      (3.3) 

ac + a + b + c = 0,      (3.4) 

It induces that ab − bc = 0 which implies that b = 0 or a = c, and 

ab − ac = 0 which implies that a = 0 or b = c, and  

bc − ac = 0 which implies that c = 0 or a = b. 

There are two cases to be considered. 

Case 1. b = 0. The equation (3.2) gives a = −c. Then substitute this in the equation (3.4), we have c = 0, 

which gives a = 0.  

Case 2. b ≠ 0 and a = c. The equation (4.1) gives ab + 2a + b = 0, and the equation (3.4) gives aଶ + 2a +

b = 0. These arguments give 0 = aଶ − ab = a(a − b). Thus a = 0 or a = b. If c = a = 0, then it 

induces  b = 0 by the equations (3.2) – (3.4). 

For both cases, it can be concluded that a = b = c , which implies that there are two possible solutions 

which are  a = b = c = 0 and a = b = c, where a ≠ 0, b ≠ 0 and  c ≠ 0. 

If  a = b = c = 0, then we have  

Jଵ = xA + yA + zA. 

If a = b = c, where a ≠ 0, b ≠ 0 and  c ≠ 0, then we have aଶ + 3a = 0. This implies that  a = 0 or a = −3. But 

a ≠ 0 in this case, so  a = −3. Then we have 

Jଶ = (x + 3)A + (y + 3)A + (z + 3)A. 

Therefor the result holds. 

Later, we classify finite-dimensional simple Poisson modules over A annihilated by  J via the finite 

dimensional simple module over ℊ(J) ≔
J

Jଶൗ , where  J is a Poisson maximal ideal of A. 

Theorem 3.1.2 Every finite–dimensional simple Poisson module over A annihilated by Jଵ is one-dimensional. 

Proof. The Lie algebra ℊ(Jଵ) has basis (the images of) x, y, z and bracket {x, y}, {y, z} and {z, x} in (3.1) becomes  

[x, y] = x + y + z,  [y, z] = x + y + z and [z, x] = x + y + z. 

Next we show that x + y + z is in the center of ℊ(Jଵ). We have [x, x + y + z] = [x, x] + [x, y] + [x, z] = 0 + x + y +

z − x − y − z = 0. Similarly, we can also show that [y, x + y + z] = 0 and [z, x + y + z] = 0. Then x + y + z is in 

the center of ℊ(Jଵ). Moreover, we can see that the derived algebra [ℊ(Jଵ), ℊ(Jଵ)] is generated by x + y + z. Hence 

the derived algebra [ℊ(Jଵ), ℊ(Jଵ)] has dimension 1 and is contained in the center of ℊ(Jଵ). By the results of Low 

dimension in section 2, it is isomorphic to the 3-dimensional Heisenberg Lie algebra. By Dixmier (1996) Corollary 

1.3.13, every finite–dimensional simple Poisson module over  ℊ(Jଵ) is one-dimensional and annihilated by 
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[ℊ(Jଵ), ℊ(Jଵ)]. Therefore, by Theorem 2.13, every finite–dimensional simple Poisson module M over A annihilated 

by Jଵ is one-dimensional. 

Theorem 3.1.3 For 𝑑 ≥ 1, there is a unique 𝑑-dimensional simple Poisson module over  𝐴 annihilated by 𝐽ଶ. 

Proof. For Jଶ = (x + 3)A + (y + 3)A + (z + 3)A , we consider the Lie algebra  ℊ(Jଶ). 

Let  u = x + 3, v = y + 3 and w = z + 3. Then Jଶ = uA + vA + wA.  

Hence, in Jଶ,  
{u, v} = vu − 2u − 2v + w, 

{v, w} = wv + u − 2v − 2w, 

{w, u} = uw − 2u + v − 2w. 
Thus, in ℊ(Jଶ),  

[u, v] = 2u − 2v + w, 

[v, w] = u − 2v − 2w, 

[w, u] = 2u + v − 2w. 
Next, we will show that these are linearly independent. Let α, β and γ be the scalar such that 

α[u, v] + β[v, w] +  γ[w, u] = 0. 

Then α(2u − 2v + w) + β(u − 2v − 2w) + γ(2u + v − 2w) = 0. It induces that  

2α + β + 2 γ = 0, −2α − 2β +  γ = 0 and α − 2β − 2 γ = 0. 
 

This linear equation system has the augmented matrix ൥
2 1 2

−2 −2 1
1 −2 −2

൩, which has non-zero determinant, so 

the system has one solution that is α = β =  γ = 0.  It means that {[u, v], [v, w], [w, u]} is linearly independent. 

Hence the derived algebra [ℊ(Jଶ), ℊ(Jଶ)] has dimension 3, which implies that ℊ(Jଶ) ≃ sl(2, ℂ). It is a well-known 

result, see Henderson (2012) or Humphreys (1972), that, for each d ≥ 1, sl(2, ℂ) has a unique d-dimensional 

simple Poisson module annihilated by  Jଶ and that sl(2, ℂ) is 1-homogeneous. By Theorem 2.13, the result holds 

for 𝐴. 
 

4. CONCLUSION AND DISCUSSION 

Studying the Poisson algebra with some complicated bracket could bring the difficulty to find its finite-

dimensional simple Poisson modules. In this paper, we use the method shown in Jordan’s work (Jordan, 2010). 

His work tells us that if the Poisson maximal ideals J of A can be identified and the representation theory of the 

Lie algebra ℊ(J) is known, then the finite-dimensional simple Poisson  A-modules can be found. 
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