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บทคัดยอ 

 ทรงกลมของไหลสมบูรณเปนผลเฉลยแมนตรงชนิดหนึ่งของสมการไอนสไตน ในการหาผลเฉลยทรงกลมของไหลสมบูรณ

จะตองกําหนดสมมาตรทรงกลมใหกับสสารเพื่อลดความซับซอนของสมการไอนสไตน และตองกําหนดสมการสถานะซึ่งเปนสมการท่ี

แสดงความสัมพันธระหวางความดันและความหนาแนนของทรงกลมของไหลสมบูรณ ดังนั้น ผลเฉลยทรงกลมของไหลสมบูรณจึงถูก

คนพบเปนจํานวนมากโดยการกําหนดสมการสถานะใหม ๆ เมื่อไดมีการคนพบผลเฉลยทรงกลมของไหลสมบูรณเหลาน้ีมากขึ้น การหา

สมการสถานะสําหรับการแกสมการไอนสไตนเพ่ือหาผลเฉลยแมนตรงตัวใหมจะทําไดยากมากข้ึน ในบทความนี้ จะใชคุณสมบัติของ

สมการริคคาติ เพ่ือหาผลเฉลยแมนตรงตัวใหมท่ีเปนทรงกลมของไหลสมบูรณจากผลเฉลยแมนตรงเดิมที่มีอยูแลวซึ่งเปนทรงกลมของ

ไหลสมบูรณเชนกันโดยไมตองแกสมการไอนสไตนโดยตรง ผลลัพธไดแสดงวา ถาเริ่มตนดวยผลเฉลยมิงคอฟสกี ผลเฉลยแมนตรงตัวใหม

จะเปนผลเฉลยโทลแมน 5 (n = 2) ซึ่งเปนผลเฉลยที่มีความหมายทางฟสิกส กลาวคือ คาความดันและความหนาแนนของทรงกลมของ

ไหลสมบูรณเปนคาบวกเสมอ โดยที่ความดันมีคาลดลงจากคาที่ศูนยกลางจนเปนศูนยท่ีผิวของทรงกลมของไหลสมบูรณ และความ

หนาแนนมีคาลดลงจากคาที่ศูนยกลางจนเปนคา ๆ หนึ่งซึ่งยังคงเปนคาบวกที่ผิวของทรงกลมของไหลสมบูรณ 
 

ABSTRACT 

 A static perfect fluid sphere is one of the exact solutions to the Einstein’s equation. To solve for perfect 

fluid solutions, a spherical symmetry has to be added to matters in order to reduce the complexity of the 

Einstein’s equation and an equation of state, which is one relating the pressure to the density of a perfect fluid 

sphere, has to be chosen. Selecting new equations of state, a number of perfect fluid solutions have been 

discovered. When several perfect fluid solutions have been found, it is more difficult to obtain new exact 

solutions by directly solving the Einstein’s equation than before. In this paper, we make use of the property of 

the Riccati equation to generate new exact static perfect fluid solutions from known ones without directly solving 

the Einstein’s equation. The result shows that if we start with the Minkowski solution, the new exact solution is 

the Tolman V (n = 2) which has physical meaning. This means that a pressure and density of a perfect fluid 

sphere are always positive. Furthermore, the pressure decreases from a central value to zero at the boundary of 
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the perfect fluid sphere and the density also decreases from a central value to a positive value at the boundary 

of the perfect fluid sphere. 
 

คําสําคัญ: ทรงกลมของไหลสมบูรณ  ทฤษฎีสัมพัทธภาพทั่วไป  ผลเฉลยแมนตรง  สมการริคคาต ิ สมการไอนสไตน 

Keywords: Exact solution, Static perfect fluid sphere, General relativity, Riccati equation, Einstein’s equation 
 

1. บทนํา 

 ทฤษฎีสัมพัทธภาพทั่วไปของไอนสไตนเปนทฤษฎีที่อธิบายความสัมพันธระหวางความโคงของกาลอวกาศและสสาร ในทฤษฎี

นี้ ความโนมถวงไมไดสงอิทธิพลตอสสารในรูปแบบของแรง แตสงอิทธิพลตอสสารในรูปแบบของความโคงของกาลอวกาศ ในทาง

คณิตศาสตร สมการที่อธิบายความสัมพันธระหวางความโคงของกาลอวกาศและสสารคือสมการไอนสไตน โดยทั่วไป สมการไอนสไตน

เปนสมการเชิงอนุพันธไมเชิงเสนซึ่งมีความซับซอนสูงจนกระทั่งไมสามารถแกหาผลเฉลยแมนตรงได อยางไรก็ตาม หากกําหนดสมมาตร

ทรงกลมใหกับกาลอวกาศและสสาร และกําหนดเงื่อนไขวา สสารเปนทรงกลมสถิตและเปนของไหลสมบูรณ จะสามารถลดความ

ซับซอนของสมการไอนสไตนได นอกจากนี้ ยังตองกําหนดสมการสถานะซึ่งเปนสมการที่แสดงความสัมพันธระหวางความดันและความ

หนาแนนของทรงกลมของไหลสมบูรณจึงสามารถแกหาผลเฉลยแมนตรงได ผลเฉลยแมนตรงผลเฉลยแรกของสมการไอนสไตนคือผล

เฉลยของชวารสชิลด (Schwarzschild, 1916) หลังจากนั้น ไดมีการคนพบผลเฉลยแมนตรงอ่ืน ๆ อีกเปนจํานวนมากโดยการเลือก

สมการสถานะใหม ๆ ผลเฉลยแมนตรงเหลานี้มีประโยชนมากเพราะสามารถใชเปนแบบจําลองอธิบายดวงดาวเชิงสัมพัทธภาพได 

(Schwarzschild, 1916; Tolman, 1939; Adler, 1974; Bronnikov, 1979; Sharif, 2000; Lake, 2003; Herrera et al., 2008; 

Lake, 2009; Kauser et al., 2013) เมื่อมีการคนพบผลเฉลยแมนตรงเหลานี้มากข้ึน การแกสมการไอนสไตนเพ่ือหาผลเฉลยแมนตรง

ตัวใหมจะทําไดยากมากข้ึน อยางไรก็ตาม ไดมีการคนพบเทคนิคในการหาผลเฉลยแมนตรงตัวใหมโดยไมตองแกสมการไอนสไตน

โดยตรง (Martin, 2004; Boonserm, 2005) เทคนิคเหลานี้สามารถสรางผลเฉลยแมนตรงตัวใหมไดจากผลเฉลยแมนตรงเดิมที่มีอยูแลว 

นอกจากนี้ ยังมีเทคนิคในการแปลงสมการไอนสไตนใหอยูในรูปแบบของสมการริคคาติเพ่ือหาผลเฉลยแมนตรงตัวใหมดวย อภิสิทธิ์ 

(2559) ไดหาผลเฉลยทรงกลมของไหลสมบูรณตัวใหมในระบบพิกัดไอโซทรอปกโดยใชสมการริคคาต ิ

 ในบทความนี้ จะใชคุณสมบัติของสมการริคคาติเพ่ือหาผลเฉลยทรงกลมของไหลสมบูรณตัวใหมจากผลเฉลยมิงคอฟสกีโดยไม

ตองแกสมการไอนสไตนโดยตรง หนวยที่ใชในบทความนี้คือหนวยธรรมชาติซึ่งคาคงที่โนมถวงสากลของนิวตัน (G = 6.67 x 10-11 

m3/kg s2) และอัตราเร็วแสง (c = 3 x 108 m/s) มีคาเปน 1 (G = c = 1) 
 

2. ทรงกลมของไหลสมบูรณ 

 ในหัวขอนี้ จะพิจารณาโครงสรางภายในของทรงกลมของไหลสมบูรณ คําวา “ทรงกลมของไหลสมบูรณ” หมายถึงของไหลท่ี

ไมมีความหนืด ไมมีการนําความรอน มีความดันเทากันในทุกทิศทาง และมีสมมาตรทรงกลม จากทฤษฎีสัมพัทธภาพทั่วไป สสารทําให

กาลอวกาศเกิดความโคงขึ้น ในทางคณิตศาสตร ความโคงของกาลอวกาศใด ๆ สามารถเขียนไดในรูปของระยะทางสั้น ๆ ระหวางจุด

สองจุดบนกาลอวกาศนั้น ๆ สําหรับกาลอวกาศสถิต 4 มิตทิี่มีสมมาตรทรงกลม ระยะทางสั้น ๆ ระหวางจุดสองจุด (ซึ่งเรียกวา เมทริก) 

ในระบบพิกัดทรงกลม (t, r , ,  ) เขียนไดเปน 

 2 2 ( ) 2 2 ( ) 2 2 2 2 2sinA r B rds e dt e dr r d d           (2.1) 

โดยท่ี A(r) และ B(r) เปนฟงกชันใด ๆ ของตําแหนง r เทานั้น แตไมเปนฟงกชันของเวลา t เนื่องจากเปนกาลอวกาศสถิต และ

ไมเปนฟงกชันของมุม   และ   เนื่องจากกาลอวกาศมีสมมาตรทรงกลม ความสัมพันธระหวางความโคงของกาลอวกาศและสสาร

แสดงไดดวยสมการไอนสไตน 

8G T        (2.2) 
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โดยที่ G  คือเทนเซอรไอนสไตนและ T  คือเทนเซอรพลังงานโมเมนตัม เทนเซอรไอนสไตนจากระยะทางสั้น ๆ ใน

สมการ (2.1) มีคาดังตอไปนี ้

G00 =  2 ( ) 2 ( )
2

1
1A r B rd

e r e
drr

    

  G11 =  2 ( ) 2 ( )
2

1 2 ( )
1B r B r A r

e e
rr

 
         (2.3) 

  G22 =    22 2 ( ) ( ) 1
( ) ( ) ( ) ( )B r A r

r e A r A r B r A r
r r

          
 

  G33 = 2
22 sinG   

โดยท่ี ( )A r  คืออนุพันธของฟงกชัน A ที่ r ในบทความน้ี เราพิจารณาสสารที่อยูในกาลอวกาศขางตนเปนทรงกลมของไหล

สมบูรณ ดังนั้น เทนเซอรพลังงานโมเมนตัมมีคาดังตอไปนี ้

     T00 = 2 ( )( ) A rr e  

     T11 = 2 ( )( ) B rp r e       (2.4) 

     T22 = r2p(r) 

     T33 = 2
22 sinT   

โดยท่ี ( )r  และ p(r) คือความหนาแนนและความดันภายในทรงกลมของไหลสมบูรณตามลําดับ แทนคาสมการ (2.3) และ

สมการ (2.4) ลงในสมการไอนสไตน (2.2) จะได 

  8 ( )r  =  2 ( )
2

1
1 B rd

r e
drr

         (2.5a) 

  8 ( )p r  =  2 ( ) 2 ( )
2

1 2 ( )
1 B r B rA r

e e
rr

 
        (2.5b) 

  8 ( )p r  =    22 ( ) ( ) 1
( ) ( ) ( ) ( )B r A r

e A r A r B r A r
r r

          
   (2.5c) 

ความเทากันของสมการ (2.5b) และสมการ (2.5c) จะได 

 
   

22 22 ( )
2 ( )

2 ( ) ( ) ( ) 1 2

( ) 1 ( ) 1

B r
B r

r A r r A r rA rde
e

dr r rA r r rA r




        
  

  (2.6) 

ให u(r) = 2 ( )B re  ดังน้ันสมการขางตนจะสามารถเขียนในรูป 

 
   

22 22 ( ) ( ) ( ) 1 2
( ) ( )

( ) 1 ( ) 1

r A r r A r rA r
u r u r

r rA r r rA r

         
  

   (2.7) 

สมการ (2.7) คือสมการเชิงอนุพันธเชิงเสนอันดับหนึ่งไมเอกพันธุ นอกจากนี้ สมการ (2.7) ยังเปนเงื่อนไขของการเปนทรง

กลมของไหลสมบูรณ เพราะมาจากความเทากันของสมการ (2.5b) และสมการ (2.5c) ความเทากันของ 2 สมการดังกลาวเปนจริง

เฉพาะทรงกลมของไหลสมบูรณเทานั้น เน่ืองจากทรงกลมของไหลสมบูรณมคีวามดันเทากันในทุกทิศทาง 

 

 

 

 



บทความ วารสารวิทยาศาสตร มข. ปท่ี 46 เลมที่ 3 421 

 

3. สมการริคคาต ิ

 หัวขอนี้เปนการทบทวนงานวิจัยเก่ียวกับ เทคนิคการแกสมการเชิงอนุพันธ โดยใชคุณสมบัติของสมการริคคาติ (อภิสิทธิ์, 

2559; Kauser and Islam, 2016) ในหัวขอที่ผานมา เรามีสมการเชิงอนุพันธ 3 สมการ คือ สมการที่ (2.5a) ถึง (2.5c) สําหรับตัวแปร

ไมทราบคา 4 ตัว  ( )r , p(r), A(r) และ u(r) แตการแกสมการเพื่อหาตัวแปรท้ังสี่ตัวนั้นจะตองมี 4 สมการ ดังนั้น ในบทความนี้จะใช

ผลเฉลยเริ่มตน A(r) และ u(r) ที่ทราบคาอยูแลวและใชคุณสมบัติของสมการริคคาติซึ่งไดมาจากสมการ (2.7) เพื่อหา A(r) และ u(r) ตัว

ใหม จากนั้น แทนคาในสมการ (2.5) เพื่อหา  ( )r  และ p(r) ในการหาสมการริคคาติ จัดรูปสมการ (2.7) ใหมจะได 

 22 2

1 1 ( ) 1 ( )
( ) ( ) ( )

2 ( ) 2 ( )( )

u r u r
A r A r A r

ru r r u rr r u r

           
   (3.1) 

สมการ (3.1) เรียกวาสมการเชิงอนุพันธริคคาตซิึ่งมีรูปทั่วไปคือ 
2( ) ( ) ( ) ( ) ( ) ( )f r P r Q r f r R r f r         (3.2) 

โดยท่ี 

f(r) = ( )A r , P(r) = 
2 2

1 1 ( )

2 ( )( )

u r

ru rr r u r


  , Q(r) = 

1 ( )

2 ( )

u r

r u r


    และ R(r) = -1  (3.3) 

ให u(r) = u0(r) และ f(r) = f0(r) คือผลเฉลยของสมการ (3.2) ดังนั้น 
2

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )f r P r Q r f r R r f r         (3.4) 

โดยท่ี 

P0(r) = 0
2 2

00

( )1 1

2 ( )( )

u r

ru rr r u r


  , Q0(r) = 0

0

( )1

2 ( )

u r

r u r


    และ R0(r) = -1   (3.5) 

ดังนั้น f(r) = f0(r) คือผลเฉลยหนึ่งของสมการ 
2

0 0( ) ( ) ( ) ( ) ( )f r P r Q r f r f r         (3.6) 

ผลเฉลยอีกตัวหนึ่งของสมการ (3.6) คือ 

f(r) = f0(r) + F(r)      (3.7) 

โดยท่ี F(r) เปนฟงกชันท่ีจะตองหา แทนสมการ (3.7) ลงในสมการ (3.6) และใชสมการ (3.4) จะได 

    2
0 0( ) [ ( ) 2 ( )] ( ) ( )F r Q r f r F r F r      (3.8) 

สมการ (3.8) คือสมการแบรนูลลี ซึ่งสามารถหาคําตอบได โดยเปลี่ยนตัวแปรดังน้ี (พรชัย, 2550) 


1

( )
( )

F r
z r

      (3.9) 

แทน F(r) ในรูปของ z(r) ลงในสมการ (3.8) จะได 

 0 0( ) ( ) 2 ( ) ( ) 1z r Q r f r z r         (3.10) 

ซึ่งเปนสมการเชิงอนุพันธสามัญเชิงเสนอันดับหนึ่ง ที่สามารถหาผลเฉลยได โดยใชตัวประกอบการอินทิเกรต (พรชัย, 2550) 

 นอกจากนี้ สมการริคคาติ (3.6) สามารถแปลงเปนสมการเชิงอนุพันธสามัญเชิงเสนอันดับหนึ่งได โดยแทนคา P0(r) และ Q0(r) 

จากสมการ (3.5) ลงในสมการ (3.6) และจัดรูปใหมจะได 

   

       
 

2 2 2

0 0

2 ( ) ( ) ( ) 1 2
( ) ( )

( ) 1 ( ) 1

r f r r f r rf r
u r u r

r rf r r rf r
   (3.11) 

ดังนั้น u(r) = u0(r) คือผลเฉลยเฉพาะของสมการ 



422 KKU Science Journal Volume 46 Number 3 Review 

 

   

       
 

2 2 22 ( ) ( ) ( ) 1 2
( ) ( )

( ) 1 ( ) 1

r f r r f r rf r
u r u r

r rf r r rf r
   (3.12) 

ผลเฉลยทั่วไปของสมการ (3.12) คือ 

u(r) = u0(r) + g(r)      (3.13) 

โดยท่ี g(r) คือฟงกชันเติมเต็ม แทนสมการ (3.13) ลงในสมการ (3.12) จะได 

   

               
 

2 2 2 2 2 2

0 0

2 ( ) ( ) ( ) 1 2 ( ) ( ) ( ) 1
( ) ( ) ( ) ( )

( ) 1 ( ) 1

r f r r f r rf r r f r r f r rf r
u r u r g r g r

r rf r r rf r
 

 
 


2

( ) 1r rf r
    (3.14) 

ใชสมการ (3.11) เพื่อกําจัด u0(r) จะได 

 

      


2 2 22 ( ) ( ) ( ) 1
( ) ( ) 0

( ) 1

r f r r f r rf r
g r g r

r rf r
    (3.15) 

นั่นคือ ถา {u0(r), f0(r)} คือทรงกลมของไหลสมบูรณ แลว {u0(r) + g(r), f0(r) + 1/z(r)} คือทรงกลมของไหลสมบูรณดวย เพราะตางก็

เปนผลเฉลยของสมการ (2.7) ซึ่งเปนเงื่อนไขของการเปนทรงกลมของไหลสมบูรณ 
 

4. การสรางผลเฉลยตัวใหมจากผลเฉลยมิงคอฟสก ี

 ในหัวขอนี้ เราจะนําเทคนิคในหัวขอที่แลวมาประยุกตใชกับ คําตอบทรงกลมของไหลสมบูรณบนกาลอวกาศแบบมิงคอฟสกี 

ซึ่งเปนเปาหมายของบทความนี้ กาลอวกาศแบบมิงคอฟสกีคือกาลอวกาศ 4 มิติแบบแบนราบ ซึ่งเปนกาลอวกาศที่ปราศจากความโนม

ถวงทุกบริเวณ เมทริกของกาลอวกาศแบบมิงคอฟสกีมีคาดังน้ี 

       2 2 2 2 2 2 2sinds dt dr r d d     (4.1) 

นําสมการ (4.1) เทียบสัมประสิทธิกั์บสมการ (2.1) จะได 

02 ( ) 1A re  และ 02 ( ) 1B re      (4.2) 

ดังนั้น 
 02 ( )

0 ( ) 1B ru r e       (4.3) 

จากพจนแรกของสมการ (4.2) หาอนุพันธเทียบ r จะได 

 02 ( )
02 ( ) 0A rA r e       (4.4) 

ดังนั้น 

 0 0( ) ( ) 0f r A r       (4.5) 

แทนสมการ (4.3) ลงในพจนที่สองของสมการ (3.5) จะได 


  0

0
0

( )1 1
( )

2 ( )

u r
Q r

r u r r
      (4.6) 

แทนสมการ (4.5) และ (4.6) ลงในสมการ (3.10) จะได 

  
1

( ) ( ) 1z r z r
r

      (4.7) 
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นํา r คูณตลอดสมการ (4.7) เพื่อทําใหเปนสมการแมนตรง จะได 

  ( ) ( )rz r z r r       (4.8) 

ดังนั้น 

  ( )
d

rz r r
dr

       (4.9) 

อินทิเกรตเทียบ r ทั้งสองขางของสมการ (4.9) จะได 

 
2

( )
2

r
rz r c        (4.10) 

หารดวย r ตลอดสมการ (4.10) จะไดผลเฉลยทั่วไปคือ 


  

2 2
( )

2 2

r c r c
z r

r r
     (4.11) 

โดยท่ี c คือคาคงที่ของการอินทิเกรต แทนสมการ (4.5) และ (4.11) ลงในสมการ (3.7) (และใชสมการ 3.9) จะได 

  
0 2

1 2
( ) ( )

( ) 2

r
f r f r

z r r c
     (4.12) 

ในกรณีพิเศษ c = 0 จะได 


2

( )f r
r

       (4.13) 

แทนคาฟงกชัน f(r) นี้ลงในสมการ (3.15) จะได 

  
2

( ) ( ) 0
3

g r g r
r

      (4.14) 

จัดรูปและอินทิเกรตเทียบ r ทั้งสองขางของสมการ (4.14) จะได 


 

( ) 2

( ) 3

g r
dr dr

g r r
      (4.15) 

นั่นคือ 

  1

2
ln ( ) ln( )

3
g r r c       (4.16) 

ดังนั้น ผลเฉลยของสมการ (4.16) คือ 

 2/3( )g r ar        (4.17) 

โดยท่ี c1 คือคาคงที่ของการอินทิเกรตและ a =  12ce  คือคาคงตัวใด ๆ ที่ไมเปนศูนย 

แทนสมการ (4.13) ลงในพจนแรกของสมการ (3.3) และอินทิเกรตเทียบ r จะได 

     2

2
( ) ( ) 2 ln( )A r f r dr dr r c

r
     (4.18) 

คูณตลอดสมการ (4.18) ดวย 2 จากนั้นหาคาฟงชันเอกซโปเนนเชียลของทั้งสองขาง จะได 

2 ( ) 2 4A re b r        (4.19) 

โดยท่ี b2 = 22ce  คือคาคงตัวใด ๆ ที่ไมเปนศูนย แทนสมการ (4.3) และ (4.17) ลงในสมการ (3.13) จะได 

  
 

2 ( )
2/3

0

1 1 1

( ) ( ) ( ) 1

B re
u r u r g r ar

     (4.20) 
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แทนสมการ (4.19) และ (4.20) ลงในสมการ (2.1) จะได 

     


     
12 2 4 2 2/3 2 2 2 2 21 sinds b r dt ar dr r d d    (4.21) 

ผลเฉลยในสมการ (4.21) เรียกวา ผลเฉลยโทลแมน 5 (n = 2) อยางไรก็ตาม ผลเฉลยนี้ไมใชผลเฉลยท่ีถูกคนพบใหม แตเปน

ผลเฉลยที่เคยถูกคนพบมาแลวโดย ริชารด โทลแมน ในป ค.ศ. 1939 โดยโทลแมนไดทําการแกสมการไอนสไตนโดยตรง (Tolman, 

1939) 
 

5. การหาความหมายทางฟสิกสของผลเฉลยโทลแมน 5 (n = 2) 

 โทลแมนไดวเิคราะหผลเฉลยโทลแมน 5 ในเชิงฟสิกสไว ในกรณีที่ n = 1/2 (Tolman, 1939) ในหัวขอนี้ จะตรวจสอบวาผล

เฉลยโทลแมน 5 (n = 2) ในสมการ (4.21) มีความหมายทางฟสิกสหรือไม โดยการแทน A(r) จากสมการ (4.18) และ 2 ( )B re  จาก

สมการ (4.20) ลงในสมการ (2.5a) และสมการ (2.5b) จะได 

     ( )r  = 


 4/3

5

24

a

r
      (5.1a) 

    p(r) = 
 

4/3 2

5 1

8 2

a

r r
     (5.1b) 

เน่ืองจากความหนาแนนตองมีคาเปนบวกเสมอ ดังน้ัน a < 0 เราเลือก a =  2  โดยที่   คือคาคงตัวใด ๆ ที่ไมเปนศูนย 

ดังนั้น ความหนาแนนและความดันจึงเปน 

     ( )r  = 



2

4/3

5

24 r
      (5.2a) 

    p(r) = 


 


2

2 4/3

1 5

2 8r r
     (5.2b) 

จะเห็นไดวาความหนาแนนศูนยกลางและความดันศูนยกลางมีคาเปนอนันต อยางไรก็ตาม ในทางฟสิกส ระบบที่มีความดัน

ศูนยกลางเปนอนันตจะไมสามารถเกิดข้ึนไดจริง เนื่องจาก ทรงกลมของไหลสมบูรณอาจเกิดการยุบตัวหรือระเบิดได ซึ่งไมสอดคลองกับ

เงื่อนไขทรงกลมสถิตย (Schwarzschild, 1916; Buchdahl, 1959) 

 เราสามารถหารศัมี R ของทรงกลมของไหลสมบูรณไดจากเงื่อนไข p(R) = 0 ดังนั้น 




3

8 5

25
R       (5.3) 

ความหนาแนนที่ผิวทรงกลมของไหลสมบูรณมีคา 

 


 
6125

( )
384

b R      (5.4) 

จะเห็นไดวา คาความดันและความหนาแนนเปนไปตามเงื่อนไขทางฟสิกส กลาวคือ ความดันมีคาลดลงจากคาอนันตที่

ศูนยกลางจนเปนศูนยที่ผิวของทรงกลมของไหลสมบูรณ และความหนาแนนมีคาลดลงจากคาอนันตที่ศูนยกลางจนเปนคา ๆ หนึ่งซึ่ง

ยังคงเปนบวกที่ผิวของทรงกลมของไหลสมบูรณ นอกจากนี้ เรายังสามารถหามวลของทรงกลมของไหลสมบูรณที่มีรัศมี r   R ใด ๆ ได

จากความหนาแนนในสมการ (5.2a) 

      
2 2

2 2/3 5/3
3

5
( ) 4 ( )

6 2
m r r r dr r dr r c     (5.5) 

โดยท่ี c3 คือคาคงที่ของการอินทิเกรต ที่จุดศูนยกลางของทรงกลมของไหลสมบูรณ มวลเริ่มตนเปนศูนย นั่นคือ m(0) = 0 จะ

ได c3 = 0 ดังนั้น 
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


2
5/3( )

2
m r r       (5.6) 

เน่ืองจากทรงกลมของไหลสมบูรณมีรัศมี R ดังน้ัน มวลทั้งหมดของทรงกลมของไหลสมบูรณคือ 


 

3

16 5
( )

125
M m R      (5.7) 

อัตราสวนของมวลตอรัศมีมีคา 


2

5

M

R
       (5.8) 

ซึ่งนอยกวา 4/9 ดังนั้น อัตราสวนนี้เปนไปตามลิมิตบุชดาหล (Buchdahl, 1959) ซึ่งเปนเงื่อนไขที่ทําใหดาวฤกษคงรูปอยูได โดยไม

ยุบตัวไปเปนหลุมดํา 

 บริเวณภายนอกของทรงกลมของไหลสมบูรณเปนสุญญากาศ เมทริกของกาลอวกาศ ณ บริเวณดังกลาว เรียกวา เมทริกแบบ

ชวารสชิลด ซึ่งมีรูปแบบดังน้ี 

       


      
1

2 2 2 2 2 2 22 2
1 1 sin

M M
ds dt dr r d d

r r
  (5.9) 

ดังนั้น ที่ผิวของทรงกลมของไหลสมบูรณ ผลเฉลยภายในสสารตองเทากับผลเฉลยภายนอก นั่นคือ จากสมการ (4.21) 

  2/3 2
1 1

M
aR

R
 และ  2 4 2

1
M

b R
R

    (5.10) 

แทนคา a =  2  แทนคา R จากสมการ (5.3) และแทนคา M/R จากสมการ (5.8) พบวาสมการแรกของสมการ (5.10) เปนจริง

เสมอสําหรับ   ใด ๆ ที่ไมเปนศูนย สําหรับสมการท่ีสองของ (5.10) จะได 




12
2 3125

4096
b       (5.11) 

ดังนั้น ผลเฉลยโทลแมน 5 (n = 2) ที่มีความตอเนื่องกับผลเฉลยภายนอกของชวารสชิลดที่ผิวของทรงกลมของไหลสมบูรณจึงมีรูปแบบ

ดังนี ้

       


     
12

12 4 2 2 2/3 2 2 2 2 23125
1 sin

4096
ds r dt r dr r d d   (5.12) 

โดยท่ี r   R  
 

6. สรุป 

 ในบทความนี้ ไดใชคุณสมบัติของสมการริคคาติเพ่ือหาผลเฉลยแมนตรงตัวใหมท่ีเปนทรงกลมของไหลสมบูรณจากผลเฉลย

แมนตรงเดิมที่มีอยูแลวซึ่งเปนทรงกลมของไหลสมบูรณเชนกันโดยไมตองแกสมการไอนสไตนโดยตรง ผลลัพธไดแสดงวา ถาเริ่มตนดวย

ผลเฉลยมิงคอฟสกี ผลเฉลยแมนตรงตัวใหมจะเปนผลเฉลยโทลแมน 5 (n = 2) ซึ่งมีความหมายทางฟสิกส กลาวคือ คาความดันและ

ความหนาแนนเปนคาบวกเสมอ โดยท่ีความดันมีคาลดลงจากคาที่ศูนยกลางจนเปนศูนยท่ีผิวของทรงกลมของไหลสมบูรณ และความ

หนาแนนมีคาลดลงจากคาที่ศูนยกลางจนเปนคา ๆ หนึ่งซึ่งยังคงเปนบวกที่ผิวของทรงกลมของไหลสมบูรณ 
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