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ABSTRACT
The linearization problem of fourth-order ordinary differential equations by the generalized Sundman
transformation, i.e.,

u =F(x,y),
dt = G(x,y)dx,

is considered in the paper. Necessary and sufficient conditions for fourth-order ordinary differential equations to
be linearizable into the general form of a linear fourth-order ordinary differential equation are obtained. Here, a
complete solution is given for the case F, = 0. We also give an example which apply our procedure for a
nonlinear fourth-order partial differential equation

i U = (R + Pu) e + Pl + Ml + Wbl + F1iZ,
where &, 8,7, i, V, and % are arbitrary constants.
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INTRODUCTION

Differential equations are used as an important tool to solve problems of sciences and physical
phenomena. In general, these equations are very difficult to find solutions. One of the fundamental methods for
solving them makes use of a change of variables that transform a given differential equation into another
differential equation with known properties. Since the class of linear equations is considered to be the simplest
class of equations, there arises the problem of transforming given differential equations into linear equations. This
problem is called the linearization problem, which is a particular case of an equivalence problem.
Transformations used for solving a linearization problem are point transformations, contact transformations,
tangent transformations, and generalized Sundman transformations.

The linearization problem has been studied in many publications. First of all, Lie (1883) studied the
problem of linearizing a second-order ordinary differential equation by point transformations. He found that any
linearizable second-order ordinary differential equation can be at most cubic in the first-order derivative, and
provided a linearization test in terms of its coefficients. Grebot (1997) studied the linearization of third-order
ordinary differential equations by means of a restricted class of point transformations, namely, t = ¢(x), u =
Y(x,y). However, the problem was not completely solved. Complete criteria for linearization by means of point
transformations were obtained by Ibragimov and Meleshko (2005). The linearization of fourth-order ordinary
differential equations by point transformations was discussed by lbragimov et al. (2007).

Lie also noted that all second-order ordinary differential equations can be transformed into the trivial
equation u” =0 by means of contact transformations, but this is not the case for higher-order ordinary
differential equations. Therefore, the linearization problem using contact transformations becomes interesting for
ordinary differential equations of order greater than two. Linearization of third-order ordinary differential
equations with respect to contact transformations was studied by Neut and Petitot (2002). lbragimov and
Meleshko (2005) presented the explicit form of the linearization criteria. Dridi and Neut (2005) solved a particular
linearization problem for a fourth-order ordinary differential equation. They found conditions for a fourth-order
ordinary differential equation to be equivalent to u™® = 0 under contact transformations. Complete criteria for
fourth-order ordinary differential equations to be linearizable via contact transformations were given by Suksern
et al. (2009).

Tangent transformations were applied for the linearization problem of fourth-order ordinary differential
equations. Complete study of fiber preserving transformations (¢, =¥, = 0) mapping fourth-order ordinary
differential equations to trivial third-order ordinary differential equation y'’ =0 was given in Suksern and
Meleshko (2014). Nakpim (2016) found necessary and sufficient conditions for third-order ordinary differential

equations to be equivalent to the Laguerre form of a linear second-order ordinary differential equation u"' = 0.
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The generalized Sundman transformation was earlier considered for second-order ordinary differential
equations by Duarte et al. (1994) using the Laguerre form. Nakpim and Meleshko (2010a) gave examples which
show that the Laguerre form is not sufficient for the linearization problem via generalized Sundman

transformations. Criteria for a third-order ordinary differential equation to be equivalent to the linear equation
u" =0

with respect to the generalized Sundman transformation were presented in Euler et al. (2003). Nakpim and

Meleshko (2010b) obtained necessary and sufficient conditions for a third-order ordinary differential equation to

rnr

be linearizable into u"'+au =0, where a is a constant. Some applications of generalized Sundman
transformations to ordinary differential equations were considered in Berkovich (2001) and earlier papers, which
were summarized in Berkovich (2002). Suksern and Tummakun (2014) considered the linearization problem for
nonlinear fourth-order ordinary differential equations to be equivalent to the trivial equation u® =0 by the
generalized Sundman transformation.

According to the Laguerre theorem (1879), in any linear ordinary differential equations, the two terms of
second-highest order can be simultaneously removed by point transformations. Thus, the Laguerre form of a

linear ordinary differential equation is

Y™+ ay 3y 4+ @ ()Y + ap()y = 0.
Although the composition of point transformations is a point transformation, this is not the case for generalized
Sundman transformations: the composition of a point transformation and a generalized Sundman transformation
is not necessarily a generalized Sundman transformation. Hence, for the linearization problem via generalized
Sundman transformations, we need to use the general form of a linear ordinary differential equation instead of
the Laguerre form.

The solution of the linearization problem via the generalized Sundman transformation of fourth-order
ordinary differential equations given in Suksern and and Tummakun (2014) only gives particular criteria for
linearizable equation. In this paper, we find necessary and sufficient conditions which allow a fourth-order
ordinary differential equation y® = H(x,y,y’,y",y"") to be transformed into a linear equation u® + au'" +
pu" +yu' +nu =8 where a, B, y, n,and & are arbitrary constants via the generalized Sundman

transformation. Complete analysis of the compatibility of arising equations is given for the case F, = 0.

GENERALIZED SUNDMAN TRANSFORMATIONS
A generalized Sundman transformation is a non-point transformation defined by the formulae
u(t) =F(x,y), dt=G(x,y)dx, F,G#0. (1)
Let us explain how the generalized Sundman transformation maps one function into another. Assume that y,(x)

is a given function of x. Integrating the second equation of (1), we obtain
t=0Q(x)

for some function Q(x). Using the inverse function theorem, we find that x = Q~1(t). Substituting x into the
function F(x, y,(x)), we obtain the transformed function
uo(®) = F (Q71(0),70(Q71(®)).
Conversely, let uy(t) be a given function of t. Using the inverse function theorem, we solve the equation
uy(t) = Fx,y)
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with respect to y, where y = ¢(x, t) for some function ¢(x, t). Solving the ordinary differential equation
% = G(x, ¢(x, t)),
we find that t = H(x) for some function H(x). The function H(x) can be written as an action of a functional
H = L(u,). Substituting ¢ = H(x) into the function ¢(x,t), the transformed function y,(x) = ¢(x, H(x)) is
obtained.
Notice that for the case G, =0, the generalized Sundman transformation becomes a point

transformation. Hence, we shall assume from now on that G, # 0.

NECESSARY CONDITIONS FOR LINEARIZATION
We start by obtaining necessary conditions for the linearization problem. First, we find the general form
of fourth-order ordinary differential equation

y(4) — H(x' y, yr, yrr, ym),
which can be mapped via a generalized Sundman transformation

u(t) = F(x,y), dt = G(x,y)dx, (2)
into the general form of linear equation
u® +au” +pu" +yu +nu =46, (3)

where a, B, y, n, and § are constants. The independent variable t is defined by the functional L(w). If G,, # 0
and the coefficients of (3) are not constants, then the substitution of t into (3) gives a functional equation.
The function u and its derivatives u’,u”,u"’, and u™® are defined by the first formula (2) and its
derivatives with respect to ¢, i. e,
u' = %(Fx +Ey",
u' = %(ZnyGy’ + FE,G+ Fnyy’2 - Fx(Gx + ny’) + Fy(Gy” - yy’2 - xy’)) ,
u” = —[62(Fyyy'® + 3Fuyy' + 3Feyy' + Fre) — 3FG(GyY' + Gy) + 3E, G (Gy" — 2G,y'%)
+3E,6y' (G y" — Gyy'* = Gey') + (By' + E)(—Gyx G — 26, Gy' — G, GY'®)
+3E(G2y"* + G2) — FG,G(y" — 6Gy") — 3F,G,(Gy" — 2G,y'* — G,y") — F,G,y' (4Gy"
—3G,y'%) + E,G*y""],
UB = (63 (Fryyyd + 4Fryyyd"® + 6Fenyyy' + 4Feyy' + Fee) + (G + Go) (—6Fe G2
+10F, Gy, Gy + 20F, G, Gy'* + 10E,G,,, Gy'* — 45E,G,G,y'* + 10F, G, Gy’
+20F,GyyGy' — 45F,GyGyy' + 10F, Gy G) + 6F, G2(Gy" — 3Gyy'* — 3G,y")
+6F,,,,G2y'(2Gy" = 3G,y'* — 3G,y") + 6F,,,,Gy'*(G?y" — G,y'? — G,Gy") + (E,y’
+E) (—GrxxG? = 3Gy G2Y' = 3Gryy G2y = Gy G2y'*) — F G (3E, Gy + 4G,y
+4G,,y'? + 86,y + 4Gyy) + 15F, G (G2y'* + 2G,G,y' + G2) + 4F,,,G*(Gy""
—2G,,y"° — 4G y'? — 26, y") + 30F,,GY' (G2y'* + 2G,G,y' + G2) — F,,,G%y" (26G,y’
+18G,) + E,,G2(4Gy'y" +3Gy"? — 22G,y"*y" — 18G,y'y" — 4G, y"* — 8G,,y"°
—4G,y'"2) + 15E,,G(G2y'" +2G,G,y"° + G2y'*) + 5E.G2y' (2Gy" — 3G,y'?)
—E.G(G,Gy" —10G,G,y" + 3G,,Gy'y") — 15G3(F,y' + F,) — 4F,G%y"*(G, + Gyy)
—F,Gy'y" (11GGyy — 40G,Gy) + F, G, G(15G,y" — 6Gy"™") — TE,G*y' (Gyy"" + Gyyy'y")
+5F,G2y"*(5Gy" — 3G,y'*) + F,G3y®W].
Substituting u’, u”,u"", and u™ into (3) with constant coefficients, we obtain equation
YD+ A0y y" + Y)Y+ LYY+ Y)Y Y+ A, y)y" + As(x, y)y”
+ 266, )y + 2,06, y)y"° + 256, 1)y"" + Ao(x, 1)y + A1o(x,y) = 0, (@)
where the coefficients 1;(x,y) (i = 0,1, 2, ...,10) are related to the functions F and G in the following way:

"2
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Ao =(4F,,G — 7F,G,)/(F,G), (5)
A -(4F,,G — F,G, — 6F,G, + F, aG?)/(F,G), (6)
A -(6F,y,G? — 22F,,,G,G — 7F,G,,G + 25F,G2)/(F,G?), (7)
A3 -(12F,,,G* = 26F,,G,G — 3F,G,,,G — 3F,,,G(6G, — aG?) — 11F,G,,,G + 10F,G2

+4F,G,(10G, — aG?)/(F,G?), (8)
A4 -(3E,,G — 4F,G,)/(F,G), 9)
s ~(6Fyyy G? — 4F;, G, G — 3F,,G(6G, — aG?) — 3F, Gy, G — 4F, GG + F,G,(10G, — aG?)

+3F,G,(5G, — aG?) + F,fG*)/(F,G?), (10)
A6 =(FyyyyG® — 6F,,G,G? — F,G,,,,G* — 4F,,,G,,G* + 15F,,G%G + 5F, G, (2G,,G

—3G2))/(F,G*), (11)
A, ~(4FyyyG® — 18F,,, G, G* — F,,,G*(6Gy + aG?) — 3F, Gy, G* — F, Gy, G* + 30F,GZG

—GyyG(8F,yG — 10FG, — F,aG?) + 3F,,,G,G(10G, — aG?) — 4G,,G(2F,,,G — 5F,G,)

+ 2F,G,(5G,,G — 2G2) — 3G3 (5F, — F,aG?))/(F,G?), (12)
g ~(6FyyyyG® — 18Fy, G, G* — 3F,), G*(6Gy — aG?) — 3F, Gy G? — 3F Gy G?

—2F,,G(8Gy,G — 30G,G, + 3G,aG?) — F,G(4G,,, G — 15G2) + F,G,,,G(10G, — aG?)

+20G,, G(F.Gy + F,G,) — 3F.GZ(15G, — aG?) — 2F,G,yaG® + 3F,,,G,G (5G, — aG?)

—F,,G?*(4Gyy — BG®) + 10F,G,, G, G — F,G,(45G2 — 6G,aG* + BG*))/(F,G*), (13)
Ao ~(4F 2y G® — 6Fyx Gy G? — 3Fy,G*(6Gy — @G?) — F, Gy G* — 3F,Gryy G* — 8F,, G, G*

—8F,y Gy G + 2F,, BG° + (106, — aG?)(3F, Gy G + 2F, Gy G + F,Gyy) + 10F, G, G, G

—45F,G2G, + 6F,G,GyaG? + (6F,,G,G — 3F,G2)(5G, — aG?) — BG*(F,G, + F,G,)

+F,G°7)/(F,G?), (18)
/110 :(FxxxxG3 - FxxxGZ(6Gx - aGZ) - FxGxxsz - 4FxxGxsz

+(aG? + 5G,)(—3F, GG — 3FE,G2) + Fy fG° — F,Gyy@G® + 10F, Gy GG - F,G,fG*

+F,G® — 8G” + nFG")/(F,G*), (15)

where E,G # 0.

The necessary form of a fourth-order ordinary differential equation which can be mapped into a linear

fourth-order ordinary differential equation (3) via the generalized Sundman transformation (2) is presented by

equation (4).

SUFFICIENT CONDITIONS FOR LINEARIZATION

To obtain sufficient conditions, we have to solve the compatibility problem of the system (5)-(15) by

considering these equations as an overdetermined system of partial differential equations, where coefficients

Ai(x,y)(@ = 0,1,2,..,10) are known functions, and F, G are unknown functions with the independent variables

x,y. Further analysis of the compatibility depends on the quantity of F.. Thus, for linearization problem, we need

to study two cases: F, = 0 and F, # 0. Here, a complete solution for the case F, = 0 is given.

Solving equation (5)(7), (9)-(11), and (14)-(15), we obtain
=(Fy (=440 + 744))/5,

-(6G, + GA,)/G?,

(7024, — 623 + 46194, — 251, — 3442) /15,

=(G(—=34y +41,))/5,

-33G2 + 11G,GA, — 22,,G* + 3G% A,
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A4yy :(15),23/ - 30143/2.0 - 25/14_3//14 - 9/1%).4 + 15/10/12 - 16/10/1‘21, + 10/12/14 + 19}.421_

—45),)/15, (21)
y ~(216G2 + 108G2G A, — 24G,A1,G? + 7GyG2 Ay + 366, G2 A5 — 6713, G3 — TA1,G3A,

+36G31,)/36G°, (22)
B “(=F, 10 + NFG*)/G*. (23)

Comparing the mixed derivatives (F,),y, = (F,y), and differentiating @, 8,¥, and & with respect to x and y, we

obtain the following equations:

Aow  =(TAg)/4, (24)
Gy  -(12G2 + G,GA, — 1,,G?)/6G, (25)
36G Ao — 48G, Ay + 101,,G — 1514,G + 6GAoA; — 8G A4 A, = 0, (26)
24G, Ay, + 116G A% — 366G As — 122,,,G — 114,,GA; + 1815,G =0, (27)

792G2 2 — 1056G2 A, + 220G, A1,G — 330G, A4, G + 264G, GAgdy — 352G, G A,

—4021,,G? — 4821, G* A + 642;, G2y — 6421, G? Ay — 5514,G2 A1 + 6045, G>

+72G? A5 — 96G2 2,15 = 0, (28)
288G2 A1, + 132G223 — 432G2As — 36Gy A1y G — 30G, A1, G Ay + 216G A5, G + 7G,G A

+36G,GAy A5 — 648G, GAg — 361130, G? — 4221, G?A; — 1822,G% — TA,,G*A2

—362,,G%A5 + 21619,G% =0, (29)
7776G3 2 — 10368G3A, + 2160G22,,G — 3240G22,,G + 3888G2G A, — 5184G2G A4,

—480Gy A1y G? — 864G, A1, G? Ay + 11526, A1, G? Ay + 280G, A1,,G? Ay — 10806, A4, G224,

+720G, A5, G? + 252G, G* g2 + 1296G, G2 245 — 336G, G2A2 2, — 17286, G*A4As

~ 140213, G32; — 120213, G — 21621, G3 Ay + 28821, G3 2y — 1402, 4, G

1202, 24, G3 + 25224,,G3ApA; + 3361,,G3A, A, — 352,,G3A% — 1801, G A

+720A0,G? + 1296G3AgAg — 1728G3 429 = O, (30)
4G, 19 — A10xG = 0, (31)
1 = (510y + 849410 — 941044)/(5G™). (32)
Comparing the mixed derivatives (Gy)xx = (Gxx)y and differentiating n with respect to x and y, we obtain

—4G A1y + 126G Agy + 415y G — 6443, G + A4 GA; = 0, (33)
—20GyA19y — 32GxAgA1g + 36GyA1044 + 5410yyG + 8210xGAg — IA10xGAs + 524, GA19 = 0, (34)
Aoyy = (6021959 + 7510544 — 8544510 — 4845219 + 68191944 + 404,94, — 3211513)/15. (35)
Further analysis of the compatibility depends on A4,.

Caseldp 0

From equation (31), we find

Gy = (A10xG) /4210 (36)
Substituting G, into equations (8), (12)-(13), (26)-(30), (33) and comparing the mixed derivatives (Gy)y = Gyy,
(Gy)y = (Gy)x, we get the conditions

3h10xhe — Mioxhs — 11Audio — 425 Asohs + 4Ag0hs = O, (37)
Aaxy  =(6A10xAay + 6d10xAoAs — 3hioxAy — 6410545 — 6AaxAgdig + 4AayAidig + 42041 A1 04

—421 1002 — 42141045 + 1221027)/(924,), (38)
Aaxx  =(=12A1 0250 + 1621, A5044 + 3250, 40 — 425044 + 5A10xdaxdio + I10xAoA1 A1

—12210x M A10ds — 2024, 24 250 + 8 AgA30As — 24230445 + 402A3,15)/(3023,), (39)

Aly :(_9210.7610 + 12110)‘/‘14 + 15 /14)()'10 - 6).0).1).10 + 8).1/110/14)/(10).10), (40)
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Alxx :(2411x110x - 442.1)().1).10 + 11Ale)'% - 361-10xﬂ-5 + 72/15x/110)/(48/110): (41)
Asy =241, 40450 — 32415 A5 0As — 3M0x A0 + 4 0xAs — 5AioxAaxAio — 214102 A0A1 410

128210, A Ag0rs + 5AagAiA2g — 56494200 + 484204, + 80420 Ag)/(6072,), (42)
Asax  =(16A3, 410 — 4A1xhdoxhs + 42122510 — 32015 h10s + 242105 dsx — AroxA

+12219x A1 A5 — 96410549 — 85, A1 1o + 1289, 410)/(32440), (43)

2-93/ :(7211952-10)(2-02-%0 - 96}-le%014 - 80)’1xﬂ'4xﬂ-§0 - 12/11x/10/11/1§0 +16 /11,(/11/1?0/14

_6/1§0x/10 + 81?0:(14 - 10)“%0x)'4x)'10 - 24’)&%0;(1011/110 + 32/1%0;:/11/110/14

—20210xAax A Ao + 15410, 4041 AT — 2202105401025 — 20410, A1 AT0 A4

+300110xﬂ§01415 - 20/110x/1%0/18 - 40/14x/1%/1§0 + 120/14x/1§0/15 + 264/15)(/10/1?_0

_4‘32/‘{535130/‘{4 + 240/‘18961%0 + 16/‘10/‘11/‘{?0/‘{5 - 1296).0).?0/19 - 48/‘11/‘1%01415

+801, 301 + 172823)1,10)/(72043,), (44)
My =(=2421, 20250 + 3221, M504 — 3X5 0, A0 + 4005 ds — 5A1oxdaxAio + 12410, A0 A1 A1

16210, A1 A1y — 5044043 22 + 1629220 As — 482204405 + 8042 15)/(4013,), (45)
Moxx  =(—8A1x 230 + 154 05 + 2410541 410)/(12440), (46)
Moy =(oxroy = AaxAfo)/Aso- (47)

Casedp =0

From equation (26), we obtain

6Gydys + 3011,G — 452,46 + GAAq; = 0, (48)

where 4;; = 184, — 244,.
In this case, the assumption 4;; =0 leads to the contradiction that G, = 0. Thus, we have to assume that
A1 # 0.
From equations (48), we obtain the derivative

Gy = G(—304;y, + 454 — A12411)/(6444). (49)
Substituting G, into equations (8), (12)-(13), (27)(30) and comparing the mixed derivatives (Gy)y = Gyy,

(Gy)y = (Gy),, we obtain the conditions

_30/113/ - 54A4X - 11111 - 36/’{1/’{4 + 36/’{3 = O, (50)
A4xy 2(_3601131143/ - 20/113,/111/14 + 180},13//’{2 - 120/’{1311121_ + 54014,(143, - l4x/1%1

+6/14X11114 - 27014)(},2 + 180}‘4.7(}"21- - 6},1},11/’{2 + 36111/’{7)/(27/’{11), (51)
Asy =(36A1,4%; — 18001%, + 810024, A4, + 510A;,4; 411 — 810043, — 54044, A1,
AlXX :(_72011){11}, + 1080)’136)'436 - 90)’13611111 - 330/‘{13,).% + 1080).13/).5 + 495).49(/1%

_162014)(15 + 10815)(},11 - 11},2/’{11 + 36/’{1/’{11},5)/(72111), (53)
Ay =(—1824,2% — 90042, + 40504, A4y — 240412, 411 — 405043, — 2704541413

—TX22, + 1222, — 360134445 + 108011 45)/(5401,,), (54)

Aswe  =(2822,41, + 12025, 25,4, — 18045, A5 dy + 1041, 30,1 — 48241145 — 72021, s,

+3025,43 — 36041, ;A5 + 28804125 + 108024, A5, — 454,23 + 54014, 4145

—432004,Ag — 365, A Ayg + 19200, 411 + A4y, — 1222554 + 964,411 1)/ (4814,), (55)
Asxy  =(810A1Aiy sy + 1821,40 421 + 45023, — 20254, A4 Ay + 7525422,

—16202;, 41145 + 202522, A1 + 1352,,A2A;; — 16225, 42, + 648045y 1;; + 22372,

_60/’{1/’{%1/’{5 + 18011/’111/’{4/’{5 - 540/11/111/18 + 64‘8/1%1/19)/(1620/111), (56)
Agxx  =(=1821,43; + 180047, — 8100444, — 150,541 4,1 + 810023, — 40524,A; 444
72222, + 122245 — 3605, 4,15 + 1080441,,)/(8101,,), (57)

Ayy  =(144021,2,, — 221,22, + 322121144 — 720212, + 4804125 — 216024544,
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+A4xﬂ§1 - 96),49[),11).4 + 1080).4)(/12 - 720/14x/1‘21_ - 12/11/111/12 + 72/111/17)/(36/111)- (58)
All obtained results can be summarized into the following theorems:

Theorem 1. Any fourth-order ordinary differential equation

y® =H(xy,y,y"y") (59)
which yields a linear equation

u® +au +pu" +yu +nu =6 (60)
via a generalized Sundman transformation

u(t) = F(x,y),dt = G(x,y)dx, E,G #0 (61)

has to be of the form
YO + 206y + L0 Y" + @YY+ 000y + ()Y
+506 Y)Y + A6 (0 )Y + 29Iy + A5 (63D + Ao (6, 3)Y" + Aro (1, y) = 0. (62)
Theorem 2. Sufficient conditions for equation (62) to be linearizable via a generalized Sundman

"2

transformation (61) with F, = 0 are as follows:

(a) If A9 # 0, then the conditions are (18), (21), (24), (35), and (37)-(47).

(b) If 2,0 = 0 and 444 # 0, then the conditions are (18), (21), (24), and (50)-(58).

Theorem 3. Provided that the sufficient conditions in Theorem 2 are satisfied, the transformation (61)
mapping equation (62) into the linear equation (60) is obtained by solving the following compatible system of
equations for the functions F(y) and G(x,y):

(a) (16), (19), and (36);

(b) (16), (19), and (49).

EXAMPLES
Example 1. Consider the nonlinear fourth-order ordinary differential equation
4) _ 76 2. m 5 2 o 8/3.0m . A% 44 5/3.02 _

y oz ) Y +3yy yry +9y3)’ y7ry” =0. (63)

Equation (63) is of the form (62) with coefficients
-76 5
A =0, Lh=0  A=3 B3=0, A=, A= —y8/3,
2’6 = 9‘;_43, A7 = O, /’{8 = _y5/3, Ag = 0, /110 = 0. (64)

It can be verified that coefficients in (64) do not satisfy the conditions of linearizability by point and contact
transformations (see lbragimov et al. (2007) and Suksern et al. (2009)). Although, we cannot apply results of
Suksern and Tummakun (2014), the coefficients in (64) obey the conditions for the case (b) in Theorem 2. Thus,
equation (63) is linearizable via generalized Sundman transformations.

To find the functions F and G, we have to solve the overdetermined system of partial differential

equations
F, -0, (65)
E,y =(7E,))/(3y), (66)
Gy =0, (67)
Gy =(4G)/(3y). (68)
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Choosing the simplest solution of the system (65)(68), ie., F = (3y'%/3) /10 and G = y*/3, we obtain the
linearizing generalized Sundman transformation
u = (3y'%/3) /10, dt = y*/3dx. (69)

Equations (17), (20), (22), (32), and (23) give
a=0, B =-1, y =0, n =0, 6=0.
Hence, the equation (63) is mapped by the transformation (69) into the linear equation

u® —u" =0. (70)
The general solution of equation (70) is
u=cet+cet +cy+yt, (71)

where ¢4, ¢y, c3, and ¢, are arbitrary constants. Applying the generalized Sundman transformation (69) to equation

(71), we have that the general solution of equation (63) is
3

10
)

10
y(x) = [? (cle¢(x) +ce @ 4y + c4qb(x))]
where the function t = ¢(x) is a solution of the equation

2
dt 110 . _t 5
T ?(cle + ce +c3+c4t)] .

From example, if ¢; = ¢, =c; =0and ¢, = 110, then we obtain the solution of equation (63) as

1
-(3)
y= 5 .

Example 2. Consider the nonlinear fourth-order ordinary differential equation

4) E T i i 12 0 i "o_ i 14 i 12 i —
YEASYY Gy Y ey a5y A5yt =0 (72)
Equation (72) is of the form (62) with coefficients
5 -3 1
AO = ;, A‘l = 0, Az = y_z, 13 = 0, ).4_ = 0, ).5 = —F,
3 1 1
16 = _F, /‘{7 = 0, Ag = F, Ag = 0, /110 = F (73)

It can be verified that coefficients in (73) do not satisfy the conditions of linearizability by point and contact
transformations (see lbragimov et al. (2007) and Suksernet al. (2009)). Again, we cannot apply results of Suksern
and Tummakun (2014). Nevertheless, the coefficients in (73) obey the conditions for the case A, # 0 in Theorem
2. Thus, equation (72) is linearizable via generalized Sundman transformations.

To find the functions F and G, we have to solve the overdetermined system of partial differential

equations
Fy =0, (74)
Ey, =(—4F)/y, (75)
Gy =0, (76)
Gy =(=3G)/y. (77

Choosing the simplest solution of the system (74)-(77), i.e, F =—1/3y3) and G =1/y3, we obtain the
linearizing generalized Sundman transformation

u=—1/(3y3), dt = 1/y3dx. (78)
Equations (17), (20), (22), (32), and (23) give

a=0, L =-1, y =0, n =0, 6=-1.
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Hence, the equation (72) is mapped by the transformation (78) into the linear equation

u® —y" = -1, (79)
The general solution of equation (79) is
u=cet+cet+cy+ eyt +t%/2, (80)

where ¢y, ¢y, c3, and ¢, are arbitrary constants. Applying the generalized Sundman transformation (78) to equation

(80), we have that the general solution of equation (72) is
1

3

2
y(x) = <—3 <cle¢(") + ™™ 4 03 + (%) + @)) , (81)

where the function t = ¢(x) is a solution of the equation
dt

e -3 (clet + et ey ot + t2—2>
AN APPLICATION TO NONLINEAR FOURTH-ORDER PARTIAL DIFFERENTIAL EQUATIONS

Nonlinear partial differential equations are encountered in various areas of model engineering. Exact
solutions of partial differential equations play a significant role in the proper understanding of qualitative features
of many phenomena and process in various areas of natural science. The motivation of this paper is to expand
the application of the generalized Sundman transformation for finding the general solution of the most interested
nonlinear fourth-order partial differential equation but with difficulty in solving:

Uee = (RU + 7UN)x + Pl + Bllazer + Tllllny + Py, (82)
where &, 8,7, i, ¥, and % are arbitrary constants (see Clarkson and Priestley (1999)).

We can solve this problem by the following steps:

1) reducing equation (82) to the nonlinear fourth-order ordinary differential equation by substituting the
form of traveling wave solutions;

2) reducing the nonlinear fourth-order ordinary differential equation to a linear fourth-order ordinary
differential equation by applying the criteria in Theorem 1, Theorem 2 and Theorem 3;

3) finding the general solution of the linear fourth-order ordinary differential equation and then
substituting back to the general solution of (82).
Example 3. Consider the nonlinear fourth-order partial differential equation

Use = (RU + PUD) e + Tl + Tlhyer + @yl + PUy, (83)
where &,ﬁ,)?, @, 7, and & are arbitrary constants. Of particular interest among solutions of equation (83) are
traveling wave solutions:
u(x,t) = H(x — Dt),

where D is a constant phase velocity and the arcument x — Dt is a phase of the wave. Substituting the
representation of a solution into equation (83), we obtain the nonlinear fourth-order ordinary differential equation

(VH + AD)H™W + H'H" + fH” + (27H + & —D?)H" +27H'* = 0. (84)
Assume that (VH + fiD?) # 0. Then equation (84) becomes

4) a g B "2 (27H +k—D2) " 2y
H*™ + (VH +JiD2) H'H™ + (VH +JiD?) H™ + (VH +JiD2) (VH +JiD2)
Equation (85) is of the form (62) with coefficients

Ao a =0 A,=0 A;=0 A,=

T (¥H +ED?)’

H'? =0. (85)

_k
(VH +5iD2)’
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1. = HHHE -D?
57 @H+Dp?)’
We can check that the coefficients in (86) satisfy the conditions for the case 4,5 = 0 and A;; # 0 in Theorem 2 if

de=0, 1,=0, dg=—2— Ag=0, A=0. (86)

(VH +7iD?)’

and only if
=0 &=

where ¥ # 0.

N |n

¥, =0, g = D2,

Thus, the overdetermined system (86) becomes
i 1120, /1220, /1320, ).420,

AOZ

2(VH +1iD?)’
2.5 = 0, 2'6 = 0, ).7 = 0, )'8 = 0, /19 = O, /110 = 0. (87)
with these conditions, the equation (85) becomes the nonlinear ordinary differential equation
4) 5V T —
H® + 26 1707 H'H 0. (88)

To applying the obtained results to this problem, replace x with x —Dt and y(x) with H(x — Dt). Then
equation (88) becomes
y(4‘) +

5V [

2wy Y T 0. (89)
To find the linearizing generalized Sundman transformation, we have to solve the overdetermined system of
partial differential equations

F, -0, (90)
E,, -(—=2VF,)/(@y + [iD?), (91)
Gy -0, (92)
G, =(—396)/2(¥y + jiD?). (93)

3
Choosing the simplest solution of the system (90)-(93), i.e.,, F=1/{Fy + jiD?) and G = 1/(¥y + iD?)z, we

obtain the linearizing generalized Sundman transformation

@ =1/(y +@b?), df = 1/(¥y + iD?)zdx. (94)
Hence, the equation (89) is mapped by the transformation (94) into the linear equation

a® = 0. (95)
The general solution of equation (95) is

= cy+ ¢ f + cpt% + c5t3, (96)

where ¢y, ¢q,¢; and ¢ are arbitrary constants. Applying the generalized Sundman transformation (94) to the

general solution (96), we obtain that the general solution of equation (89) is
-1 1 Y
Y=3 (c0+c1¢(x)+c2¢(x)2+c3¢(x)3 D )' ©7)

where the function ¢(x) is a solution of the equation

ai . 2
= = (co + rf + 62 + 65z,

Hence,

u(x, t) = 1;( ! ﬁDz),

CotC1p(x—DO)+c2p(x—Dt)2+c3p(x—DE)E

is the general solution of the equation

~ ~ 5.
Ute = (Dzu)xx T VUlyyy + PBlUyyee + Evuxuxxx- (98)
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