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ABSTRACT
The objective of Statistical Process Control (SPC) is to monitor the operation of in
control process. One of efficient tools of SPC is the Cumulative Sum (CUSUM) control chart
which widely used in several of application such as pharmaceutics, engineering, economics and
in the other area. For many processes of interest, observations which are closely spaced in time

will be correlated. The measure of performance used is the average run length (ARL). The main
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goal of this paper is to derive explicit formulas for ARL of the CUSUM control chart for
ARMAX(1,1) process and using exponential white noise. Checking the accuracy of results, the
result obtained from explicit formulas with numerical integral equation by Gauss-Legendre rule
were compared. An excellent agreement between the explicit solution and numerical solutions
was found. This fact is an additional indication that the explicit formulas are sufficiently high

accuracy.

AdARY: AMUYNINREY LLmuqﬁmUﬂmmazau ATLUIUNTT ARMAX(1,1)

Keyword: Average run length, Cumulative sum control chart, ARMAX(1,1) process.

1. INTRODUCTION

Statistical Process Control (SPC) plays an important role in the quality improvement
program of many companies. SPC employs statistical techniques to analyze a process to
determine if the process is in a state of “statistical control.” Deming (Deming, 1986) defines a
process being in a state of control if there is no indication of any special causes of variation.
Control charts are one of the major tools of SPC. They play an important role in an overall
quality program due to their ability to distinguish between special and common causes of
variability. The simplest control chart consists of a center line which is given the value of
average quality of the process. Upper and lower control limits are added to the control chart.
The control limits are based upon some multiple of the com m on case variability of the quality
of the process. These limits are set so that it is very unlikely that a process with only common
cause variability will produce a point outside the control limits. A control chart declares a
process out of control (or identifies a special cause of variability) if any point lies outside the
control limits. A property of control charts that would be very desirable is the ability to quickly
detect a special cause. The sooner that special cause is detected, the sooner the quality of that
product can be improved. Another very important property would be for the control chart to
only declare that a process is out of control when there is a source of special cause variability is
present. Due to testing error, sometimes control charts signal that the process is out of control
when there is no special causes present. This situation is referred to as a false alarm. Thus, the
desirable properties of a control chart would be that it quickly detects special causes when they
are present and the control chart would declare few false alarms.

The control chart such as the Shewhart control chart proposed by Shewhart (Shewhart,
1931), the cumulative sum (CUSUM) control chart first proposed by Page (Page, 1954), and the
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exponentially weighted moving average (EWMA) control chart was initially introduced by Robert
(Robert, 1959), these are used to monitor product quality and detect the occurrence of special
causes that may by indicated to out of control situations. Both CUSUM and EWMA control charts
are based on the assumption that observations being monitored will produce measurements
that are independent and identically distribution over time when only the inherent sources of
variability are present in the process (Smiley and Keoagile, 2005). There are many situations in
which the process is serially correlation such as in chemical processes if the choice of control
charts depends on the quality characteristics to be measured in the processes. Hence, these
systems have to be monitored by particular control charts.

The Cumulative Sum (CUSUM) control chart is primarily used to maintain (rather than
improve) current control of a process (Duncan, 1965). The primary advantage of the CUSUM
chart is that it will identify a sudden or persistent change in the process average more rapidly
than a Shewhart control chart incorporating the initial Shewhart interpretation rule. Furthermore,
it is often possible to pinpoint the exact sample where the change in the process occurred
(Wetherill and Brown, 1991). Goldsmith and Whitfield (1991) examined the effectiveness of
CUSUM control charts using computer simulation and have derived both OC curves and
equations from their studies. The performance of CUSUM control charts in the presence of
autocorrelation has been studied in a number of contexts. See, for example, Yashchin (1993),
VanBrackle and Reynolds (1997), and Timmer, Pignatiello, and Longnecker (1998). Accordingly,
the main goal of paper is to study the Fredholm type integral equations method to derive a
closed-form solution of average run length for Autoregressive with explanatory variable
(ARMAX(1,1)).

The average run length (ARL) is applied criterion of measures to confirm the
performance of a control chart. The frequently used operation characteristics are in control
average run length (ARLy)and out of control average run length (ARL,). Several methods for
evaluating ARL were found out by professionals in the areas of mathematics such as Markov
chain approach (MCA), Monte-Carlo simulation (MC) and integral equation approach (IE). In 1959,
Robert (Robert, 1959) presented the EWMA control chart by using Monte Carlo simulations
technique for evaluating the ARL. Harris and Ross (Harris and Ross, 1991) studied Cumulative
Sum with serially correlated observations via Monte Carlo Simulation. Crowder (1987) used
integral equations approach for compute ARLs of EWMA charts and found that the integral-

equation approach also extends easily to distributions that are nonnormal an important feature



642 KKU Science Journal Volume 45 Number 3 Research

that allows use of the approach when studying control procedures for process parameters other
than a process mean, the accuracy of this method is very good. Recently, Areepong and Novikov
(Areepong and Novikov, 2009) presented that when observation are exponential distribution, the
explicit solution of average run length and average delay for EWMA control chart are derived.
Mititelu et al. (Mititelu et al, 2010) introduced and explicit solution of ARL by Fredholm integral
equation of the second kind for one sided EWMA control scheme. Petcharat et al. (2013) derived
explicit formulas of ARL for EWMA and CUSUM control chart when observations are q order
Moving Average with exponential white noise by using the Integral Equation. Later Paichit (2016)
presented the exact expression of ARL for EWMA control chart for ARX(p) process by used
Integral equation.

The main purpose of this paper is to study the analytical and numerical method for the
derivation of solution of ARL for CUSUM control chart for ARMAX(1,1) observations with
exponential white noise for detecting of a change in process mean. The integral equation
technique is used to derive these explicit solution for ARL.

The procedures of the paper are as follows: In section 1, the introduction is presented,
Section 2 introduced the CUSUM control chart for ARMAX(1,1) processes. The derivation of
explicit formula of ARL is expressed in section 3, the numerical method for solving integral
equation to obtain approximation of ARL is presented in section 4, the comparison of results is

presented in section 5, the conclusions and discussion of the results is addressed in section 6.

2. THE ARMAX(1,1) PROCESS FOR CUSUM CONTROL CHART

The Cumulative Sum (CUSUM) control chart is primarily used to maintain (rather than
improve) current control of a process (Duncan, 1965). The primary advantage of the CUSUM
chart is that it will identify a sudden or persistent change in the process average more rapidly
than a Shewhart control chart incorporating the initial Shewhart interpretation rule.

Given Y, be a sequence of the Autoregressive with Explanatory variable: ARMAX (1,1)
random processes. The CUSUM processes regress the current value Yt on the past values of
itself Y and past random errors that occurred in past time periods & .. Thus, the current value
is a white noise error term.

The definition of CUSUM statistics based on ARMAX (1,1) process is the following

recursion:
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C,=max(C_, +¢& —a0);t=12,... (1)
where Ct is the CUSUM statistics, &;is a sequence of independent and identically distribution
random variables. The value ofCO is an initial value of CUSUM statistics, Co = u and a is non-
zero constant.

The Mixed Autoregressive-Moving Average Processes with Explanatory variable: ARMAX

(1,1) processes can be written as:

Y =¢Y X —BX -0
t ¢1t—1+( t /31 t—1j+gt 1%t -1 (2)

where &, is to be a white noise processes assumed with exponential distribution. The initial value
is normally to be the process mean, an autoregressive coefficient—-1<¢ <land a moving
average coefficient—1< 6, <1. It is assumed that the initial value of ARMAX (1,1) processesY,, =1
and X, X _, =1are explanatory variables.

In this paper, the case of positive change in distribution which crossing the upper
control limit raises alarm is mainly discussed. Given Et,t =12..isa sequence of independent
identically distribution random variables with exponential parameter (a). It is normally assumed
that under in control state, the parameter has known in-control value (OC = 0!0). The parameter

o could be changed to out-of-control value (a = a’l) when (49 = oo), is the change-point time.

’

The first passage times for the CUSUM can be written as:

7, =inf(t>0:C, >h), h>u (3)
Where 7, is a stopping time
H is a constant parameter known as upper control Limit (UCL).

The most two characteristics control chart are ARLjand ARL, as following:

ARL, =E (z,) (@)

ARL, =E,(z, -0 +1|7,>6) (5)
where
E, (.)is the expectation corresponding to the target value and is assumed to be large enough.

Eg () is the expectation under the assumption that change-point occurs at time @ =1.

3. EXPLICIT SOLUTION OF CUSUM CONTROL CHART FOR ARMAX(1,1) PROCESSES

The notations P. denote the probability measure and E. denote the expression
corresponding chart after it is reset at u€[0,h]. Let H(u) = E(T,) be the ARL of CUSUM control

chart after it is reset at u€[0,h]. The solution of integral equation is as following
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H(u) = 1+E[{0 < C; < bIH(C)+PAC,=03H(0). (6)
Therefore, the integral equation of CUSUM control chart for ARMAX(1,1) process is
Y =gY, +(X, - BX,)+e -0z,

t-1

So,

H(u) =1+ gt o e j H(w)e “dw + (1 —e @ty o), (7

Letk = [H(W)e “dw. Consequently, H(u) can be rewritten as

H(u) = 1+ aea(u—awavl,ﬁ(xrﬂ,xm)—am,]) K+ (1_ efa(afufm.,]—(x(—ﬁ]xm>+Hm,1>) H(O). (8)
In particular at u=0, we obtain H(0) as following form
H(0) :1+ aed(*a%ﬁﬁ(xrﬁlxmFHJCH) Kt (1_e—a(a—m(,r(xﬁﬁ,xm)+a]gu)) H(0)
— @A (XAX ) oK.

Substituting H(0) into Equation (8) , then H(u) as following form
HL) = 14 et sAxa -t | (1_e—a(a—u—m—(x‘—axk,Msm )x @ U (XAX sy | e
Consequently,
HL) = 1+ oK + @ A rtiemxapta) _ qa
To find a constant k as following form
h
k=[H(w)e"dw
0
eah

=T (1—e ™ |1y etemliomea) ) _pee,
a

Substituting a constant k into Equation (8) as follows
e’ (it (X,
Hw) =1+ a(— (1—e NL e tmran) _het ), gelr bbbt _go
(24

_g* (l + @A XAXpm) ah)— ™.
Thus, we get the explicit solution for ARL of CUSUM control chart as follow
HW) = € (L4 e rtiomte) _ oh)_ g,
Since the process is in-control state with exponential parameter Ol=0L;, we obtain the
explicit solution for ARL, as follows
ARLy= €7 (Lgrltrtimltn) _ g h) g™,
Since the process is out-of-control state with exponential parameter OL.=QL,, The explicit

solution for ARL, can be written as follows

ARle e“:h (1+ ea:(a*%Ylfr(Xr/%XH Foa) alh)_ ea]u ]
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where=1< @ <1 is Autoregressive coefficient, —1< @ <lis a moving average
coefficient, XLXHis Explanatory variable, h is a upper control limit and &, ,is initial values of

ARMAX(1,1) process.

4. NUMERICAL INTEGRAL EQUATION

Generally, the Integral Equation could not be analytically solved H(u) and it is necessary
to use numerical methods to solve them. Kantorovich and krylov (Kantorovich and krylov, 1958);
Atkinson and Han (Atkinson and Han, 2001) have been developed numerical schemes for solving
integral equation. We shall use a quadrature rule to approximate the integral by finite sum of
area of rectangles with based on h/m beginning at zero. Particularly, once the choice of a
quadrature rule is made, the interval [0,h] is divided into a partition 0< a<a,<..<a,<m
and set of constant weighted W; = (h/m)>0.

The approximation for an integral is of the form:
b
[WGO (= 2w, (s,
0 =t

where @, :E(Ej and W; :H; j=12,..m.
m 2 m

Let I—~|(u) denote to the numerical approximation to integral equation H(u), which can be

found as the solution of linear equation as follows:
H(@)=1+H(@)F|a-a-gY —[X —BX
(@)-1+A@F(a-a -4y (X -A%_,)+05 )

SwiE) @ ra-a-gY, (X A% )05 )

The above equation is a system of m linear equations in the m unknowns

I—~|(a1), H~(a2),, I—~|(am ), which can be rearranged as
A)-1+ A@IF(a-a-4Y,_ (X -4, )4z ]
+W1f(a_¢1Yt—l_(Xt _ﬂlxt—ljJrelgt—l)]

+]Zr:2:Wj|:|(aj) f (a'j +a-a _¢1Yt —1_(xt _’let—ljﬂglgt _1)

H(a )=1+H(a)[F((a—a, XA —[xt -BX, _1)+ 0, 4
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P wi@+a-a -—gY , (Xt PX 1J+91‘9t—1)]

+ZwH@)f (@ +a-a -4y 1 (Xt_ﬁ1xt—1)+915t %
A@).Aa).fia)

Solving set of equations for the approximate values , the numerical

integration for function H(u) is

H(u)=1+H(a)F(a—u-— ¢1Yt . (Xt_ﬁlxt—1j+08 )

1%t -1
Swh)f(a+a-u-gy¥ ( A )wlgt .
with &, =£(21—_1j and W; :ﬂ; j=12,...m
m 2 m

5. COMPARISON RESULTS OF CUSUM CONTROL CHARTS BY EXACT EXPRESSION

AND NUMERICAL INTEGRAL EQUATION METHODS

In this section, the results of ARL, and ARL,; for ARMAX (1,1) processes, which are
obtained from the exact expression with numerical solution of integral equation method are
compared. The results of ARL are expressed in Table 1 to Table 3. The parameter value for in-
control parameter @, =1 and parameter for out-of-control ¢, =1.01, 1.02, 1.03, 1.04, 1.05, 1.06,
1.07, 1.08, 1.09, 1.10, 1.3, 1.5, 3, and 5 respectively. The performance of the purposed exact
expression is considered by the computational times and the absolute percentage difference.
‘H u)-Hu

H(u)

The results from Table 1 and Table 2 present that these methods are in good

Diff (%) = x100%.

agreement. The analytical results agree with numerical approximation with an absolute
percentage difference less than 0.05% for m = 1,500 iterations and for computational times of
approximately 50 second. The computational times for the proposed analytical explicit solution

are less than 1 second.
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Table 1. Comparison of ARL, and ARL,; of CUSUM control chart by explicit solution with
numerical integral equation for ARMAX(1,1) process with ¢ =0.1,6, =0.1.and £ =0.1
Parameter values of CUSUM chart
d=3u=tandh =435

o Exact expression Nurerical IE (Time used) Diff (%)
1.00 370.431 370.43 (56.18) 0.00027
1.01 345.454 345.453 (57.28) 0.00029
1.02 322.608 322.6071 (57.53) 0.00028
1.03 301.68 301.679 (56.07) 0.00033
1.04 282.482 282.4814 (55.43) 0.00021
1.05 264.844 264.8434 (55.34) 0.00023
1.06 248.619 248.6184 (56.18) 0.00024
1.07 233.672 233.6714 (57.28) 0.00026
1.08 219.885 219.8845 (57.35) 0.00023
1.09 207.151 207.1504 (55.47) 0.00029
1.10 195.375 195.3744 (56.38) 0.00031
1.30 74.0401 74.0399 (55.22) 0.00025
1.50 37.2212 37.2211 (56.18) 0.00027
3.00 527084 5.27082 (57.13) 0.00025
5.00 272168 272167 (56.48) 0.00029

Table 2.  Comparison of ARL, and ARL; of CUSUM control chart by explicit solution with

numerical integral equation for ARMAX(1,1) process with ¢ =0.1,6, =0.1.and 4,=0.2.
Parameter values of EWMA chart
a- 3,u=1 and h = 4.151

o explicit solution Numerical IE (Time used) Diff (%)
1.00 370.267 370.2661 (57.18) 0.00024
1.01 345.929 345.928 (56.25) 0.00029
1.02 323.625 323.624 (56.42) 0.00031
1.03 303.154 303.153 (57.03) 0.00033
1.04 284.338 284.3371 (56.54) 0.00032
1.05 267.021 267.0203 (55.28) 0.00026
1.06 251.061 251.0603 (56.32) 0.00028
1.07 236332 2363313 (55.51) 0.00030
1.08 222722 222.7214 (56.15) 0.00027
1.09 210.129 210.1284 (55.47) 0.00029
1.10 198.465 198.4644 (56.16) 0.00030
1.30 76.7527 76.7524 (56.31) 0.00039
1.50 38.9158 389157 (57.14) 0.00026
3.00 537993 537991 (56.31) 0.00028
5.00 272965 272964 (56.44) 0.00031
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6. CONCLUSION

Explicit solution for ARL of CUSUM control chart in the case of ARMAX(1,1) process with
exponential white noise are derived, These formulas are very accurate, and easy to calculate
and program. More specifically, the explicit solution take computational time much less than

the numerical integral equation.
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