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ABSTRACT

In this research, we propose a modification of the Hill cipher using doubly periodic
encryption, which requires two types of keys with different periodicity when encrypting each
block of plaintext. Length variation is also used for extending the ciphertext so that there are
several extended ciphertexts available, which prevent any third-party to determine the true
length of secret keys successfully. Our study shows that our modified Hill cipher is more
resistant to known-plaintext attack, ciphertext-only attack and frequency analysis, than the
modified Hill cipher proposed by Adinarayana Reddy et al. (2012). Moreover, our modified Hill

cipher requires less space for the secret keys than the classical Hill cipher.
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1. INTRODUCTION

The Hill cipher is a polygraphic cipher which was invented by Lester S. Hill (1929).
Although the Hill cipher is strong against a ciphertext-only attack, it is easily broken with a
known-plaintext attack (Stallings, 2011). Thus, several researches have been done to improve
the security of the Hill cipher. Acharya et al. (2009) tried to make the Hill cipher more secure by
using involutory, permuted and reiterative key matrix generation to generate different keys of
data encryption, thereby significantly increases its resistance to various attacks. Toorani and
Falahati (2009) also proposed a modification to the Hill cipher based on affine transform and
one-way hash function. Moreover, Acharya et al. (2009) presented a novel technique which is a
modified version of the Hill cipher algorithm for image encryption named Hill-Shift-XOR (H-S-X)
which can be applied to any type of images. Adinarayana Reddy et al. (2012) tried to improve
the Hill cipher using circulant matrices, which enhances its performance against known-plaintext
attack and chosen-plaintext attack. Magamba et al. (2012) proposed a variable-length key matrix
obtained from a maximum distance separable (MDS) master key matrix, which used a different
key matrix and this renders the ciphertext immune to known-plaintext and ciphertext-only
attacks. However, it is worth pointing out that the proposed algorithm relies on many matrix
transformations and this slows down the algorithm. Krishna and Madhuravani (2012) claimed
that, using randomized approach, the output of the Hill cipher is randomized to generate
multiple ciphertexts for one plaintext. Any one ciphertext is then used for transmission of data.
As randomization of ciphertext is made, it is relatively free from known-plaintext and chosen-
ciphertext attacks at slightly more computational overhead.

In this research, we will propose a modification of the Hill cipher which utilizes several
techniques mentioned above. In particular, we will use doubly periodic encryption, i.e., an
encryption technique based on two independent types of keys with different periodicity, and

length variation for disguising the true length of ciphertext block.

2. RESEARCH METHODOLOGY
2.1 Overview
In this research, we propose a modification of the Hill cipher which consists of the

following four main parts:
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1. Encryption
(a) Choose positive integers m, n such that 1 < n? < m.
(b) Let G be an n X n matrix such that G is invertible modulo m and all of its
entries are incongruent modulo m. Let G' be a matrix such that the following hold:
1. The number of rows and the number of columns of G are greater

than n.

G A

2. The top-left corner of G'is G, i.e., G = (B c

A B,C.

) for some matrices

The matrix G- will be used as one of the two public keys.
(c) A sender and a recipient choose a matrix V = (V1 V2 .. Vu) such that
the following hold:
1. v4,Vy, ...,y are incongruent modulo m;
2. gcd(v;,m)=1forali=1,2,..,n;
3. gedw; +vy+ - +v,,m) =1,

The matrix V will be kept as one of the two secret keys.

(d) The sender and the recipient choose a positive integer a such that
gcd(a, m) = 1. The integer a will be used as another secret key.

(e) Calculate key K = (v,v, - 1,)G mod m.

(f) Let P be the plaintext and P; be the ith block of plaintext. Each P;is viewed
as an n X 1 matrix.

(g) Use the matrix K to generate matrices Kj, K>, ...,K,,, where py is the
number of all distinct matrices generated by K (see Section 2.2 and Theorem 1). Note that all
matrices K; are invertible modulo m.

(h) From the chosen V, generate V3,V5, ..., V,,, where py is the number of all
distinct matrices generated by V (see Section 2.3 and Theorem 2). Note that px # py.

(i) For each block P; of plaintext, the associated block C; of ciphertext is

calculated by
C; = K;P, + Vy mod m
where
) _{i mod pyx  ifpg t i,
J Pk ifpx | 1§
and
{i modpy, ifpyti
k= . ,
bv ifpy | L.
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(j) AWl blocks C; is then combined to form the ciphertext C.
2. Extending the ciphertext
After encryption, we find a method to extend the length of ciphertext so that
we obtain an extended ciphertext C** whose length is at most two times of the length of C (see
Section 2.4).
3. Reducing an extended ciphertext
After receiving an extended ciphertext €, we find a method to reduce the
length of extended ciphertext into the original ciphertext C (see Section 2.5). The ciphertext C is
then split as a number of blocks C;, each of which is viewed as an n X 1 matrix.
4. Decryption
(a) Calculate K71 = (v, v,v5 =~ 1,) 716! mod m.
(b) For each block C; of ciphertext, the associated block of plaintext is
calculated by
P, = K7'(C; — V) mod m.
In addition, cryptanalysis of our modified Hill cipher will be conducted in terms of
frequency analysis, ciphertext-only attack, and known-plaintext attack.
2.2 Generating matrices K;
Our procedure for generating the keys K;from a given matrix K consists of the following
steps:
1.SetL=1,R=2,U=1,D=2,andj=1
2. letK; =K.
3. Repeat the following:
(@) While L < n, repeat the following:
i. Let Kj4 be the matrix obtained by swapping the Lth column and the
Rth column of K;.
ii. Increase j by 1.
iii. Increase L by 1.
iv. If L = n, then we set R = 1; otherwise, increase R by 1.
(b) If U > n, then this process terminates.
(c) Let K; be the matrix obtained by switching the Uth row and the Dth of K.
(d) Increase j by 1.
(e) Increase U by 1.

(f) If U = n, then we set D = 1; otherwise, we increase D by 1.
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(g) Reset L =1and R = 2.
(h) Repeat step 3.

This procedure can be summarized as the flowchart shown in Figure 1. It should be
noted that our procedure only switches rows and columns of K, and so det(Kj) = +det(K).
Hence, all matrices K; are invertible modulo m if and only if K is invertible modulo m.

2.3 Generating matrices

Our procedure for generating the keys V,, from a given initial matrix V' consists of the
following steps:

1. LetV; =V.

2.5etk=2andj=1.

3. Let V be the row obtained by swapping the jth column and the (j + 1)th column of
Vi_1. Forexample, if Vp,_; = (ay ay az ... ay), then V' =(a, a; a; ... a,).

4. If V- =V, then our generating procedure terminates; otherwise, we define V, = V.

5. Increase k by 1.

6.1f j =n —1, then we reset j = 1; otherwise, we increase j by 1.

7. Back to step 3.

This procedure can be summarized as the flowchart shown in Figure 2.
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Let Kj+1 be the matrix obtained by swapping the Lth column W

and the Rth column of Kj.

\

jej+1
L<L+1
Yes
No

(o) 3

Let Kj+1 be the matrix obtained by switching the Uth 1 Yes No

row and the Dth row of K.

jej+l D=1
Ue<U+1
Yes
Yes No
*——>

No

Figure 1  The procedure for generating matrices K; from a given matrix K
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Let V' be the row obtained by swapping the jth

column and the (j + 1)th column of V,_;.

)

Yes
j=1 —>@

No
jej+1

Figure 2 The procedure for generating Vj, from a given matrix V




MUY MIEANTINGEE@NS U, UN 45 Laui 2 425

2.4 Extending the Ciphertext
The length of ciphertext can be extended using the following steps:
1. The sender chooses a positive integer s and defines the set of addenda

{as,ay, ...,as} where
a;=i(vy +v,+ -+ v,) modm
forall i =1,2,..,s. The integer s (with s < m) is used as another public key.

2. For each pair1 of entries in the ciphertext, consider the following cases:

Case 1. If the pair matches any two addenda, then we insert a different
addendum at the end of each entry in the pair.

Case 2. If exactly one entry in the pair matches an addendum, then we insert a
different addendum at the end of the addendum found in the pair, and insert an addendum
next to the non-addendum entry in the pair.

Case 3. If the pair does not match any addendum, then insertion is not
required. But if we choose to do insertion, then an addendum is inserted next to each entry in
the pair.

3. Multiply each entry obtained from step 2 by a.

One can see easily that, given the ciphertext, this method can yield different extended
ciphertexts, each of which has length up to two times of the length of the ciphertext. Therefore,
the true
ciphertext and the length of each ciphertext block are completely disguised. Moreover, since
each entry in the extended ciphertext is multiplied by «, the set of addenda is also disguised.
2.5 Reducing the extended ciphertext

This method consists of the following steps:

1. Multiply each entry of the extended ciphertext by a™1, the inverse of @ modulo m.

2. Considers one pair of entries in the extended ciphertext at a time. Each pair then
contributes up to two entries to the ciphertext, depending on the following cases:

Case 1. If the pair matches any two addendum, then we discard the last entry
in the pair and the rest is contributed to the ciphertext.

Case 2. If only one addendum is found in the pair, then only the non-

addendum entry is contributed to the ciphertext.

" If the length of the ciphertext is odd, then the last entry is considered as a pair.
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Case 3. If the pair does not match any addendum, then the whole pair is

contributed to the ciphertext.

3. RESULTS

Theorem 1. There are (n + 1)? matrices which are generated by K (of dimension n X n), all of
which are distinct modulo m.

Proof. Recall that K = (v,v,v3 = 1,,)G mod m. Since all entries of G are distinct modulo m and
ged(viv, v, m) =1, it follows that all entries of K are also distinct modulo m. Moreover,
since G is invertible modulo m, it follows that K~! = (v,v,v5 = 1,) 716! mod m exists, i.e., K

is also invertible modulo m.

ki1 kiz kiz - kin
ka1 ka2 kaz - Kan

We define the initial matrix Ky = K :=| %31 ksz kss - ksn | Consider switching
knl knz kn3 knn

columns by the procedure mentioned in Section 2.2, we obtain the following:

ki1 kiz kiz = Kin
ka1 kaz ka3 - kan
Initial matrix: Ky = | *s1 ka2 ksz - kan
kni knz knz - Knn
kiz ki1 kiz - Kin
kaz ka1 K23 - kon
Switching the columns L =1and R = 2: K, = | k32 k31 ksz - kan
knz kni1 knz - knn
kiz kiz ki1 - Kin
ka2 k23 ka1 - Kan
Switching the columns L =2 and R = 3: K3 = | k32 ksz ka1 - kan
k‘nZ kn3 kn1 o knn

Continue switching columns in this fashion. Then we obtain the following:

k12 kiz kia - kin k11
kaz ka3 kaa - Kan k21
Switching the columns L=n—1and R =n: K, = | k32 k33 ksa - kan ks
kn2 knz knsa - Knn Kni
ki1 kiz kia - kin ka2
ka1 ka3 kaa -+ kon ka2
Switching the columns L =nand R = 1: K,;;q = | *s1 k33 ksa - Kan ks
kni knz Kna - knn kn2

Therefore, we obtain Ky, K5, ..., K44, which are all distinct modulo m, in the first round.
Consider switching in the second round. In that round, we obtain the following:

Switching the rows U = 1 and D = 2 of the initial matrix

ka1 ko2 ka3 - Kon
k11 kiz ki3 - kin
Ky Knyp = K1 ksz ka3 - kan

kn1 knz knz - knn
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kaz ka1 K23 v Kan
kiz ki1 kiz - kan
Switching columns L =1and R = 2: K,,;3 = %32 k31 ksz -~ kan
knz kni knz = knn
kaz ka3 ka1 -t Kan
kiz kiz K11 - K
Switching columns L =2 and R = 3: Ky4 = | k32 kaz ka1 - Kan
knz knz kn1 - Knn

Continue switching columns in this fashion. Then we obtain the following:

ka2 kaz kaa v kan kaq
kiz kiz kia - kin ki
Switching columns L =n—1and R =n: Ky q = k32 k33 ksa - kan ks
knz knz kna = Knn Kni
ka1 kaz kza - kan ka2
ki1 kiz kia - Kin k12
Switching the columns L =n and R = 1: Kppyp = | k31 ks ksa - ksn ks
kni knz Kna - knn knz

Therefore, switching in the second round yields n + 1 matrices which are distinct modulo m.
Repeat this process until we reach the (n + 1)th round. In that round, we obtain the

following:

Switching the rows U = n and D = 1 of the initial matrix

k‘nl an kn3 knn
ka1 kzz ka3 o kon
Ki: Kp2yngr = k3;1 k?z k?3 k:3n
ki1 kiz kiz - kin
knz kni Knz = knn
kaz ka1 K2z v Kan
itchi = =2 = | ksz kss ksz - k
Switching columns L =1and R = 2: K2 4, = 22 kg ke o kan
kiz ki1 kiz o kan
knz knz kni - Knn
kzz kaz ka1 - kan
itchi = =3 = | ksz kaz ka1 - Kk
Switching columns L =2 and R = 3: K2, 43 = 32 kg3 ka1 o kan
kiz kiz ki1 - kan

Continue switching columns in this fashion. Then we obtain the following:

knz knz Kna - knn kni
ka2 kaz kaa - kon K21
Switching the columns L =n and R = 1: Kpz,pp4q = | k32 K3z k3a - k:3n lle
kiz kiz kia - kin ki1

Therefore, switching in the (n + 1)th round yields n + 1 matrices which are distinct modulo m.
It is easy to see that swapping rows causes all matrices in different rounds to be
different. Moreover, in the same round, it is clear that all n + 1 matrices are different. Hence,

there are altogether (n + 1)(n + 1) = (n + 1)? matrices generated by K. a
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12 28 37

Example 1. Let K = (19 33 18). One can see that all entries of K are distinct modulo 39.

7 30 13
Then we have the following matrices:

12 28 37 28 12 37 28 37
K1=(19 33 18):>K2=<33 19 18>:>K3=(33 18
7 30 13 30 7 13 30 13
19 33 18 33 19 18 33 18
K5=<12 28 37):>K6=<28 12 37>:>1<7=<28 37
7 30 13 30 7 13 30 13

28

30

12
K9=(7
19 33 18 33 19 18

12 12 37 28
19>E> 1<4=<19 18 33)
7 7 13 30
19 19 18 33
12>:> 1<8=<1z 37 28)
7 7 13 30

37 28 12 37 28 37 12 12 37 28
13>:>K10=<30 7 13):>K11=<30 13 7>:>K12=<7 13 30)

33 18 19

19 18 33

7 30 13 30 7 13 30 13 7 7 13 30
Kiz=[19 33 18|C= K, =33 19 18|C=>K;s=(33 18 19|=> Ki\x=[19 18 33|.

12 28 37 28 12 37

28 37 12

12 37 28

Theorem 2. There are n(n — 1) matrices which are generated by V (of dimension 1 x n), all of

which are distinct modulo m.
Proof. We define the first row matrix V;, =V =1 V2

applying the procedure mentioned in Section 2.3, we obtain

U3

Vn). In the first round, by

Vo=W2 V1 V3 Uy Vn)
Va=(z V3 v 1y V)
V=W V3 vy Vg Vn)
Vpoi=W2 V3 1y V1 V)
V=2 v W Vp V1),

Since all entries of V are distinct modulo m, it is clear that V,, Vs, ...

Therefore, we obtain n — 1 distinct rows Vj, in the first round.

Consider switching in the second round. We obtain

Vyer = (V3 V2 1y v,
Voo = (V3 V4 1 vy,
Viez =3 Vs Vs 1

Vo1 = (V3 Vs Vs Un

Observe that Vy 41, Viya, v, Van—q are distinct, for the location

we obtain n — 1 distinct rows Vj, in the second round.

,V,, are distinct modulo m.

UI)
Ul)
Un Vq)

V1 V).

of v, in each V, varies. Therefore,

Continue this procedure until we reach the (n — 1)th round. In that round, we obtain

v%2—3n+4 ==(Un Un-1 V1 V2 Un—z)
v%2—3n+5 ==(Un V1 VUn-1 V2 Un—z)
Viz_spie = (Vn V1 V2 VUpg V3 Vn-2)
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Viz_opsa =n V1 V2 o Upog).
Observe that Vyz_spi4 Vaz_snass - Vnz_onyo are distinct, for the location of v,_; in each V
varies. Therefore, we obtain n — 1 distinct rows V, in the (n — 1)th round.

Consider switching in the nth round. We obtain

Viz_onss = (V1 Vn VYV V3 .. VUp_q)
Viz_onia = (V1 V2 Yy V3 .. Upoq)
Viz_opses = (V1 V2 Vs Vp Vs .. VUpog)
Viz_pyr = (vl Vy V3 Vg .. Vn) =V.

Observe that V,2_sp43, Vnz_ongar - » Vpz_nyq are distinct, for the location of a,, in each Vj, varies.
Therefore, we obtain n — 1 distinct rows V, in the nth round.

Clearly all matrices V,, generated by different rounds are completely distinct. Therefore,
switching for n rounds yields (n? —n+1) — 1= n? —n =n(n— 1) distinct matrices V;. a
Example 2. Let V=(1 3 6). Note that all entries of V are distinct modulo 11. When
switching column with steps as mentioned in Section 2.3, we obtain the following:

Row 1:V; =(1 3 6).

Row2:V, =3 1 6).
Row3:V; =3 6 1).
Rowd: V,=(6 3 1)
Row5: Vs=(6 1 3).
Row 6: Vg =(1 6 3).
We can see that swapping elements of Vg again yields V;, so this process terminates. a

As there are (n+ 1)? different matrices Kj generated by K and there are n(n—1)
different row matrices V,, generated by V, this provides double periodicity for encryption. In
particular, our encryption will use the same pair of the keys K,V after a certain number of
blocks of plaintext. To find such number, the next lemma is required.

Lemma 1. For all positive integers n > 1, we have

nn—1DMm+1? jfnis even,

n(n—1n+1)2
2

ifn =3 (mod 4),
lem((n+ D% n(n—1)) =
nn—1Dn+1)? ifn=1(mod4).
4
Proof. Let d = gcd(n + 1,n). Then we haved | ((n+ 1) —n), and so d = 1. It then follows that
gcd((n+ 1D%4n) = 1.
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Moreover, by the Euclidean algorithm, one can see that ged((n + 1)?,(n — 1)) = ged(n — 1,4).
Now consider the following cases:
1. If nis odd, then n — 1 is even.
@If4] (n—1) (e, n =1 (mod 4)), then we obtain gcd(n — 1,4) = 4.
) If4+t(n—1)Ge,n £ 1(mod4)), then we have n = 3 (mod 4) because n is
odd. Since 2 | (n — 1), we obtain gcd(n — 1,4) = 2.
2. If nis even, then n — 1 is odd. Thus, gcd(n — 1,4) = 1.

In conclusion, we have
1 if niseven,
ged((n+ 1% nn—1)) = ;2 ifn = 3 (mod 4),
4 ifn=1(mod4).
The lemma then follows from the fact that
(n+ 1% nn—1) =ged((n+ D%nn—1)) - lem((n + 1), n(n — 1)).
d
Theorem 3. Let P(n) be the smallest number of n-blocks of plaintext required so that the
same pair of the keys (K, Vk) can be used. Then

nn—1DMm+1)2+1 ifniseven,
[ nn—1(mn+ 1)?

+1 jfn=3(mod4),

P(n) = 2
nn— 1N+ 1)3 fn=1(mod4).
2 +1
Proof. The theorem follows directly from Lemma 1 and the pigeonhole principle. a

Theorem 4. Let {ay,ay, ..,as} be the set of addenda as defined in Section 2.4. Then
a,, a,, ..., ag are incongruent modulo m.
Proof. Assume, to the contrary, that a; = a; (mod m) for some i,j € {1,2,...,s} with i # j. Then

we have
(v +v,++1) =jlv, +v, + -+ v,) (modm).
Since ged(vy + v, + -+ + v, m) =1, this implies that i =j (modm). But 1 <i,j <s <m, this

implies that i = j, a contradiction. Q
The next example illustrates how encryption and decryption is done using our modified

cipher.
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Example 3. Choose m =39, n = 4and s = 9. Let

8 26 22 15 31 37

16 12 21 37 5 33

G'={ 9 2 29 1 14 18
13 7 11 34 17 20

10 13 3 19 23 28

be one of the public key. One can verify that every square submatrices at the top-left corner of

G' is invertible modulo 39, so any one of them can be used as the key G. Here, as n = 4, we let

8 26 22 15
16 12 21 37
9 2 29 1
13 7 11 34
LetV=(5 11 17 29) be one of the two secret keys. Then we let

G =

8 26 22 15
e . PR 16 12 21 37
K=K=@w,~v)6=(-11-17-29( 0 5 55 ]
13 7 11 34

2 26 25 33

4 3 15 19

=12 20 17 10 ™od39

13 31 32 28

Consider the plaintext

P=0O 26 27 13 1 21 1 11 5 24 36 16 18 7 23 19).
As mentioned earlier, our procedures can generate (44 1)? =25 different matrices K; and

4(4 — 1) = 12 different matrices V. Here, since there are only 4 blocks of plaintext (each of
length 4), we only need Kj, ..., K,and V4, ..., V, for encryption.

Encrypting each block of plaintext, we obtain

2 26 25 33\ /9 5 9

_eprayr_| 4 3 15 19[26 11\ _[ 36
G=RPAVE=1 15 90 17 10\ 27) |17 )= 25 | (mod39)

13 31 32 28/ M3/ \29 35

26 2 25 33\ /1 11 38

_ T T _ 3 4 15 19 21 5 — 4
G=KPh+V2 =15 12 17 10 1>+ 17 | =\ 26 | (mod39)

31 13 32 28/ M1/ \29 10

26 25 2 33\ /5 11 15

Coraor | 3 15 4 19\[24) [17)|_[21
Co=KsPs +V5 =120 17 12 10/)\36) 7| 5/=| 13| (Mod39

31 32 13 28/ \M6/ \29 35

26 25 33 2\ /18 11 8

o oraor | 3 15 19 4\[ 7 17| _ [ 26
CG=KPetVe =150 17 10 12 23>+ 29 | =| 30 | (mod39).

31 32 28 13/ \M9 5 1

Therefore, the ciphertext is
C=(09 36 25 35 38 4 26 10 15 21 13 35 8 26 30 1)
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Define the set of addenda A = {ay,a,, ..., as} where a; = i(v; + v, + -+ + v,) mod m.

We have

a 165+11+17+29) = 23 mod39

a, = 2(5+11417+29) = 7 mod39

as = 3(5+114+17+29) = 30 mod39

a, = 4(5+4+114+174+29) = 14 mod39

as = 5(5+4+114+174+29) = 37 mod39

ag = 6(5+11+17+29) = 21 mod39

a; = 7(5+114+17429) = 5 mod39

ag = 8(5+11+17+29) = 28 mod39

Qo 95+ 11+17+29) 12 mod 39.
Therefore, we have A = {23, 7, 30, 14, 37, 21, 5, 28, 12}

Extending the ciphertext using the set 4, first we obtain

C'=(0© 7 36 23 28 25 14 35 38 21 37 26 10
15 5 21 37 13 35 8 26 30 23 1 5)

as one of possible results after insertion. Suppose that a@ = 7 is chosen as another secret key.

Then the extended ciphertext is

C*=aC'=(24 10 18 5 1 19 20 11 32 30 25 28 26
31 27 35 30 25 13 11 17 26 15 5 7 35) mod 39,

which is sent to the recipient.

For the recipient, in order to decrypt the message, the extended ciphertext needs to be

reduced first. Multiplying C*** by a~

1 =28, we obtain

a'C™=C"=(09 7 36 23 28 25 14 35 38 21 37 26 10
15 5 21 37 13 35 8 26 30 23 1 5) mod39.

After eliminating all addenda, we finally have

Crdc —

i.e., the true ciphertext is obtained.

Decrypting each block of ciphertext, we have

32 34
17 1

P=kiiCT-vh =

P, = Kz_l(Cg_VZT) =

Py = Ks_l(C::;r_VgT) =

30 26 9
25 1 36
31 36 25
33 7 35
25 1 38
30 26 4
31 36 26
33 7 10
25 1 15
31 36 21
30 26 13
33 7 35

(9 36 25 35 38 4 26 10 15 21 13 35 8 26 30 1)=C,

26
27
13

(mod 39)

21 (mod 39)

11

24
36
16

(mod 39)
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17 1 25 1/ 8 11\ 18

ety | 5 2 31 36\ [26)_[17\|_[ 7
Po=K(C—Vid={ 1 54 33 7 30 29 | | = 23 | (mod39).
32 34 30 26 1 5 19

Therefore, we again obtain the plaintext

P=(9 26 27 13 1 21 1 11 5 24 36 16 18 7 23 19).
Q

4. DISCUSSION

In this section, we will discuss some benefits provided by our modified Hill cipher
towards certain cryptological aspects.
4.1 Frequency analysis

By calculating the frequency of each digit in the plaintext P, ciphertext € and the
extended ciphertext C®* illustrated in Example 3, we find that our modified Hill cipher can
manipulate all digits so that the frequency of each digit in the plaintext, ciphertext and
extended ciphertext cannot be mutually compared (see Figure 3). Hence, our modified Hill

cipher is resistant to frequency analysis attack similarly to the original Hill cipher.

*

foext
fROext

ency (%)

requ

L

T T T T U T 7 T T T T T T T
12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34 I\ 3\ ¥ I\ W L0
digit

Figure 3 Frequency analysis of digits in P (blue), € (red), C' (magenta) and C** (green)
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4.2 Determining the length of plaintext block

Although the square matrix G used to generate the initial key K is a submatrix of the
public key G', we can choose G’ so that there can be several possibilities for such G, as
illustrated in Example 3. This therefore prevents an opponent from knowing the exact value of
n (the dimension of G, the length of V, the length of plaintext block and the length of
ciphertext block), and so finding the initial matrices K and V by brute force is impossible. Even if
the entire extended ciphertext is intercepted, its length still depends on the choice of extended
ciphertext made by the sender. Hence, the dimension n cannot be determined immediately as
a factor of the length of extended ciphertext unless the extended ciphertext is correctly
reduced.
4.3 Determining the ciphertext

In order to obtain the correct ciphertext, the set A of addenda must be correctly
determined first. As s (the size of A) is known publicly, the opponent may carry frequency
analysis to determine all s most frequently seen digits in the extended ciphertext (see Figure 4).
Nevertheless, to obtain all correct addenda, the secret key a is required. Note that ged(a, m) =
1, so there are ¢(m) (the Euler’s phi function of m) possible values which can be chosen as a.
Moreover, since the secret key V is unknown to the opponent, generating the set A directly

from V is impossible.

8
fRCext
754

74

6.5+

&

55+

5

45

a

fiequency (%)

35+

a

25+

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
0 1 2 3 4 & -] 7 g @ 1 11 12 13 14 16 18 17 18 19 20 21 22 23 24 25 26 27 28 20 30 3 32 33 34 35 I 3IF 3\ 30 40

digit

Figure 4 Frequency analysis of digits in the extended ciphertext C®**
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4.4 Determining K and V

If somehow the opponent can determine @, n and the set A of addenda successfully,
then the extended ciphertext can be reduced to the ciphertext and there might be an attempt
to determine the secret key V, which in turn would yield the key K. However, successful

=1 matrices

determination of A will only yield the sum v; + v, + -+ v,, and there are m
(V1 V2 .. V) resulting in this sum. Thus, the secret key V cannot be determined exactly.
Furthermore, since K = (v,v; +++ v,)G but V is unknown to the opponent, the key K also cannot
be determined exactly.
4.5 Ciphertext-only attack
Ciphertext-only attack is an attack where the opponent knows only the encryption
algorithm and the ciphertext, and so it is the easiest attack to defend against (Stallings, 2011).
Suppose that the opponent can successfully reduce the extended ciphertext to the

ciphertext. If the opponent attempts to attack using only the knowledge of a ciphertext block,

say, €y, then from the encryption algorithm, we have
U1

C, = K,P, + VT = KP, + VT = (0,0, - 1,)GP, + | 2 | modm. (1)
u
Since the opponent cannot determine V successfully and the plaintext block P; (of length n) is
unknown, this yields a system of n linear congruences with 2n variables (provided that
V1V, Uy, IS regarded as a variable). Such system cannot have a unique solution; thus, the
opponent cannot obtain the plaintext in this way.
Alternatively, the opponent may ease the attack by using the fact that some blocks of

plaintext are encrypted using the same pair of the keys (K}, V;). By Theorem 3, this situation can

nn-1)(n+1)>?
2

ciphertext are intercepted, depending on n. In contrast, the modified Hill cipher proposed by

nn-1)(n+1)>2

+1, orn(n—1)(n+1)?+1 blocks of

occur only when at least +1,

Adinarayana Reddy et al. (2012), which uses the encryption algorithm
C; =KP; + V" modm
where K is a common key used by every plaintext block and V; is of length n, will be

compromised when only n blocks of ciphertext are intercepted. Hence, our modified Hill cipher
provides higher security against ciphertext-only attack than the one of Adinarayana Reddy et al.

(2012).
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4.6 Known-plaintext attack

Known-plaintext attack is an attack where the opponent knows encryption algorithm,
ciphertext, and one or more plaintext-ciphertext pairs formed with the secret key (Stallings,
2011).

Suppose that the opponent can successfully reduce the extended ciphertext to the
ciphertext. If the opponent attempts to attack using the knowledge of a plaintext-ciphertext
pair, say, (Py,C,), then from the encryption algorithm (1), we will obtain a system of n linear
congruences with n + 1 variables (provided that v, v, -+ v, is regarded as a variable). Again, such
system cannot have a unique solution; thus, the opponent still cannot obtain the plaintext.

Similarly to the case of ciphertext-only attack, if the opponent attempts to ease the
attack using the same pair of the keys (K} Vk), then our modified Hill cipher is more resistant to
this attack than the one of Adinarayana Reddy et al. (2012), for ours will take considerably larger
period for the same pair of the keys (K, Vi) to be re-used.

4.7 The size of secret keys

Suppose that each block of plaintext has length n. The classical Hill cipher uses an
n X n matrix as the secret key, and so there are n? integers for the secret key. On the other
hand, the modified Hill cipher proposed by Adinarayana Reddy et al. (2012) only requires n
integers for the secret key. Although our modified Hill cipher requires n + 1 integers for the
secret keys (which is slightly less economical than the one of Adinarayana Reddy et al. (2012)), it

can provide additional securities in several aspects, as mentioned earlier.

5. CONCLUSIONS

In this research, we propose a new modification of the Hill cipher using doubly periodic
encryption and length variation. Our modified cipher uses the matrix G’ and the positive integer
s as the public keys, and uses the matrix V and the positive integer a as the secret keys. Thus,
our modified cipher only requires n + 1 integers for the secret key; this is more economical than
the classical Hill cipher, but is slightly less economical than the modified Hill cipher proposed
by Adinarayana Reddy et al. (2012).

Combination of the secret key V and the public key G provides two initial keys K and
V, both of which are then used to generate different keys K; and V, for each round of
encryption. Our procedures ensure that both types of keys have different periodicity, which
leads to larger period for the same pair of the keys (Kj, Vk) to be re-used in encryption, and in

turn minimizes the risk of ciphertext-only and known-plaintext attacks.
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In addition, our modified Hill cipher introduces a method to extend the ciphertext so
that there can be many possible extended ciphertexts obtained from the same ciphertext,
whereas reducing any one of those extended ciphertexts always yields the same ciphertext. This
procedure can disguise the length n, and so determination of the secret keys by brute force is
thwarted. It also results in variation of the frequency of each digit, which prevents the opponent

from frequency analysis attack.
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