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บทคัดย่อ 
ในงานวิจัยนี้ เราจะนําเสนอวิธีการปรับปรุงรหัสลับฮิลล์โดยอาศัยการเข้ารหัสลับเป็นคาบสองชั้น ซ่ึงใช้

กุญแจลับ 2 ชนิดท่ีมีคาบแตกต่างกันในการเข้ารหัสลับบล็อกของข้อความปกติแต่ละบล็อก และอาศัยการแปรผัน
ความยาว เพ่ือเปลี่ยนความยาวของข้อความรหัสลับให้ยาวข้ึนกว่าเดิม ทําให้ได้ข้อความรหัสลับภาคขยายมากมาย
หลายแบบ ซ่ึงเป็นอุปสรรคต่อการท่ีบุคคลภายนอกจะหาขนาดของกุญแจลับได้สําเร็จ จากการศึกษาพบว่า รหัส
ลับฮิลล์ท่ีปรับปรุงใหม่นั้นสามารถต่อต้านการโจมตีรหัสลับแบบทราบข้อความต้นฉบับ การโจมตีรหัสลับแบบทราบ
ข้อความรหัสลับเท่านั้น และการวิเคราะห์ความถ่ี ได้ดีกว่ารหัสลับฮิลล์ท่ีปรับปรุงโดย Adinarayana Reddy และ
คณะ (2012) และใช้เนื้อท่ีในการเก็บกุญแจลับน้อยกว่าท่ีรหัสลับฮิลล์แบบด้ังเดิมใช้ 

 

ABSTRACT 
 In this research, we propose a modification of the Hill cipher using doubly periodic 
encryption, which requires two types of keys with different periodicity when encrypting each 
block of plaintext. Length variation is also used for extending the ciphertext so that there are 
several extended ciphertexts available, which prevent any third-party to determine the true 
length of secret keys successfully. Our study shows that our modified Hill cipher is more 
resistant to known-plaintext attack, ciphertext-only attack and frequency analysis, than the 
modified Hill cipher proposed by Adinarayana Reddy et al. (2012). Moreover, our modified Hill 
cipher requires less space for the secret keys than the classical Hill cipher. 
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1. INTRODUCTION 
The Hill cipher is a polygraphic cipher which was invented by Lester S. Hill (1929). 

Although the Hill cipher is strong against a ciphertext-only attack, it is easily broken with a 
known-plaintext attack (Stallings, 2011). Thus, several researches have been done to improve 
the security of the Hill cipher. Acharya et al. (2009) tried to make the Hill cipher more secure by 
using involutory, permuted and reiterative key matrix generation to generate different keys of 
data encryption, thereby significantly increases its resistance to various attacks. Toorani and 
Falahati (2009) also proposed a modification to the Hill cipher based on affine transform and 
one-way hash function. Moreover, Acharya et al. (2009) presented a novel technique which is a 
modified version of the Hill cipher algorithm for image encryption named Hill-Shift-XOR (H-S-X) 
which can be applied to any type of images. Adinarayana Reddy et al. (2012) tried to improve 
the Hill cipher using circulant matrices, which enhances its performance against known-plaintext 
attack and chosen-plaintext attack. Magamba et al. (2012) proposed a variable-length key matrix 
obtained from a maximum distance separable (MDS) master key matrix, which used a different 
key matrix and this renders the ciphertext immune to known-plaintext and ciphertext-only 
attacks. However, it is worth pointing out that the proposed algorithm relies on many matrix 
transformations and this slows down the algorithm. Krishna and Madhuravani (2012) claimed 
that, using randomized approach, the output of the Hill cipher is randomized to generate 
multiple ciphertexts for one plaintext. Any one ciphertext is then used for transmission of data. 
As randomization of ciphertext is made, it is relatively free from known-plaintext and chosen-
ciphertext attacks at slightly more computational overhead. 

In this research, we will propose a modification of the Hill cipher which utilizes several 
techniques mentioned above. In particular, we will use doubly periodic encryption, i.e., an 
encryption technique based on two independent types of keys with different periodicity, and 
length variation for disguising the true length of ciphertext block. 
 

2. RESEARCH METHODOLOGY 
2.1 Overview 

In this research, we propose a modification of the Hill cipher which consists of the 
following four main parts: 
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1. Encryption 
  (a) Choose positive integers ݉, ݊ such that 1 ൏ ݊ଶ ൏ ݉. 
  (b) Let ܩ be an ݊ ൈ ݊ matrix such that ܩ is invertible modulo ݉ and all of its 
entries are incongruent modulo ݉. Let ܩ′ be a matrix such that the following hold: 

1. The number of rows and the number of columns of ܩ ′ are greater 
than ݊. 

2. The top-left corner of ܩ′ is ܩ, i.e., ܩ ′ ൌ ቀܩ ܣ
ܤ ܥ

ቁ for some matrices 
,ܣ ,ܤ  .ܥ

The matrix ܩ′ will be used as one of the two public keys. 
(c) A sender and a recipient choose a matrix  ܸ ൌ ሺݒଵ ଶݒ …  ௡ሻ such thatݒ

the following hold: 
,ଵݒ .1 ,ଶݒ … ,  ;݉ ௡ are incongruent moduloݒ
2. gcdሺݒ௜,݉ሻ ൌ 1 for all ݅ ൌ 1, 2, … , ݊; 
3. gcdሺݒଵ ൅ ଶݒ ൅⋯൅ ௡,݉ሻݒ ൌ 1. 

The matrix ܸ will be kept as one of the two secret keys. 
  (d) The sender and the recipient choose a positive integer ߙ such that 
gcdሺߙ,݉ሻ ൌ 1. The integer ߙ will be used as another secret key. 
  (e) Calculate key ܭ ൌ ሺݒଵݒଶ  .݉	mod		ܩ௡ሻݒ⋯

(f) Let ܲ be the plaintext and ௜ܲ be the ݅th block of plaintext. Each ௜ܲis viewed 
as an ݊ ൈ 1 matrix. 

(g) Use the matrix ܭ to generate matrices ܭଵ,ܭଶ,… ,  ௄ is the݌ ௣಼, whereܭ
number of all distinct matrices generated by ܭ (see Section 2.2 and Theorem 1). Note that all 
matrices ܭ௜ are invertible modulo ݉. 
  (h) From the chosen ܸ, generate ଵܸ, ଶܸ, … , ௣ܸೇ, where ݌௏ is the number of all 
distinct matrices generated by ܸ (see Section 2.3 and Theorem 2). Note that ݌௄ ്  .௏݌
  (i) For each block ௜ܲ of plaintext, the associated block ܥ௜ of ciphertext is 
calculated by 

௜ܥ ൌ ௝ܭ ௜ܲ ൅ ௞ܸ
T	mod	݉ 

where 
݆ ൌ ൜

݅	mod	݌௄	 if	݌௄ ∤ ݅,
௄݌ if	݌௄	|	݅,  

and 
݇ ൌ ൜

݅	mod	݌௏	 if	݌௏ ∤ ݅,
௏݌ if	݌௏	|	݅.  
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(j) All blocks ܥ௜ is then combined to form the ciphertext ܥ	. 
2. Extending the ciphertext 

After encryption, we find a method to extend the length of ciphertext so that 
we obtain an extended ciphertext ܥext whose length is at most two times of the length of ܥ (see 
Section 2.4). 

3. Reducing an extended ciphertext 
After receiving an extended ciphertext ܥext, we find a method to reduce the 

length of extended ciphertext into the original ciphertext ܥ (see Section 2.5). The ciphertext ܥ is 
then split as a number of blocks ܥ௜, each of which is viewed as an ݊ ൈ 1 matrix. 
 4. Decryption 
  (a) Calculate ିܭଵ ൌ ሺݒଵݒଶݒଷ ∙∙∙  .݉	mod		ଵିܩ௡ሻିଵݒ

(b) For each block ܥ௜ of ciphertext, the associated block of plaintext is 
calculated by 

௜ܲ 	ൌ ௝ܭ	
ିଵሺܥ௜ െ ௞ܸ

Tሻ mod	݉. 

In addition, cryptanalysis of our modified Hill cipher will be conducted in terms of 
frequency analysis, ciphertext-only attack, and known-plaintext attack. 
2.2 Generating matrices ܭ௝ 

Our procedure for generating the keys ܭ௝from a given matrix ܭ consists of the following 
steps: 

1. Set ܮ ൌ 1, ܴ ൌ 2, ܷ ൌ ܦ ,1 ൌ 2, and ݆ ൌ 1. 
2. Let ܭଵ ൌ  .ܭ
3. Repeat the following: 

(a) While ܮ ൑ ݊, repeat the following: 
i. Let ܭ௝ାଵ be the matrix obtained by swapping the ܮth column and the 

ܴth column of ܭ௝. 
ii. Increase ݆ by 1. 
iii. Increase ܮ by 1. 
iv. If ܮ ൌ ݊, then we set ܴ ൌ 1; otherwise, increase ܴ by 1. 

(b) If ܷ ൐ ݊, then this process terminates. 
(c) Let ܭ௝ be the matrix obtained by switching the ܷth row and the ܦth of ܭ. 
(d) Increase ݆ by 1. 
(e) Increase ܷ by 1. 
(f) If ܷ ൌ ݊, then we set ܦ ൌ 1; otherwise, we increase ܦ by 1. 
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(g) Reset ܮ ൌ 1 and ܴ ൌ 2. 
(h) Repeat step 3. 

This procedure can be summarized as the flowchart shown in Figure 1. It should be 
noted that our procedure only switches rows and columns of ܭ, and so det൫ܭ௝൯ ൌ 	േdetሺܭሻ. 
Hence, all matrices ܭ௝ are invertible modulo ݉ if and only if ܭ is invertible modulo ݉. 
2.3 Generating matrices ௞ܸ 

Our procedure for generating the keys ௞ܸ from a given initial matrix ܸ consists of the 
following steps: 

1. Let ଵܸ ൌ ܸ. 
2. Set ݇ ൌ 2 and ݆ ൌ 1. 
3. Let ܸ be the row obtained by swapping the ݆th column and the ሺ݆ ൅ 1ሻth column of 

௞ܸିଵ. For example, if ௞ܸିଵ 	ൌ ሺ	ܽଵ		ܽଶ		ܽଷ 	…	ܽ௡ሻ, then ܸ′ ൌ ሺ	ܽଶ		ܽଵ		ܽଷ 	…	ܽ௡ሻ. 
4. If ܸ′ ൌ ଵܸ, then our generating procedure terminates; otherwise, we define ௞ܸ ൌ ܸ′. 
5. Increase ݇ by 1. 
6. If ݆ ൌ ݊ െ 1, then we reset ݆ ൌ 1; otherwise, we increase ݆ by 1. 
7. Back to step 3. 

This procedure can be summarized as the flowchart shown in Figure 2. 
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Figure 1 The procedure for generating matrices ܭ௝ from a given matrix ܭ 

Start 

 ܭ

ଵܭ ൌ  ܭ

ܴ ൌ 2					(Right)	

ܦ ൌ 2					(Down)	
	݆ ൌ 1 

ܮ ൌ 1					(Left) 	

ܷ ൌ 1					(Up)    	

Let ܭ௝ାଵ be the matrix obtained by swapping the ܮth column 
and the ܴth column of ܭ௝ . 

݆ ← ݆ ൅ 1 
ܮ ← ܮ ൅ 1 

ܮ ൌ ݊? ܴ ൌ 1 
Yes 

ܴ ← ܴ ൅ 1 

No 

ܮ ൐ ݊? 
No Let ܭ௝ାଵ be the matrix obtained by switching the ܷth 

row and the ܦth row of ܭ. 
Yes 

݆ ← ݆ ൅ 1 
ܷ ← ܷ ൅ 1

ݑ ൐ ݊? Stop 
Yes 

ܷ ൌ ݊? 
No 

ܦ ൌ 1 

ܦ ← ܦ ൅ 1 

ܮ ൌ 1 
ܴ ൌ 2 

Yes 

No 
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Figure 2 The procedure for generating ௞ܸ from a given matrix ܸ 
 
 
 
 

Start 

Stop 

dܸ 

ଵܸ ൌ ܸ 

݆ ൌ 1 
݇ ൌ 2 

Let 	ܸᇱ be the row obtained by swapping the ݆th 
column and the ሺ݆ ൅ 1ሻth column of ௞ܸିଵ. 

ܸᇱ ൌ ଵܸ? Yes 

No 

௞ܸ ൌ ܸᇱ 
݇ ← ݇ ൅ 1 

݆ ൌ ݊ െ 1? ݆ ൌ 1 

݆ ← ݆ ൅ 1 

Yes 

No 
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2.4 Extending the Ciphertext 

The length of ciphertext can be extended using the following steps: 
1. The sender chooses a positive integer ݏ and defines the set of addenda 

ሼܽଵ, ܽଶ, … , ܽ௦ሽ where  
ܽ௜ ൌ ݅ሺݒଵ ൅ ଶݒ ൅ ⋯൅  ݉	mod	௡ሻݒ

for all 	݅ ൌ 1, 2, … , ݏ with) ݏ The integer .ݏ ൏ ݉) is used as another public key. 
2. For each pair1 of entries in the ciphertext, consider the following cases: 

Case 1. If the pair matches any two addenda, then we insert a different 
addendum at the end of each entry in the pair.  

Case 2. If exactly one entry in the pair matches an addendum, then we insert a 
different addendum at the end of the addendum found in the pair, and insert an addendum 
next to the non-addendum entry in the pair. 

Case 3. If the pair does not match any addendum, then insertion is not 
required. But if we choose to do insertion, then an addendum is inserted next to each entry in 
the pair. 

3. Multiply each entry obtained from step 2 by ߙ.  
One can see easily that, given the ciphertext, this method can yield different extended 

ciphertexts, each of which has length up to two times of the length of the ciphertext. Therefore, 
the true  
ciphertext and the length of each ciphertext block are completely disguised. Moreover, since 
each entry in the extended ciphertext is multiplied by ߙ, the set of addenda is also disguised. 
2.5 Reducing the extended ciphertext 

This method consists of the following steps: 
1. Multiply each entry of the extended ciphertext by ିߙଵ, the inverse of ߙ modulo ݉. 
2. Considers one pair of entries in the extended ciphertext at a time. Each pair then 

contributes up to two entries to the ciphertext, depending on the following cases: 
  Case 1. If the pair matches any two addendum, then we discard the last entry 
in the pair and the rest is contributed to the ciphertext. 
  Case 2. If only one addendum is found in the pair, then only the non-
addendum entry is contributed to the ciphertext. 

                                                            
1 If the length of the ciphertext is odd, then the last entry is considered as a pair. 
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  Case 3. If the pair does not match any addendum, then the whole pair is 
contributed to the ciphertext. 
 

3. RESULTS 
Theorem 1. There are ሺ݊ ൅ 1ሻଶ matrices which are generated by ܭ (of dimension ݊ ൈ ݊), all of 
which are distinct modulo ݉. 
Proof. Recall that ܭ ൌ ሺݒଵݒଶݒଷ ∙∙∙  are distinct modulo ݉ and ܩ ݉. Since all entries of	mod		ܩ௡ሻݒ
gcdሺݒଵݒଶ ௡,݉ሻݒ⋯ ൌ 1, it follows that all entries of ܭ are also distinct modulo ݉. Moreover, 
since ܩ is invertible modulo ݉, it follows that ିܭଵ ൌ ሺݒଵݒଶݒଷ ∙∙∙  ܭ ,.݉ exists, i.e	mod		ଵିܩ௡ሻିଵݒ
is also invertible modulo ݉.  

We define the initial matrix	ܭଵ ൌ ܭ ∶ൌ ൮

௞భభ ௞భమ ௞భయ ⋯ ௞భ೙
௞మభ ௞మమ ௞మయ ⋯ ௞మ೙
௞యభ ௞యమ ௞యయ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞೙భ ௞೙మ ௞೙య ⋯ ௞೙೙

൲. Consider switching 

columns by the procedure mentioned in Section 2.2, we obtain the following: 

Initial matrix: ܭଵ ൌ ൮

௞భభ ௞భమ ௞భయ ⋯ ௞భ೙
௞మభ ௞మమ ௞మయ ⋯ ௞మ೙
௞యభ ௞యమ ௞యయ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞೙భ ௞೙మ ௞೙య ⋯ ௞೙೙

൲. 

Switching the columns ܮ ൌ 1 and ܴ ൌ ଶܭ :2 ൌ ൮

௞భమ ௞భభ ௞భయ ⋯ ௞భ೙
௞మమ ௞మభ ௞మయ ⋯ ௞మ೙
௞యమ ௞యభ ௞యయ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞೙మ ௞೙భ ௞೙య ⋯ ௞೙೙

൲. 

Switching the columns ܮ ൌ 2 and ܴ ൌ ଷܭ :3 ൌ ൮

௞భమ ௞భయ ௞భభ ⋯ ௞భ೙
௞మమ ௞మయ ௞మభ ⋯ ௞మ೙
௞యమ ௞యయ ௞యభ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞೙మ ௞೙య ௞೙భ ⋯ ௞೙೙

൲. 

Continue switching columns in this fashion. Then we obtain the following: 

Switching the columns ܮ ൌ ݊ െ 1 and ܴ ൌ ௡ܭ :݊ ൌ ൮

௞భమ ௞భయ ௞భర ⋯ ௞భ೙ ௞భభ
௞మమ ௞మయ ௞మర ⋯ ௞మ೙ ௞మభ
௞యమ ௞యయ ௞యర ⋯ ௞య೙ ௞యభ
	⋮ ⋮ ⋮ 			⋱ 				⋮ 					⋮	
௞೙మ ௞೙య ௞೙ర ⋯ ௞೙೙ ௞೙భ

൲. 

Switching the columns ܮ ൌ ݊ and ܴ ൌ ௡ାଵܭ :1 ൌ ൮

௞భభ ௞భయ ௞భర ⋯ ௞భ೙ ௞భమ
௞మభ ௞మయ ௞మర ⋯ ௞మ೙ ௞మమ
௞యభ ௞యయ ௞యర ⋯ ௞య೙ ௞యమ
	⋮ ⋮ ⋮ 			⋱ 				⋮ 					⋮	
௞೙భ ௞೙య ௞೙ర ⋯ ௞೙೙ ௞೙మ

൲. 

Therefore, we obtain ܭଵ,ܭଶ,… ,  .௡ାଵ, which are all distinct modulo ݉, in the first roundܭ
 Consider switching in the second round. In that round, we obtain the following: 

Switching the rows ܷ ൌ 1 and ܦ ൌ 2 of the initial matrix 

௡ାଶܭ :ଵܭ ൌ ൮

௞మభ ௞మమ ௞మయ ⋯ ௞మ೙
௞భభ ௞భమ ௞భయ ⋯ ௞భ೙
௞యభ ௞యమ ௞యయ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞೙భ ௞೙మ ௞೙య ⋯ ௞೙೙

൲. 
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Switching columns ܮ ൌ 1 and ܴ ൌ ௡ାଷܭ :2 ൌ ൮

௞మమ ௞మభ ௞మయ ⋯ ௞మ೙
௞భమ ௞భభ ௞భయ ⋯ ௞భ೙
௞యమ ௞యభ ௞యయ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞೙మ ௞೙భ ௞೙య ⋯ ௞೙೙

൲. 

Switching columns ܮ ൌ 2 and ܴ ൌ ௡ାସܭ :3 ൌ ൮

௞మమ ௞మయ ௞మభ ⋯ ௞మ೙
௞భమ ௞భయ ௞భభ ⋯ ௞భ೙
௞యమ ௞యయ ௞యభ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞೙మ ௞೙య ௞೙భ ⋯ ௞೙೙

൲. 

Continue switching columns in this fashion. Then we obtain the following: 

Switching columns ܮ ൌ ݊ െ 1 and ܴ ൌ ଶ௡ାଵܭ :݊ ൌ ൮

௞మమ ௞మయ ௞మర ⋯ ௞మ೙ ௞మభ
௞భమ ௞భయ ௞భర ⋯ ௞భ೙ ௞భభ
௞యమ ௞యయ ௞యర ⋯ ௞య೙ ௞యభ
	⋮ ⋮ ⋮ 			⋱ 				⋮ 					⋮	
௞೙మ ௞೙య ௞೙ర ⋯ ௞೙೙ ௞೙భ

൲. 

Switching the columns ܮ ൌ ݊ and ܴ ൌ ଶ௡ାଶܭ :1 ൌ ൮

௞మభ ௞మయ ௞మర ⋯ ௞మ೙ ௞మమ
௞భభ ௞భయ ௞భర ⋯ ௞భ೙ ௞భమ
௞యభ ௞యయ ௞యర ⋯ ௞య೙ ௞యమ
	⋮ ⋮ ⋮ 			⋱ 				⋮ 					⋮	
௞೙భ ௞೙య ௞೙ర ⋯ ௞೙೙ ௞೙మ

൲. 

Therefore, switching in the second round yields ݊ ൅ 1 matrices which are distinct modulo ݉. 
 Repeat this process until we reach the ሺ݊ ൅ 1ሻth round. In that round, we obtain the 
following:  

Switching the rows ܷ ൌ ݊ and ܦ ൌ 1 of the initial matrix 

௡మା௡ାଵܭ :ଵܭ ൌ ൮

௞೙భ ௞೙మ ௞೙య ⋯ ௞೙೙
௞మభ ௞మమ ௞మయ ⋯ ௞మ೙
௞యభ ௞యమ ௞యయ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞భభ ௞భమ ௞భయ ⋯ ௞భ೙

൲. 

Switching columns ܮ ൌ 1 and ܴ ൌ ௡మା௡ାଶܭ :2 ൌ ൮

௞೙మ ௞೙భ ௞೙య ⋯ ௞೙೙
௞మమ ௞మభ ௞మయ ⋯ ௞మ೙
௞యమ ௞యభ ௞యయ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞భమ ௞భభ ௞భయ ⋯ ௞భ೙

൲. 

Switching columns ܮ ൌ 2 and ܴ ൌ ௡మା௡ାଷܭ :3 ൌ ൮

௞೙మ ௞೙య ௞೙భ ⋯ ௞೙೙
௞మమ ௞మయ ௞మభ ⋯ ௞మ೙
௞యమ ௞యయ ௞యభ ⋯ ௞య೙
	⋮ ⋮ 			⋮ 			⋱ 				⋮			
௞భమ ௞భయ ௞భభ ⋯ ௞భ೙

൲. 

Continue switching columns in this fashion. Then we obtain the following: 

Switching the columns ܮ ൌ ݊ and ܴ ൌ ௡మାଶ௡ାଵܭ :1 ൌ ൮

௞೙మ ௞೙య ௞೙ర ⋯ ௞೙೙ ௞೙భ
௞మమ ௞మయ ௞మర ⋯ ௞మ೙ ௞మభ
௞యమ ௞యయ ௞యర ⋯ ௞య೙ ௞యభ
	⋮ ⋮ ⋮ 			⋱ 				⋮ 					⋮	
௞భమ ௞భయ ௞భర ⋯ ௞భ೙ ௞భభ

൲. 

Therefore, switching in the ሺ݊ ൅ 1ሻth round yields ݊ ൅ 1 matrices which are distinct modulo ݉. 
It is easy to see that swapping rows causes all matrices in different rounds to be 

different. Moreover, in the same round, it is clear that all ݊ ൅ 1 matrices are different. Hence, 
there are altogether ሺ݊ ൅ 1ሻሺ݊ ൅ 1ሻ ൌ ሺ݊ ൅ 1ሻଶ matrices generated by ܭ.                  
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Example 1. Let ܭ ൌ ൭
12 28 37
19 33 18
7 30 13

൱. One can see that all entries of ܭ are distinct modulo 39. 

Then we have the following matrices: 

ଵܭ ൌ ൭
12 28 37
19 33 18
7 30 13

൱       ܭଶ ൌ ൭
28 12 37
33 19 18
30 7 13

൱        ܭଷ ൌ ൭
28 37 12
33 18 19
30 13 7

൱        	ܭସ ൌ ൭
12 37 28
19 18 33
7 13 30

൱ 

 

ହܭ ൌ ൭
19 33 18
12 28 37
7 30 13

൱       ܭ଺ ൌ ൭
33 19 18
28 12 37
30 7 13

൱       	ܭ଻ ൌ ൭
33 18 19
28 37 12
30 13 7

൱       		଼ܭ ൌ ൭
19 18 33
12 37 28
7 13 30

൱ 

 

ଽܭ ൌ ൭
12 28 37
7 30 13
19 33 18

൱       	ܭଵ଴ ൌ ൭
28 12 37
30 7 13
33 19 18

൱       	ܭଵଵ ൌ ൭
28 37 12
30 13 7
33 18 19

൱        ܭଵଶ ൌ ൭
12 37 28
7 13 30
19 18 33

൱ 

 

ଵଷܭ ൌ ൭
7 30 13
19 33 18
12 28 37

൱       	ܭଵସ ൌ ൭
30 7 13
33 19 18
28 12 37

൱       	ܭଵହ ൌ ൭
30 13 7
33 18 19
28 37 12

൱      			ܭଵ଺ ൌ ൭
7 13 30
19 18 33
12 37 28

൱ . 
    

Theorem 2. There are ݊ሺ݊ െ 1ሻ matrices which are generated by ܸ (of dimension 1 ൈ ݊), all of 
which are distinct modulo ݉. 
Proof. We define the first row matrix ଵܸ ൌ ܸ ≔ ሺݒଵ ଶݒ ଷݒ …  ௡ሻ. In the first round, byݒ
applying the procedure mentioned in Section 2.3, we obtain 

ଶܸ ൌ ሺݒଶ ଵݒ ଷݒ ସݒ …   ௡ሻݒ
ଷܸ ൌ ሺݒଶ ଷݒ ଵݒ ସݒ …   ௡ሻݒ
ସܸ ൌ ሺݒଶ ଷݒ ସݒ ଵݒ …   ௡ሻݒ
 ⋮ 

       			 ௡ܸିଵ ൌ ሺݒଶ ଷݒ ସݒ … ଵݒ   ௡ሻݒ
               ௡ܸ ൌ ሺݒଶ ଷݒ ସݒ … ௡ݒ   .ଵሻݒ

Since all entries of ܸ are distinct modulo ݉, it is clear that ଶܸ, ଷܸ, … , ௡ܸ are distinct modulo ݉. 
Therefore, we obtain ݊ െ 1 distinct rows ௞ܸ in the first round.  

Consider switching in the second round. We obtain 
௡ܸାଵ ൌ ሺݒଷ ଶݒ ସݒ … ௡ݒ   ଵሻݒ
௡ܸାଶ ൌ ሺݒଷ ସݒ ଶݒ … ௡ݒ   ଵሻݒ
௡ܸାଷ ൌ ሺݒଷ ସݒ ହݒ ଶݒ … ௡ݒ   ଵሻݒ

⋮ 
             ଶܸ௡ିଵ ൌ ሺݒଷ ସݒ ହݒ … ௡ݒ ଵݒ  .ଶሻݒ

Observe that ௡ܸାଵ, ௡ܸାଶ, … , ଶܸ௡ିଵ are distinct, for the location of ݒଶ	in each ௞ܸ varies. Therefore, 
we obtain	݊ െ 1 distinct rows ௞ܸ in the second round.  
 Continue this procedure until we reach the ሺ݊ െ 1ሻth round. In that round, we obtain 

௡ܸమିଷ௡ାସ ൌ ሺݒ௡ ௡ିଵݒ ଵݒ ଶݒ …   ௡ିଶሻݒ
௡ܸమିଷ௡ାହ ൌ ሺݒ௡ ଵݒ ௡ିଵݒ ଶݒ …   ௡ିଶሻݒ
௡ܸమିଷ௡ା଺ ൌ ሺݒ௡ ଵݒ ଶݒ ௡ିଵݒ ଷݒ …   ௡ିଶሻݒ

⋮ 
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௡ܸమିଶ௡ାଶ ൌ ሺݒ௡ ଵݒ ଶݒ …  .௡ିଵሻݒ
Observe that ௡ܸమିଷ௡ାସ, ௡ܸమିଷ௡ାହ, … , ௡ܸమିଶ௡ାଶ are distinct, for the location of ݒ௡ିଵ	 in each ௞ܸ 
varies. Therefore, we obtain ݊ െ 1 distinct rows ௞ܸ in the ሺ݊ െ 1ሻth round.  
 Consider switching in the ݊th round. We obtain 

௡ܸమିଶ௡ାଷ ൌ ሺݒଵ ௡ݒ ଶݒ ଷݒ …   ௡ିଵሻݒ
௡ܸమିଶ௡ାସ ൌ ሺݒଵ ଶݒ ௡ݒ ଷݒ …   ௡ିଵሻݒ
௡ܸమିଶ௡ାହ ൌ ሺݒଵ ଶݒ ଷݒ ௡ݒ ସݒ …   ௡ିଵሻݒ

⋮ 
		 ௡ܸమି௡ାଵ ൌ ሺݒଵ ଶݒ ଷݒ ସݒ … ௡ሻݒ ൌ ଵܸ. 

Observe that ௡ܸమିଶ௡ାଷ, ௡ܸమିଶ௡ାସ, … , ௡ܸమି௡ାଵ are distinct, for the location of ܽ௡	in each ௞ܸ varies. 
Therefore, we obtain	݊ െ 1 distinct rows ௞ܸ	in the ݊th round.  
 Clearly all matrices ௞ܸ generated by different rounds are completely distinct. Therefore, 
switching for ݊ rounds yields ሺ݊ଶ െ ݊ ൅ 1ሻ െ 1 ൌ	݊ଶ െ ݊ ൌ ݊ሺ݊ െ 1ሻ  distinct matrices ௜ܸ.        
Example 2. Let ܸ ൌ ሺ1 3 6ሻ. Note that all entries of ܸ are distinct modulo 11. When 
switching column with steps as mentioned in Section 2.3, we obtain the following:  

Row 1: ଵܸ ൌ ሺ1 3 6ሻ. 
Row 2: ଶܸ ൌ ሺ3 1 6ሻ. 
Row 3: ଷܸ ൌ ሺ3 6 1ሻ. 
Row 4: ସܸ ൌ ሺ6 3 1ሻ. 
Row 5: ହܸ ൌ ሺ6 1 3ሻ. 
Row 6: ଺ܸ ൌ ሺ1 6 3ሻ. 

We can see that swapping elements of ଺ܸ again yields ଵܸ, so this process terminates.              
 As there are ሺ݊ ൅ 1ሻଶ different matrices ܭ௝ generated by ܭ and there are ݊ሺ݊ െ 1ሻ 

different row matrices ௞ܸ generated by ܸ, this provides double periodicity for encryption. In 
particular, our encryption will use the same pair of the keys ܭ௝, ௞ܸ after a certain number of 
blocks of plaintext. To find such number, the next lemma is required.  
Lemma 1. For all positive integers ݊ ൐ 1, we have 

lcm൫ሺ݊ ൅ 1ሻଶ, ݊ሺ݊ െ 1ሻ൯ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ
݊ሺ݊ െ 1ሻሺ݊ ൅ 1ሻଶ if	݊		is even,
݊ሺ݊ െ 1ሻሺ݊ ൅ 1ሻଶ

2
if	݊ ≡ 3	ሺmod	4ሻ,

	

			
		

݊ሺ݊ െ 1ሻሺ݊ ൅ 1ሻଶ

4
			

if	݊ ≡ 1	ሺmod	4ሻ.
 

Proof. Let ݀ ൌ gcdሺ݊ ൅ 1, ݊ሻ. Then we have ݀ ∣ ሺሺ݊ ൅ 1ሻ െ ݊ሻ, and so ݀ ൌ 1. It then follows that 
gcdሺሺ݊ ൅ 1ሻଶ, ݊ሻ ൌ 1. 
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Moreover, by the Euclidean algorithm, one can see that gcd൫ሺ݊ ൅ 1ሻଶ, ሺ݊ െ 1ሻ൯ ൌ gcdሺ݊ െ 1, 4ሻ. 
Now consider the following cases: 

1. If ݊ is odd, then ݊ െ 1 is even. 
(a) If 4 ∣ ሺ݊ െ 1ሻ (i.e., ݊ ≡ 1	ሺmod	4ሻ), then we obtain gcdሺ݊ െ 1, 4ሻ ൌ 4. 
(b) If 4 ∤ ሺ݊ െ 1ሻ (i.e., ݊ ≢ 1	ሺmod	4ሻ), then we have ݊ ≡ 3	ሺmod	4ሻ because ݊ is 

odd. Since 2 ∣ ሺ݊ െ 1ሻ, we obtain gcdሺ݊ െ 1, 4ሻ ൌ 2. 
2. If ݊ is even, then ݊ െ 1 is odd. Thus, gcdሺ݊ െ 1, 4ሻ ൌ 1. 

 In conclusion, we have 

gcd൫ሺ݊ ൅ 1ሻଶ, ݊ሺ݊ െ 1ሻ൯ ൌ ൝
1 if		݊		is even,
2 if	݊ ≡ 3	ሺmod	4ሻ,
4 if	݊ ≡ 1	ሺmod	4ሻ.

 

The lemma then follows from the fact that 
ሺ݊ ൅ 1ሻଶ ⋅ 	݊ሺ݊ െ 1ሻ ൌ gcd൫ሺ݊ ൅ 1ሻଶ, ݊ሺ݊ െ 1ሻ൯ ⋅ lcm൫ሺ݊ ൅ 1ሻଶ, ݊ሺ݊ െ 1ሻ൯. 

 
Theorem 3. Let ܲሺ݊ሻ be the smallest number of ݊-blocks of plaintext required so that the 
same pair of the keys ൫ܭ௝, ௞ܸ൯ can be used. Then 

ܲሺ݊ሻ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ
݊ሺ݊ െ 1ሻሺ݊ ൅ 1ሻଶ ൅ 1 if	݊		is even,
݊ሺ݊ െ 1ሻሺ݊ ൅ 1ሻଶ

2
൅ 1 if	݊ ≡ 3	ሺmod	4ሻ,

	

			
		

݊ሺ݊ െ 1ሻሺ݊ ൅ 1ሻଶ

4
൅ 1			

if	݊ ≡ 1	ሺmod	4ሻ.
 

Proof. The theorem follows directly from Lemma 1 and the pigeonhole principle.                 
Theorem 4. Let ሼܽଵ, ܽଶ, … , ܽ௦ሽ be the set of addenda as defined in Section 2.4. Then 
ܽଵ, ܽଶ, … , ܽ௦ are incongruent modulo ݉.  
Proof. Assume, to the contrary, that ܽ௜ ≡ ௝ܽ	ሺmod	݉ሻ for some ݅, ݆ ∈ 	 ሼ1,2, … , ݅ ሽ withݏ ് ݆. Then 
we have 

݅ሺݒଵ ൅ ଶݒ ൅⋯൅ ௡ሻݒ ≡ ݆ሺݒଵ ൅ ଶݒ ൅⋯൅  .݉ሻ	ሺmod	௡ሻݒ
Since gcdሺݒଵ ൅ ଶݒ ൅⋯൅ ௡,݉ሻݒ ൌ 1, this implies that ݅ ≡ ݆	ሺmod	݉ሻ. But 1 ൑ ݅, ݆ ൑ ݏ ൏ ݉, this 
implies that ݅ ൌ ݆, a contradiction.                        

The next example illustrates how encryption and decryption is done using our modified 
cipher. 
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Example 3. Choose ݉ ൌ 39, ݊ ൌ 4 and ݏ ൌ 9. Let 

′ܩ ൌ

ۉ

ۈ
ۇ

8 26 22 15 31 37
16 12 21 37 5 33
9 2 29 1 14 18
13 7 11 34 17 20
10 13 3 19 23 ی28

ۋ
 ۊ

be one of the public key. One can verify that every square submatrices at the top-left corner of 
݊ Here, as .ܩ is invertible modulo 39, so any one of them can be used as the key ′ܩ ൌ 4, we let 

ܩ ൌ ൮

8 26 22 15
16 12 21 37
9 2 29 1
13 7 11 34

൲ . 

Let ܸ ൌ ሺ5 11 17 29ሻ be one of the two secret keys. Then we let 

ܭ ൌ ܭ ൌ ሺݒଵݒଶ ∙∙∙ ܩ௡ሻݒ ൌ ሺ5 ⋅ 11 ⋅ 17 ⋅ 29ሻ൮

8 26 22 15
16 12 21 37
9 2 29 1
13 7 11 34

൲

ൌ ൮

2 26 25 33
4 3 15 19
12 20 17 10
13 31 32 28

൲ 		mod	39. 

Consider the plaintext 
ܲ ൌ ሺ9 26 27 13 1 21 1 11 5 24 36 16 18 7 23 19ሻ. 

As mentioned earlier, our procedures can generate ሺ4 ൅ 1ሻଶ ൌ 25 different matrices ܭ௝ and 
4ሺ4 െ 1ሻ ൌ 12 different matrices ௞ܸ. Here, since there are only 4 blocks of plaintext (each of 
length 4), we only need ܭଵ,… , ,and ଵܸ	ସܭ … , ସܸ for encryption. 

Encrypting each block of plaintext, we obtain 

ଵܥ ൌ ଵܭ ଵܲ
T ൅ ଵܸ

T ൌ ൮

2 26 25 33
4 3 15 19
12 20 17 10
13 31 32 28

൲ቌ

9
26
27
13

ቍ ൅ ൮

5
11
17
29

൲ ≡ ൮

9
36
25
35

൲		ሺmod	39ሻ 

ଶܥ ൌ ଶܭ ଶܲ
T ൅ ଶܸ

T ൌ ൮

26 2 25 33
3 4 15 19
20 12 17 10
31 13 32 28

൲ቌ

1
21
1
11

ቍ ൅ ൮

11
5
17
29

൲ ≡ ൮

38
4
26
10

൲		ሺmod	39ሻ 

ଷܥ ൌ ଷܭ ଷܲ
T ൅ ଷܸ

T ൌ ൮

26 25 2 33
3 15 4 19
20 17 12 10
31 32 13 28

൲ቌ

5
24
36
16

ቍ ൅ ൮

11
17
5
29

൲ ≡ ൮

15
21
13
35

൲		ሺmod	39ሻ 

ସܥ ൌ ସܭ ସܲ
T ൅ ସܸ

T ൌ ൮

26 25 33 2
3 15 19 4
20 17 10 12
31 32 28 13

൲ቌ

18
7
23
19

ቍ ൅ ൮

11
17
29
5

൲ ≡ ൮

8
26
30
1

൲		ሺmod	39ሻ. 

Therefore, the ciphertext is  
ܥ ൌ ሺ9 36 25 35 38 4 26 10 15 21 13 35 8 26 30 1ሻ. 
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Define the set of addenda ܣ ൌ ሼܽଵ, ܽଶ, … , ܽ௦ሽ where ܽ௜ ൌ ݅ሺݒଵ ൅ ଶݒ ൅ ⋯൅  .݉	mod	௡ሻݒ
We have 

ܽଵ ൌ 1ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 23 mod	39
ܽଶ ൌ 2ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 7 mod	39
ܽଷ ൌ 3ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 30 mod	39
ܽସ ൌ 4ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 14 mod	39
ܽହ ൌ 5ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 37 mod	39
ܽ଺ ൌ 6ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 21 mod	39
	ܽ଻ ൌ 7ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 5 mod	39
଼ܽ ൌ 8ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 28 mod	39
ܽଽ ൌ 9ሺ5 ൅ 11 ൅ 17 ൅ 29ሻ ൌ 12 mod	39.

 

Therefore, we have ܣ ൌ ሼ23, 7, 30, 14, 37, 21, 5, 28, 12ሽ. 
Extending the ciphertext using the set ܣ, first we obtain 

ᇱܥ ൌ ሺ9 7 36 23 28 25 14 35 38 21 37 26 10 
15 5 21 37 13 35 8 26 30 23 1 5ሻ 

as one of possible results after insertion. Suppose that ߙ ൌ 7 is chosen as another secret key. 
Then the extended ciphertext is 

extܥ ൌ ᇱܥߙ ൌ ሺ24 10 18 5 1 19 20 11 32 30 25 28 26 
31 27 35 30 25 13 11 17 26 15 5 7 35ሻ		mod	39, 

which is sent to the recipient. 

For the recipient, in order to decrypt the message, the extended ciphertext needs to be 
reduced first. Multiplying ܥext by ିߙଵ ൌ 28, we obtain  
extܥଵିߙ ൌ ′ܥ ൌ ሺ9 7 36 23 28 25 14 35 38 21 37 26 10 
                              15 5 21 37 13 35 8 26 30 23 1 5ሻ		mod	39. 
After eliminating all addenda, we finally have  

rdcܥ ൌ ሺ9 36 25 35 38 4 26 10 15 21 13 35 8 26 30 1ሻ ൌ  ,ܥ
i.e., the true ciphertext is obtained.   

Decrypting each block of ciphertext, we have 

ଵܲ ൌ ଵTܥଵିଵሺܭ െ ଵܸ
Tሻ ൌ ൮

32 34 30 26
17 1 25 1
5 2 31 36
1 24 33 7

൲

ۉ

ۈ
ۇ
൮

9
36
25
35

൲ െ ൮

5
11
17
29

൲

ی

ۋ
ۊ
≡ ൮

9
26
27
13

൲		ሺmod	39ሻ 

ଶܲ ൌ ଶܭ
ିଵሺܥଶ

T െ ଶܸ
Tሻ ൌ ൮

17 1 25 1
32 34 30 26
5 2 31 36
1 24 33 7

൲

ۉ

ۈ
ۇ
൮

38
4
26
10

൲ െ ൮

11
5
17
29

൲

ی

ۋ
ۊ
≡ ൮

1
21
1
11

൲		ሺmod	39ሻ 

ଷܲ ൌ ଷܭ
ିଵሺܥଷ

T െ ଷܸ
Tሻ ൌ ൮

17 1 25 1
5 2 31 36
32 34 30 26
1 24 33 7

൲

ۉ

ۈ
ۇ
൮

15
21
13
35

൲ െ ൮

11
17
5
29

൲

ی

ۋ
ۊ
≡ ൮

5
24
36
16

൲		ሺmod	39ሻ 
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ସܲ ൌ ସTܥସିଵሺܭ െ ସܸ
Tሻ ൌ ൮

17 1 25 1
5 2 31 36
1 24 33 7
32 34 30 26

൲

ۉ

ۈ
ۇ
൮

8
26
30
1

൲ െ ൮

11
17
29
5

൲

ی

ۋ
ۊ
≡ ൮

18
7
23
19

൲		ሺmod	39ሻ. 

Therefore, we again obtain the plaintext 
ܲ ൌ ሺ9 26 27 13 1 21 1 11 5 24 36 16 18 7 23 19ሻ. 

                          
 

4. DISCUSSION 
In this section, we will discuss some benefits provided by our modified Hill cipher 

towards certain cryptological aspects. 
4.1 Frequency analysis 

By calculating the frequency of each digit in the plaintext ܲ, ciphertext ܥ and the 
extended ciphertext ܥext illustrated in Example 3, we find that our modified Hill cipher can 
manipulate all digits so that the frequency of each digit in the plaintext, ciphertext and 
extended ciphertext cannot be mutually compared (see Figure 3). Hence, our modified Hill 
cipher is resistant to frequency analysis attack similarly to the original Hill cipher. 

 

 
Figure 3 Frequency analysis of digits in ܲ (blue), ܥ (red), ܥᇱ (magenta) and ܥext (green) 
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4.2 Determining the length of plaintext block 

Although the square matrix ܩ used to generate the initial key ܭ is a submatrix of the 
public key ܩ′, we can choose ܩ′ so that there can be several possibilities for such ܩ, as 
illustrated in Example 3. This therefore prevents an opponent from knowing the exact value of 
݊ (the dimension of ܩ, the length of ܸ, the length of plaintext block and the length of 
ciphertext block), and so finding the initial matrices ܭ and ܸ by brute force is impossible. Even if 
the entire extended ciphertext is intercepted, its length still depends on the choice of extended 
ciphertext made by the sender. Hence, the dimension ݊ cannot be determined immediately as 
a factor of the length of extended ciphertext unless the extended ciphertext is correctly 
reduced. 
4.3 Determining the ciphertext 

 In order to obtain the correct ciphertext, the set ܣ of addenda must be correctly 
determined first. As ݏ (the size of ܣ) is known publicly, the opponent may carry frequency 
analysis to determine all ݏ most frequently seen digits in the extended ciphertext (see Figure 4). 
Nevertheless, to obtain all correct addenda, the secret key ߙ is required. Note that gcdሺߙ,݉ሻ ൌ
1, so there are ߶ሺ݉ሻ (the Euler’s phi function of ݉) possible values which can be chosen as ߙ. 
Moreover, since the secret key ܸ is unknown to the opponent, generating the set ܣ directly 
from ܸ is impossible. 

 
Figure 4 Frequency analysis of digits in the extended ciphertext ܥext 
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4.4 Determining ܭ and ܸ 

If somehow the opponent can determine ߙ, ݊ and the set ܣ of addenda successfully, 
then the extended ciphertext can be reduced to the ciphertext and there might be an attempt 
to determine the secret key ܸ, which in turn would yield the key ܭ. However, successful 
determination of ܣ will only yield the sum ݒଵ ൅ ଶݒ ൅ ⋯൅  ௡, and there are ݉௡ିଵ matricesݒ
ሺݒଵ ଶݒ …  .௡ሻ resulting in this sum. Thus, the secret key ܸ cannot be determined exactlyݒ
Furthermore, since ܭ ൌ ሺݒଵݒଶ  also cannot ܭ but ܸ is unknown to the opponent, the key ܩ௡ሻݒ⋯
be determined exactly. 
4.5 Ciphertext-only attack 
 Ciphertext-only attack is an attack where the opponent knows only the encryption 
algorithm and the ciphertext, and so it is the easiest attack to defend against (Stallings, 2011).  

Suppose that the opponent can successfully reduce the extended ciphertext to the 
ciphertext. If the opponent attempts to attack using only the knowledge of a ciphertext block, 
say, ܥଵ, then from the encryption algorithm, we have 

ଵܥ ൌ ଵܭ ଵܲ ൅ ଵܸ
T ൌ ܭ ଵܲ ൅ ܸT ൌ ሺݒଵݒଶ ܩ௡ሻݒ⋯ ଵܲ ൅ ൮

ଵݒ
ଶݒ
⋮
௡ݒ

൲ 		mod	݉. (1) 

Since the opponent cannot determine ܸ successfully and the plaintext block ଵܲ (of length ݊) is 
unknown, this yields a system of ݊ linear congruences with 2݊ variables (provided that 
ଶݒଵݒ  ௡ is regarded as a variable). Such system cannot have a unique solution; thus, theݒ⋯
opponent cannot obtain the plaintext in this way. 

Alternatively, the opponent may ease the attack by using the fact that some blocks of 
plaintext are encrypted using the same pair of the keys ሺܭ௝, ௞ܸሻ. By Theorem 3, this situation can 
occur only when at least ௡ሺ௡ିଵሻሺ௡ାଵሻమ

ସ
൅ 1,  ௡ሺ௡ିଵሻሺ௡ାଵሻమ

ଶ
൅ 1, or ݊ሺ݊ െ 1ሻሺ݊ ൅ 1ሻଶ ൅ 1 blocks of 

ciphertext are intercepted, depending on ݊. In contrast, the modified Hill cipher proposed by 
Adinarayana Reddy et al. (2012), which uses the encryption algorithm 

௜ܥ ൌ ܭ ௜ܲ ൅ ௜ܸ
T	mod	݉ 

where ܭ is a common key used by every plaintext block and ௜ܸ is of length ݊, will be 
compromised when only ݊ blocks of ciphertext are intercepted. Hence, our modified Hill cipher 
provides higher security against ciphertext-only attack than the one of Adinarayana Reddy et al. 
(2012). 
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4.6 Known-plaintext attack 

Known-plaintext attack is an attack where the opponent knows encryption algorithm, 
ciphertext, and one or more plaintext-ciphertext pairs formed with the secret key (Stallings, 
2011). 

Suppose that the opponent can successfully reduce the extended ciphertext to the 
ciphertext. If the opponent attempts to attack using the knowledge of a plaintext-ciphertext 
pair, say, ሺ ଵܲ,  ଵሻ, then from the encryption algorithm (1), we will obtain a system of ݊ linearܥ
congruences with ݊ ൅ 1 variables (provided that ݒଵݒଶ  ௡ is regarded as a variable). Again, suchݒ⋯
system cannot have a unique solution; thus, the opponent still cannot obtain the plaintext. 

Similarly to the case of ciphertext-only attack, if the opponent attempts to ease the 
attack using the same pair of the keys ൫ܭ௝, ௞ܸ൯, then our modified Hill cipher is more resistant to 
this attack than the one of Adinarayana Reddy et al. (2012), for ours will take considerably larger 
period for the same pair of the keys ൫ܭ௝, ௞ܸ൯ to be re-used. 
4.7 The size of secret keys 

Suppose that each block of plaintext has length ݊. The classical Hill cipher uses an 
݊ ൈ ݊ matrix as the secret key, and so there are ݊ଶ integers for the secret key. On the other 
hand, the modified Hill cipher proposed by Adinarayana Reddy et al. (2012) only requires ݊ 
integers for the secret key. Although our modified Hill cipher requires ݊ ൅ 1 integers for the 
secret keys (which is slightly less economical than the one of Adinarayana Reddy et al. (2012)), it 
can provide additional securities in several aspects, as mentioned earlier.        
 

5. CONCLUSIONS 
In this research, we propose a new modification of the Hill cipher using doubly periodic 

encryption and length variation. Our modified cipher uses the matrix ܩᇱ and the positive integer 
 ,as the secret keys. Thus ߙ as the public keys, and uses the matrix ܸ and the positive integer ݏ
our modified cipher only requires ݊ ൅ 1 integers for the secret key; this is more economical than 
the classical Hill cipher, but is slightly less economical than the modified Hill cipher proposed 
by Adinarayana Reddy et al. (2012).  

Combination of the secret key ܸ and the public key ܩ′ provides two initial keys ܭ and 
ܸ, both of which are then used to generate different keys ܭ௝ and ௞ܸ for each round of 
encryption. Our procedures ensure that both types of keys have different periodicity, which 
leads to larger period for the same pair of the keys ൫ܭ௝, ௞ܸ൯ to be re-used in encryption, and in 
turn minimizes the risk of ciphertext-only and known-plaintext attacks. 
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In addition, our modified Hill cipher introduces a method to extend the ciphertext so 
that there can be many possible extended ciphertexts obtained from the same ciphertext, 
whereas reducing any one of those extended ciphertexts always yields the same ciphertext. This 
procedure can disguise the length ݊, and so determination of the secret keys by brute force is 
thwarted. It also results in variation of the frequency of each digit, which prevents the opponent 
from frequency analysis attack. 
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