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ABSTRACT

This research considers an application of the generalized Sundman transformation, i.e.,
u(t) fx),
dt = g(xy)dx
to the linearization problem of third-order ordinary differential equations. Complete necessary

1l

and sufficient conditions for third-order ordinary differential equations to be linearizable into the

general form of a linear third-order ordinary differential equation
u'"' + pu’ +au +yu=mn,
where f,a,y andn are constants, are obtained for the case f, = 0.
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INTRODUCTION

The basic problem in modeling physical phenomena is to find solutions of differential
equations. In general, these equations are very difficult to solve explicitly. The method for
solving differential equations uses a change of variables that transform a given differential
equation into another differential equation with known properties. Since the class of linear
equations is considered to be the simplest class of equations, there arises the equation where a
given differential equation can be equivalent to a linear equation; this problem is called the
linearization problem. Transformations mostly used for solving the linearization problem are
point transformations, contact transformations, reduction of order, tangent transformations and
generalized Sundman transformations.

The first linearization problem for ordinary differential equations was solved by Lie
(1883). He found the general form of a second-order ordinary differential equation that can be
at most cubic in the first-order derivative, and provided a linearization test in terms of its
coefficients. Grebot (1997) studied the linearization of a third-order ordinary differential equation
by means of a restricted class of point transformations, namely, t = @(x), u = ¥ (x,y), although
the problem was not completely solved. Complete criteria for the (inearization by means of
point transformations were obtained by lbragimov and Meleshko (2005).

The generalized Sundman transformation for second-order ordinary differential
equations was considered earlier by Duarte et al. (1994) using the Laguerre form. Later, Nakpim
and Meleshko (2010b) gave examples which show that the Laguerre form is not sufficient for the
linearization problem via the generalized Sundman transformations. Muriel and Romero (2010)
studied the class of nonlinear second-order equations that are linearizable by means of
generalized Sundman transformations is identified as the class of equations admitting first
integrals that are polynomials of first degree in the first-order derivative. Mustafa et al. (2013)
considered the linearization problem for nonlinear second-order ordinary differential equations
to the Laguerre form by means of generalized Sundman transformations. They gave a new
characterization of S-linearizable equations in terms of the coefficients of ordinary differential

equations and one auxiliary function. This new criterion is used to obtain the general solutions
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to the first integral explicitly, providing a direct alternative procedure for constructing the first
integrals and Sundman transformations. The generalized Sundman transformation was also
applied by Euler et al. (2003) to obtain necessary and sufficient conditions for a third-order
ordinary differential equation to be equivalent to the equation u'"’ = 0. Nakpim and Meleshko
(2010a) found conditions for a third-order ordinary differential equation to be equivalent to the

(143

Laguerre form u"' + qu’ = 0, where @ is a constant.

In this paper, we find the necessary and sufficient conditions which allow a third-order
ordinary differental equation to be mapped into a linear equation u'"’ + fu" + au' + yu =15
where f, a, ¥y and i are constants. Complete analysis of the compatibility of arising equations

is given for the case f, = 0.

GENERALIZED SUNDMAN TRANSFORMATION

A generalized Sundman transformation is a non-point transformation defined by the
formulae
u(t) = f(xy), dt=g(xydx, f,g#0. 1)
Let us explain how the generalized Sundman transformation maps one function into another.

Assume that y,(x) is a given function of x. Integrating the second equation of (1), we obtain

t=Qx)
for some function Q(x). Using the inverse function theorem, we find that x = Q71(t).

Substituting x into the function f(x. Yo (x)), we obtain the transformed function
() = £ (07 B, (Q71®)).
Conversely, let uy(t) be a given function of t. Using the inverse function theorem, we

solve the equation

up(t) = f(x,y)

with respect to y, where y = @(x,t) for some function @(x,t). Sclving the ordinary differential

equation

d
£ g0t 0),

dx
we find that t = H(x) for some function H(x). The function H(x) can be written as an action of
a functional H = L(u,). Substituting t = H(x) into the function @(x,t), the transformed
function

¥o(x) = 8(x, H(x))

is obtained.
Note that for the case g, =0, the generalized Sundman transformation becomes a point

transformation. Hence we shall assume from now on that g,, # 0.
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NECESSARY CONDITIONS FOR LINEARIZATION
First, we find the general form of a third-order ordinary differential equation

y"'=Hxyy.y"),
which can be mapped via a generalized Sundman transformation (1) into the linear equation

u.m +ﬂu” +a.ul' _l_ },u —_ n (2)
where 8, a, y and n are corstants.

By the formulae in (1), we can check that

w o= (V)
w' = =[h9Y" + (g = 9V + 2fg — fudy — 90V + fuxg = figs)
s él?[f”g 2" + ¥y (3fy9* — 41,9y9) + ¥ (3f1y9* — f:9y9 — 3f,9x9)
+"2 (fyyy 92 =3fyy9x9 — fyGyyd + 3£,92) + V"2 (3f02 — 6fuyGyg — fx9yvd (3)

_fyygxg - zfygxyg + 6fygx9y + Sfxyy-gz) = }"(3&9% + 3ﬁcxy.92 = 3fxxgy9
_fogry.g + 6fxgxgy . )ngxxg — 6fxy9x.9} + )’cxxxgZ ~ fxGxx9 — 3fxx9x9 + 3)&9%]-
Substituting u’, u'* and u"” into (2), we have the equation

V" 4 As06 Y'Y + A6 9" + 236,992 + 00,09 + L (0, y)y + 4 =0, @)
where the coefficients A;(x,y) (for i = 0,1,2,...,5) are related to the functions f and g in the

following way:

1
25 = 7= (39 — 4,95, "
4= jg(3fxy9 — fi9y — 3fy9x + Bf,9%), ©
/13 = J;?(fngz = nyygyg - fygyyg + Sfy‘g}%), %0
412 = EL—Z[ﬁfyy93 + gz(gfxyy i ﬁfygy) — g(E’fxygy + fxgyy -+ gfyygx + zfy.gxy) + 3)&93,

1
A= f—gz [Uf}ivg“' + 2ﬁfxy9’3 + 92(3fxxy = Bfi9y — Bfy9x) — 9(6fxyGx + 3fex Gy + 2fxGxy

¥

+fyGue) + 6£e9xgy + 3/,9%], ©)

1
Ao =750 f =) + afeg® + Bfxg’ + 9" (frax = Bfedx) = 9Bfaxbx + fgx) + 352021 (10)
Equation (4) presents the necessary form of a third-order ordinary differential equation which

can be mapped into a linear equation (2) via a generalized Sundman transformation.
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SUFFICIENT CONDITIONS FOR LINEARIZATION

To obtain sufficient conditions, we have to solve the compatibility problem by
considering (5)-(10) as an overdetermined system of partial differential equations for the
functions f and g with given coefficients 4;(x,y) (for i = 0,1,2,...,5). Here a complete solution
for the case f, = 0 s given.

From equations (5), (7) and (8), we find that

foy = %(493, +g2s), (11)
9yy =$ (592 + gygis — 32sy9% + 99°A3 — g*A3), (12)
Gxy = é(‘)gxgy + gygis —39%°2, + 9% A42s). (13)
Solving equations (6), (9) and (10) for B, @ and i, we obtain

B = (3gx + g2s), (19)
a= ﬁ;(gxx + geds + ghy), (15)
n=—5(rfg* — fk)- (16)

Since B, a and 7 are constants, differentiating them with respect to x and y and comparing the

mixed derivatives (fyy)x = (fi)yy Yields the following equations:

Gz = 55 (693 + gxghs — Aaxg®), (17)
~39x9y — 9y 92 + §%(2A4y — 325 + 14 25) =0, (18)
926245 — 181y +422) + g(9yy — 3Agpx — 4Asxhy) =0, (19)
~gy[81g% + g*(722; — 725 — 24,,) + 549,944] + g19°(3674y — 454,

+15X,25) + g3 (36A1, — 1825, + 644525 + 645,44 — 212,44 + 74225) =0, (20)
39xAo — Aoxg =0, (21)
Y= 537(3303;9 — 59,40 + go2s), (22)
69xgy + 29ygAs + g* (3sx — 625 + 22425) = 0. (23)

Differentiating y (in (22)) with respect to x and y and comparing the mixed derivatives

(gyy)x = (gxy)ya (gxy)x = (gxx}y-
we obtain the following equations:
59y (159,40 — 640xg — gAoAs) — 1899 (3gy + Aas) + g2[6(3Agxy + Aoxds
+25x40) + 540(34; —A44s)] =0, (249)
359240 — 149,9(3Aey + Ao4s) + 92 (9qyy + 30yAs + 1825, Ag — 454925 + 522%) =0, (25)
9239 + ghs) + gxg?(1825y — 5425 + 61%) + gy g2 (1225, — 644y — 532, — A4ds)]
+9° (1823 + 10823, — 644yd5 — 3645y, — 245,45 — 62,45 — 18431, + 42,2%) =0, (26)
_gy(gg§ + gzﬂi ik 699:914) i gxg2[1224y i 9(322 Il 2425)] + 93[12244{}? = 1822x
+6H4x2.5 + 24(322 ad 2425) + 62.51-2.4] = O (27)
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From equation (18), we have
gx = B;%Y (2249 — 9y A4 — 392, + ghuds). (28)
Substituting g, into (19), (20), (21), (23), (24), (25), (26) and (27) and comparing the mixed

derivatives

Gxx = (gx)x and Gxy = (gx)yn we find that

G715 — grr — 184y Ay + 18434 — 423) + g29[6A4xyAs — 27 Agny + Vgl
+1824xxy + Igreds +324x (154, — 2hyy — 62425) + 1614, (A3 — 34,)

+(182; — 1023)(34; — A4As) + gy g2 (922 (424y — 92, + 32425) + 3242y (152,
—6Aay — 5445) + 3242 A5(92; — 44y — 324 25) + A4y (1024, 24 — 57254, + 192325)
+81232, — 542,235 + 9A322] + g°[1423, (322 — A4As) + 424, A4 A5(62; — A4ds5)

1224, (23, + 323)] =0, (29)
202 (3hax — 9 +222) + 9,,9[91y + oy — gy — 3A4xhs — 224924 — 9y,

+30325] + g2[64%, — Ty (32y — Ayds) + 1823 — 122,A, 45 + 24342] =0, (30)
9yAe + 920(244y — 32, + A44s5) =0, (31)
Asx =3 (302 — Aaks — Ayy), (32)
59%’16 + gyg[4l4yﬁ.0 o 33@ — 61045 + 2454445 — AsAg] + 92[(3;{@ + Ao45)(34; — A44s5)
—224y, (320 + A925)] = 0, (33)

359220 — 14,9 (320y + oAs) + g%[IAqyy + 3A0yds + 185,45 — 545(94; = 22)] =0, (34)
—595(244y = 323 + A445) + Gy g[5423, — 635y + 24A4yy + 37 A4y A5 + 210524
_173.5 (3/12 = 2.4./15)] + 92[614};15), . 18/14},13 + 2143,11% +

(923 — 325y — 22) (32 — L4As)] =D, (35)
9y [6’141)' T 912){ + 3l4x;|-5 = 2"14)-"14 =+ 324(3’12 Il '14‘15)] + g[7‘a‘4y(312 == '14’15)) = 6’1121'}'

—1822 + 124,445 — 22222] =0, (36)
92[1024, — 152, + 52,45] + g,9[922y — 644y — Aeyds — 3AsyAy — A5 (32, — Aus)]

+92[Aay (1845 — 645y — 223) + (3Asy — 943 + 22)(34; — A4ds)] =0, (37)

where A = —(Agx + AgA4). Further analysis of the compatibility depends on 4.

Case 1.1 44+ 0

Suppose d¢ # 0. From equation (31), it follows that

gy = £2(3% — Aaks — 244y, (38)
when Ay # 0 and 31; — A4d5 — 244y, # 0.
Substituting g, into (29), (30), (33), (34), (35), (36), (37) and comparing the mixed derivatives

@)y = Gy)x Gyy = (Gy)y and gyy = (gy)x, We obtain the following conditions:
1
A = W{AE(ZHR — 184, Ay + 1824, — 423) + A3 (182, 46 — 24231 — 182446 — gy
0

_27261'14) e 2726){'2326 S 3623142% — 16}\2}, (39)
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[9‘3'2):‘1{]26 + 33.4_3541“ (81;143,-10 = 252‘6) + (36:&“1&1 12114_—::1(2) = 9“163:’10 S 8/1(%11% =

1y 13,1 16
10/12 = 15&324’16)(3"&2 S 1143.5) + 3.4}-(18251-2‘] 5= 722(2]11 + 162(2]2421, + 34232425 +
214%)], (40)
Aoy = ? (224520 + Agy — 3925 + ApAsls), (@1)
1
Ay =351 ——— [ Ag s + 5o (Ashs ~ Ahipdo) + (20N A2 ~ A5 A5Ae (30, — Rude) + 325, 22

—15A22,(32, — 2A,4A5) — 5222222 — A2(94; — 22)], (42)
1
Aeyy =57 (3202443 + 6045y 2 + 2029A546) (32 — A4s) ~ 404320 (8Aay Ao + 3Agy + Ashg)

—2725, A2 — 3y AsAg — T202223 + B0A2A,A5(62, — A,A5) + 822(92; — 42)], (43)

Aaxy = i[%u% — 3laxdgds + Agy (22024 — 32g) + (226 — 3AoA4) (322 — A425)), (a4)
Ay = 9—1;»15 sxhods + Agy Ao (112525 — 202,y A0 + 204, A3 (322 — A425) + 3Asy A6 (Aods + Ag)
—(TAoAsAs + 154224,) (B2, — 2A,45) — 522222 — 22(94; — 22)], (45)
(BAexo + 4o A4s + 442) (BN — A4ds) — 224y (Bhexdo + 4A0A4As + 422) = . (46)
Case 1.2, =0

If 26 = 0, then equations (29), (30), (31), (33), (35), (36) and (37) become

931129631, — Aaxy) — 259224 (Aay — 21) — 576231 + g2g[(4322; — 14424, — 9623 — 3619,

+9°[(25 — 28) (A — 725)] =0, (@7
4892 (3A4y — 9y + 223) + 9,9[2162,;, — 3649y + 61445 — 544445 — 364;]
+9°125 — 28] =0, (48)
Ao(224y — A9) =0, (49)
Aoy(224y — Ag) =0, (50)
593 (A — A9) + 9,9[32423, — 124gy — 424q, — BA5Ag — 46159] + %[(923 — 32s5y) (g — Ag)
—22(2 + A9)] =0, (51)
249,27 — g(A3 — 23) =@, (52)

—592(As — Ao) + gy9[32ay — 345y — As(Ag — A9)] + g2[(3Asy — 943 + A2)(Ag — A9)] =0, (53)
Where A7 = =923y + 644yy + 324345 — 244y A4 + 32,(34; — A445),

Ag = =124y + 212, — TA4ds and Ay = 32, — A4ds.
Note that (50) can be omitted as a result of (49). Further analysis of the compatibility depends

on A;.
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Case 1.2.1 4, # 0

Suppose A; # 0. From equation (52), we have

8y = 24,1 7z, %6 —29) (54)
where 23 — 2% # 0.
Substituting g, into (47), (48), (34), (51) and (53) and comparing the mixed derivatives (gx), =

(9y)x Gyy = (gy)y and gyy = (gy)x, we find the following conditions:

(27215 — Mgzy + 182, 1,)(A% — 22)3 — (18144, + 413)(AS — A5)

F(12A32323 + 5424, A, A222) (A3 — A2) + (4844, 2,A323 — 24A4x17}1§ — 24242, 2%
+72,11,1-,-}14 — 1440, , 2202 + 720, A28 — 16422, 2% + 32222,2223 — 16222, 44 + 48,4223
—482, 422522 + 2401322 — 2402322) (Ag — Ao) + 7247, A7 (A& — 2222 + A%) — 14420, A2(3

—A2Ag — AgA2 + 13) =0, (55)
(108,27 — 189,17 — 27242729 + 324,25 — 623) (A3 — A3)

+(3Asx — 94, + 222) (A2 — 22)? =0, (56)
172823340y + AoyAs) — (10082gy2; + 336494527) (A3 — 23) + 1036845, 2022
—2880292%(92; — 22) + 352, (A% + 23) ~ 7024343 =0, (57)
(777623,27 — 2881gy4; — 100829,1; — 1104254,1g — 192254, 25) (A3 — 23)

+(51842522 — 172825,22 — 5764323 + 523 — 104243 + 58) (A — Ao) =0, (58)
(17282523 — 51842323 + 5762323 — 24A52,23 + 24452,23 — 524 + 102323 — 52§) (A5 — Ay)
+(722gy A7 — 722992, ) (A% — 23 ) =0, (59)
3275 (A — 28) + 647, Ag29(A5 — 23) — 9627, 43(Ag + Ao) + (6Aox 27 A9 — 64, A725) (23 + 23)

+9643(Agy + Agy) — IZASxA?AS,lg (,13 —Ag) + 22243(Ag — 519) — 2A223(1325 + 745) =0, (60)
—28822(325y — 93 + 22) + (124545 + 362;,) (A3 — 23) — 722, (AgyAg — Agyds)
+(2F — A3)? =0, (61)
3252 (A3 — 42) — 65,47 (Ag — Ag) — 222(2g + 524) =0. (62)

Case 1.22 4; =0

If A; = 0, then (52) yields

B —22=0. (63)
From equations (47) and (48), we have
—692(310x + 241044) + 9y 9 (241049 — 221048) + 92 [IN1y A9 — A1y g
—Aioyda + digyds + 2444544 — 22,73] =0, (64)
29,210 — G0y =0, (65)
where ;4 = 344 — 94; + 244, Further analysis of the compatibility depends on 4.

Case 1.2.21 4, #0

Suppose ;9 # 0. From equation (65), it follows that

gy = M’tzm}, (66)
and Aygy # 0.
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Substituting g,, into (64), (34), (51) and (53) and comparing the mixed derivatives (gx)y = (gy)x
Gyy = (gy)y and gy, = (gy)x, we find the following conditions:
(42352429 — 1824543, — 410, 4%)(Ag — Ag) — YA10xAioy — 6130y A104 =0, (67)
Aoyy = ﬁ;uzzwm(um — A104s) = TA10yA0(5A10y — 441045) — 724552043,

+204425(94; — 22)], (68)
(5430y — 12255430 + 3622923 — 443523) (g — Ag) + 4210y A1p(16223, — 615y — 2124,
—4A515 — 234544) =0, (69)
(1225, 225 — 522, — 2110y As0ls — 364363 + 443012) (g — Ao)
+6419y2410(Asy — Agy) =0, (70)
Ry, = m{smmﬁw + 7235, A02g — 25220, 3020 + (4A10y W30 A5 — 2425, 2%,

+722%05 — 823,228)(Ag — Ag) — 12&10},1%(133, — Aoyl (71)
Moy = Tlm [4220, + Aioydiods — 625y 230 + 2230(925 — 22)]. (72)

Case 1.2.2.2 A,4=0

If 1,9 = 0, then (64) yields
(22429 — 921, )(Ag — A9) = 0. (73)
From equation (34), we find that
359220 — 149,911 + g° 212 = O, (74)
where ;1 = 34gy + Agds and Ay, = 345y + 155,49 — 452045 + 5194%.
Further analysis of the compatibility depends on 4.

Case 1.2.2.21 4, + 0

Since Ay # 0, it follows from (74) that
gi= 3:;}10(14%,111 — ghia). (75)
Substituting g,2 into (51) and (53), we obtain
149,13 + g[A14(TA0 445 + A12)] =0, (76)
79y (AoA1ads — 3A14yAg + 2211 218) ~ G147 AoAss + Ay2) =0, (77)
Where  A13 = 16243, 4y — 64, 4g — 21gy4g — 449 A5dg — 23494549 + A114g — 41140,

Mg =—2g+29 and A;5 = 315, — 95 + 23
Further analysis of the compatibility depends on ;3.

Case 1.2.2.2.1.1 A;3# 0

Suppose A3z # 0. From equation (76), it follows that

gy = =21 (7005 + A12), (78)

144;5
where 74545 + 412 # 0.
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Substituting gy, into (77) and comparing the mixed derivatives (gy)y = (gy)xs Gyy = (gy)y and

xy = (gy)x vield the following conditions:
(42/114-}')“13 - 14)‘13‘11415){7’10;{15 + ‘&12) F 730‘114’115(35’10‘114’115 F 10312’114)

+5A%2,1%4 = 196&%3}.15 = D, {?9)
42X15y 213 = 4221513y + Aodiadis) — 29420213y (Ars — Aisydiz) — 1474504055
—984134:5(ApAs — A11) — 3232244 =0, 80)

21213244 (TA15y40 + A12y) + (214445413 — 21413 A14) (TAp A5 + A12)
+4920 214215 (AgA14A15 — 224325) — 14215 (7AT3 — AgA1243,) + TA13 214 (7241245

—A124s) + 43,47, =0, (81)
18412x 413414 + (1814 Ay — 18A13,414) (TAodss + A12) + 12640413414 (A15x — A1544)
7224 (62 ~ A1s) = 0. (82)

Case 1.2.2.2.1.2 113, =0

From equation (76) and (77), we obtain

M4 (75 + 242) =0, (83)
RoAriks — 3agho + 22124 = 0. (84)
Case 1.2.2.2.2 4, =0

From equation (51) and (53), we obtain

59316 + 20ygM7 + 9% s =0, (85)
_10932)’116 + gyg[lﬁzﬂax — 2729}- = 62‘162‘5 = 2.1? - 272529]
—29%A1618 =0, (86)

Where 2416 = Ag — Ao,
My = =616y + 16223, — 2749, — 41615 — 27250,
Mg = —3Asy + 923 ~ 2.

Further analysis of the compatibility depends on A45.
Case 1.2.2.2.2.1 4,4 # 0

Suppose ;¢ # 0. From equation (85), we have

g; = - 5_):.}1_6 (2gy;a.1? + gﬂlﬁﬁw). (87)

2 into (86), we obtain the condition

Substituting gy
5443, — gy — 24625 + Ay — IAsdg = 0. (88)
Case 1.2.2.2.22 A,s =0
If 36 = 0, then we obtain from (85) and (86) the conditions
A =0, (89)

Aax == (Agy + A51s). (90)
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CONCLUSIONS

We are now ready to state our main theorems.

Theorem 1. Any third-order ordinary differential equation

y"' =Hxyyy") (91)
which vyields a linear equation u" + pu” +au' +yu=mn via a ceneralized Sundman
transformation

w= iy, dt =g(x,y)dx, f,g#0 (92)

has to be cf the form
Y+ A5 (6 )Y'Y" + 2@ Y + 2300y + 269y + ()Y + A (xy) =0 (93)

Theorem 2. Sufficient condiitions for equation (93) to be linearizable via a generalized
Sundman transformation with f, = 0 are as follows:

(a) If A # 0, then the conditions are (32), (39), (40), (41), (42), (43), (44), (45) and (46).

(b) For ¢ = 0,

(b.1) if A7 # 0, then the conditions are (32), (49), (55), (56), (57), (58), (59), (60),
(61) and (62);

(b.2) if 2; =0 and 4,9 # 0, then the conditions are (32), (49), (63), (67), (68),
(69), (70), (71) and (72);

(b.3)if A =0, 230 =0, 45 # 0 and 4,53 # 0, then the conditions are (32), (49),
(63), (73), (79), (80), (81) and (82),

(b.4)if 27 =0, 430 =0, 45 # 0 and A;3 = 0, then the conditions are (32), (49),
(63), (73), (83) and (84),

(b.5)if 4; =0, 41 =0, 4 =0, 4,5 # 0, then the conditions are (32), (49), (63),
(73) and (88);

(b.6)if 1, =0, 419 =0, g =0, 4,4 = 0, then the conditions are (32), (49), (63),
(73), (89) and (90).

Theorem 3. Provided that the sufficient conditions in Theorem 2 are satisfied, the
transformation (92) mapping equation (93) into a linear equation u'"' + fu” + au’' +yu=nis
obtained by solving the following compatible system of equations for the functions f(y) and
g, y):

(@) For A # 0, (11), (28) and (38);

(b) For 44 = 0,

(b.1) (12), (28) and (54);
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(b.2) (11), (28) and (66);

(b.3) (11), (28) and (78);

(b.4) (11), (28) and (75);

(b.5) (11), (28) and (87);

(b.6) (11) and (28).
Examples

Example 1. Consider the nonlinear third-order ordinary differential equation

e E ' n_i .r;__i ;3_i 2 i ' =
Y +yyy Xy J-"zy x}’y +X2y +xy_0 (94)
Note that equation (94) is of the form (93) with the coefficients
2 3 1 2 3
2.5 = ;; 2.4 = _;; 2.3 = _JE] 22 = _Ea ‘&l =X_Zl AD . x3y' (95)

We can check that the coefficients in (95) satisfy the conditions for the case (b.4) in Theorem 2.
Thus, equation (94) is linearizable via a generalized Sundman transformation.
To find the functions f and g, we have to solve the system of equations

Gx = u;;gy (9'114 - 69’y}~4)J

g% = 55(1493,;{11 - gh), (96)

fyy = % (49, + 92s).
Here we take the simplest solution which satisfies (96), that is, f = —1”3—3 and g = xy. Thus, the
generalized Sundman transformation for linearization is

u= };—3 dt = xydx. 97)
From equations (14), (15), (16) and (22), we find that § =0, @ =0, n =—1 and y = 0. Hence,
equation (94) is mapped by the transformation (97) into the linear equation

w"’+1=0. (98)
The general solution to equation (98) is

ut)=-S+a i o+, (99)
where Cy,C, and (5 are constants. Applying the generalized Sundman transformation (98) to

equation (99), we obtain that the general solution to equation (94) is
1

y(x) = (—%+ R r:)

where the function t = ¢(x) is a solution to the equation

dt 3 £t 3
a=x _E+61?+Czt+63 .
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Example 2. Consider the nonlinear third-order ordinary differential equation

T N TR -'3__2"_2 A
VR4S ="~ =10 (100)
Note that equation (100) is of the form (93) with the coefficients
2 1 ¥
2_5 = ;’ A‘i— = O, 2_3 = _F' ,12 = O, ﬂ_l = ——9—, ﬂ_n =y. (101)

We can check that the coefficients in (101) do not satisfy the conditions of linearizability by
point and contact transformations (lbragimov and Meleshko, 2005). Nevertheless, they obey the
conditions for the case (b.2) in Theorem 2. Thus, equation (100) is linearizable via a generalized
Sundman transformation.

To find the functions f and g, we have to solve the system of equations

g
9% = G0 (A1020 = 310y As — A1pdg),

9y = 1Moy, (102)
fyy = %o [Bikies, i)
Here we lake the simplest solution which satisfies (102), that is, f = };—3 and g =y.
Thus, the generalized Sundman transformation for linearization is
u= };—3 dt = ydx. (103)
From equations (14), (15), (16) and (22), we find that § =0, a = —é, n=-1landy =0.
Hence, equation (100) is mapped by the transformation (103) into the linear equation
u” —Zu'+1=0. (104)
The general solution to equation (104) is
u(t) = ¢, + Cze'é + C3e§ + 9t, (105)
where C;,C, and C; are constants. Applying the generalized Sundman transformation (104) to

equation (105), we obtain that the general solution to equation (100) is
1

P P 3
y@) = (€1 + 73 + e +279)°,

where the function t = ¢@(x) is a solution to the equation

Wi =

dt _t £
d_x: (Cl + Cze 3 + 6383 +27t) A
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