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บทคัดย่อ 
บทความปริทัศน์นี้นําเสนอความเข้าใจเกี่ยวกับวัสดุเซรามิกเปราะ หัวข้อหลักซ่ึงประกอบด้วยสมบัติ

โดยท่ัวไป กลศาสตร์แตกหักและความเหนียวของวัสดุเซรามิกถูกนําเสนอ ความเหนียวเกิดจากความสามารถของ
วัสดุในการดูดซับพลังงานระหว่างการเปลี่ยนรูปแบบพลาสติกก่อนการแตกหักโดยอาศัยกลไกท่ีแตกต่างกัน เช่น 
การหักเหรอยร้าว การเพ่ิมความเหนียวด้วยการเปลี่ยนเฟส การเกิดรอยร้าวจุลภาค และการหลุดออกของเส้นใย
ผ่านการเสริมแรงด้วยอนุภาคหรือเส้นใยในเนื้อพ้ืนเซรามิก ข้อมูลนี้สามารถใช้ประโยชน์เป็นแนวทางในออกแบบ
กระบวนการผลิตวัสดุเพ่ือเพ่ิมความแข็งแรงแก่วัสดุเซรามิก 
 

ABSTRACT 
This review article presented an understanding of brittle ceramic materials. The main 

topics including typical properties, fracture mechanic and toughening of ceramic materials were 
proposed. Toughening arose from the ability of materials to absorb energy and plastically 
deform before being fractured by different mechanisms such as crack deflection, transformation 
toughening, microcracking and fiber pull-out through particulate or fiber reinforcement in 
ceramic matrix. This information can be used for guiding the processing design to increase the 
strength of ceramic materials. 
 

คําสําคัญ: วัสดุเซรามิก  วัสดุผสมเนื้อพ้ืนเซรามิก  ความเปราะ  การร้าว  การแตกหัก  การเพ่ิมความเหนียว 
Keywords: Ceramic, Ceramic Matrix Composite, Brittle, Crack, Fracture, Toughening 
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ท้ังเซรามิกและ CMC ท่ีเสริมแรงด้วยอนุภาค
จะเกิดความเสียหาย (failure) ในลักษณะเดียวกันคือ 
ความเสียหายแบบทันทีทันใดหลังจากได้รับแรงกระทํา
ท่ีเกินขีดความสามารถท่ีจะรับได้ ในขณะท่ี CMC ท่ี
เสริมแรงด้วยเส้นใยต่อเนื่องสามารถรับแรงกระทํา
ต่อไปได้อีกระยะหนึ่ง การเสริมแรงด้วยเส้นใยต่อเนื่อง
ไม่เพียงแต่จะช่วยให้ CMC มี KIC ท่ีดีข้ึน แต่ยังช่วย
ปรับปรุงรูปแบบของความเสียหาย (failure mode) 
และการส่งผ่านความเค้นและความเครียดภายในวัสดุ
ผสมอีกด้วย อย่างไรก็ตาม รูปร่างของวัสดุเสริมแรงมี
ส่วนเกี่ยวข้องการกับส่งผ่านความเค้นและความเครียด
ภายในวัสดุผสมอย่างมาก เช่นวัสดุเสริมแรงท่ีเป็นเส้น
ใยซ่ึงเป็นตัวเสริมแรง (reinforcement) ท่ีมีราคาแพง
กว่าอนุภาค และกระบวนการผลิตยังมีความซับซ้อน

กว่า ดังนั้น การเพิ่ม KIC แก่วัสดุเซรามิกจึงจําเป็นต้อง
อาศัยต้นทุนท่ีสูง (Rosso, 2006) 

วัสดุท่ีใช้เป็นเนื้อพ้ืนสําหรับ CMC โดยท่ัวไป
จําแนกได้ 4 ประเภท (Mitchell, 2004) ได้แก่ กลาส
เซรามิก (glass ceramic) เช่น ลิเทียมอะลูมิโนซิลิเกต 
(lithium aluminosiligate: Li2O.Al2O3.2SiO2) เซรา- 
มิกชนิดออกไซด์ (oxide ceramic) เช่น อะลูมินา 
(Alumina: Al2O3) และมัลไลต์ (mullite: 
3Al2O3.2SiO2) เซรามิก ชนิดไนไตรด์ (nitride 
ceramic) เช่น ซิลิกอนไนไตรด์ (silicon nitride: 
Si3N4) รวมไปถึงเซรามิกชนิดคาร์ไบด์ (carbide 
ceramic) เช่น ซิลิกอนคาร์ไบด์ (silicon carbide: 
SiC) (Chanadee and Niyomwas, 2016) เป็นต้น ซ่ึง
สมบัติท่ีสําคัญบางประการของเน้ือพ้ืนสําหรับ CMC 
แสดงดังตารางท่ี 1 

 

ตารางท่ี 1 สมบัติของวัสดุเซรามิกบางชนิดท่ีใช้เป็นเนื้อพ้ืนสําหรับ CMC (Mitchell, 2004) 
เนื้อพ้ืน ความหนาแน่น (g/cm3) อุณหภูมิท่ีใช้งาน (C) 
Al2O3 4.0 ~ 1,000 

glass ceramic 2.7 900 
Si3N4 3.1 ~ 1,300 
SiC 3.2 ~ 1,300 

 

CMC จัดเป็นวัสดุผสมท่ีถูกพัฒนาข้ึนภายหลัง
วัสดุผสมชนิดอ่ืนเนื่องจากเหตุผล 2 ประการ ประการ
แรกคือ กระบวนการการผลิต CMC ส่วนใหญ่ต้องใช้
อุณหภูมิสูง ดังนั้นตัวเสริมแรงท่ีใช้จึงต้องทนอุณหภูมิสูง
ด้วย ยกตัวอย่างเช่น เส้นใยและวิสเกอร์ของซิลิกอน
คาร์ไบด์ ซ่ึง มีการใช้อ ยู่ในปัจจุบัน  สมบั ติของตัว
เสริมแรงท่ีอุณหภูมิสูงยังมีความสําคัญในระหว่างการใช้
งานอีกด้วย คือจะต้องคงสมบัติเดิมได้ตลอดการใช้งาน 
ทําให้  เซรามิกซ่ึงเป็นวัสดุท่ีมีเสถียรภาพท่ีอุณหภูมิสูง
ถูกนํามาใช้เป็นหลัก และสาเหตุประการท่ีสองท่ีทําให้ 

CMC มีการพัฒนาล้าหลังเม่ือพิจารณาจากการใช้งานท่ี
อุณหภูมิสูง คือความแตกต่างของสัมประสิทธ์ิการ
ขยายตัวเนื่องจากความร้อน (coefficients of 
thermal expansion: ) และการหดตัว (contract) 
ระหว่างเนื้อพ้ืนกับตัวเสริมแรงซ่ึงนําไปสู่การเกิด
ความเครียดเนื่องจากความร้อน (thermal stresses) 
จากการเย็นตัวจากอุณหภูมิสูงในกระบวนการผลิต ทํา
ให้เกิดรอยร้าว (crack) ข้ึนในเนื้อของ CMC (Rosso, 
2006) 
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กรณีเสริมแรงด้วยอนุภาค หากสัมประสิทธ์ิ
การขยายตัวเนื่องจากความร้อนของตัวเสริมแรงมีค่าสูง
กว่าของเนื้อพ้ืน รอยร้าวของ CMC จะเกิดข้ึนในเนื้อพ้ืน
โดยเริ่มต้นจากบริเวณเส้นรอบวงของอนุภาคเสริมแรง
หรือการร้าวตามแนวรัศมี และกรณีท่ีตัวเสริมแรงท่ีใช้
เป็นเส้นใย หากสัมประสิทธ์ิการขยายตัวเนื่องจากความ
ร้อนของตัวเสริมแรงมีค่าสูงกว่าของเนื้อพ้ืนจะทําให้เกิด
ความเค้นดึง (tensile stress) ข้ึนในเส้นใยและทําให้
เกิดความเค้นอัด (compressive stress) ข้ึนในเนื้อพ้ืน 

และเม่ือเส้นใยเกิดการหดตัว เส้นใยเหล่านั้นจะแยกตัว
ออกจากเน้ือพ้ืนอย่างชัดเจน ดังนั้นการใช้ตัวเสริมแรง
และเนื้อพ้ืนท่ีมีค่า สัมประสิทธ์ิการขยายตัวเนื่องจาก
ความร้อนท่ีใกล้เคียงกันอาจสามารถช่วยลดปัญหาท่ี
เกิดข้ึนได้ (Krenkel, 2008) 

ความทนทานต่อการแตกหักของ CMC ท่ี
ผ่านการปรับปรุงสมบัติแล้วเปรียบเทียบกับเซรามิกแข็ง
บางประเภทได้แสดงดังตารางท่ี 2 

 

ตารางท่ี 2 สัมประสิทธ์ิความทนทานต่อการแตกหักของวัสดุเซรามิกและ CMC บางประเภท 
วัสดุ KIC (MPa.m1/2) อ้างอิง 
Al2O3 4.5 Callister and Rethwisch, 2014 
LAS 2.0 Barsoum, 2003 
SiC 4.8 Callister and Rethwisch, 2014 

Si3N4 3.6 Callister and Rethwisch, 2014 
ZrO2 10.0 Rösler et al., 2007 

Mullite 3.5-4.0 Ghahremani et al., 2015 
Porcelain 1.0 Rösler et al., 2007 
ZrO2-Al2O3 6.5-13 Barsoum, 2003 
TiC-Al2O3 4.3-5.1 Cheng et al., 2014 
Si3N4-TIC 4.5 Barsoum, 2003 
SiC-Al2O3 7.5-9.0 Callister and Rethwisch, 2014 
SiC-LAS 15.0-25.0 Barsoum, 2003 
C-SiC 4.8-5.0 Yunlong et al., 2013 

B4C-SiC 6.0 Moshtaghioun et al., 2013 
ZrO2-mullite 10.0-11.0 Khor et al., 2003 

 

กลศาสตร์การแตกหักในวัสดุเซรามิก 
วัสดุเปราะโดยเฉพาะวัสดุเซรามิกทุกชนิดจะ

มีรูและตําหนิ (Flaws) เล็ก ๆ ท่ีมีขนาด รูปทรง และ
การเรียงตัวแบบต่าง ๆ อยู่ในปริมาณหนึ่งท่ีบริเวณผิว
และภายในเนื้อวัสดุซ่ึงทําให้เกิดรอยร้าวข้ึน รอยร้าว
เหล่านี้จะส่งผลด้านลบต่อความทนทานต่อการแตกหัก
เพราะความเค้นท่ีกระทําอาจจะไปขยายหรือรวมกันท่ี

ปลายรอยร้าว (crack tip) ความเค้นท่ีรวมกันจะ
เพ่ิมข้ึนมากหรือน้อยนั้นข้ึนกับรูปทรงทางเรขาคณิต 
(crack geometry) และการเรียงตัวของรอยร้าว เม่ือ
ความเค้นดึงท่ีปลายรอยร้าวด้านหนึ่ง มีค่าสูงเกินกว่าค่า
ความเค้นวิกฤต รอยร้าวจะเกิดข้ึนและขยายตัวจนเกิด
การแตกหัก (Callister and Rethwisch, 2014) 
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กล ไกกา ร เกิ ด รอย ร้ า วจุ ลภาค มีคว าม
คล้ายคลึงกับการเพิ่มความเหนียวโดยการเปลี่ยนเฟส 
ดังนั้น อิทธิพลจากรอยร้าวจุลภาครอบ ๆ ผิวของรอย
ร้าวจึงสามารถยับย้ังการร้าวได้เหมือนกับอิทธิพลจาก
การเปลี่ยนเฟส โดยที่การขยายตัวของความเครียดจะ
ถูกสร้างจากรอยร้าวจุลภาคและส่งผลให้เกิดแรงอัด ซ่ึง
ป้องกันการเกิดความเค้นดึงท่ีเป็นแรงผลักดันให้ปลาย
ของรอยร้าวขยายตัว (Rice, 2000) 
 

การหลุดออกของเส้นใย (fiber pull-out) 
ความเหนียวหรือความทนทานต่อการแตกหัก

ในวัสดุเซรามิก คือปริมาณพลังงานท่ีถูกดูดซับต่อหนึ่ง
หน่วยของรอยร้าวท่ีขยายออก ดังนั้นกระบวนการดูด
ซับพลังงานท่ีบริเวณปลายของรอยร้าว ทําให้ความ
ทนทานต่อการแตกหักเพ่ิมข้ึน (Dassios, 2007) 

การหลุดออกของเส้นใยเป็นเทคนิคการเพ่ิม
ความทนทานต่อการแตกหักท่ีถูกพัฒนาขึ้นมาใหม่เม่ือ 
เ ร็ว  ๆ  นี้  ซ่ึ ง เกี่ ยว ข้องกับการใช้ เส้นใยต่อ เนื่ อ ง 
(continuous-fiber) หรือวิสเกอร์เซรามิก เช่น SiC 
หรือ Si3N4 เพ่ือให้วิสเกอร์เหล่านี้ทําหน้าท่ียับย้ังการ

ขยายตัวของรอยร้าว (Callister and Rethwisch, 
2014) 

การหลุดออกของเส้นใยเป็นกลไกความ
เสียหาย (failure mechanism) กลไกหนึ่งในวัสดุผสม
ท่ีเสริมแรงด้วยเส้นใย การหลุดออกของเส้นใยเป็นผล
มาจากพันธะอย่างอ่อน (weak bonding) ท่ียึดเหนี่ยว
ระหว่างเนื้อพ้ืนกับตัวเสริมแรง ใน CMC กลไกดังกล่าว
ไม่ใช่กลไกของความเสียหาย แต่เป็นกลไกท่ีสําคัญใน
การสร้างความทนทานต่อการแตกหักให้แก่วัสดุเซรามิก 
กลไกของการหลุดออกของเส้นใยแบ่งได้เป็น 4 ระยะ 
ดังนี้ (Lamon, 1993; Dassios, 2007) 

ระยะท่ี 1: initial debonding---ผิวหน้า
ของรอยร้าวจะเริ่มเกิดข้ึนในเนื้อพ้ืนเนื่องจากเนื้อพ้ืนมี
ความแข็งแรงน้อยกว่าเส้นใย และเม่ือความเค้นเพ่ิมข้ึน 
ทําให้รอยร้าวขยายตัวผ่านไปยังบริเวณรอบ ๆ เส้นใย 
ส่งผลให้เกิดการแตกของพันธะท่ียึดเหนี่ยวระหว่างเฟส
ของเนื้อพ้ืนกับเส้นใย (interfacial debonding) ตลอด
แนวของเส้นใย ดังแสดงในรูปท่ี 7 และ 8 การแตกของ
พันธะจะสิ้นสุดลงเม่ือพลังงานของกลไกน้ีสมดุลกับ
พลังงานที่ต้องการสําหรับการโตของรอยร้าว 

 
 
 
 
 
 
 

รูปท่ี 7 แบบจําลองแสดงระนาบของรอยร้าวท่ีเกิดข้ึนตามแนวของเส้นใย (Rice, 2000) 
\ 
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