



## จำนวนเส้นเชื่อมน้อยที่สุดที่ลบออกจากกราฟเพื่อให้ได้กราฟระนาบ

### Minimum Number of Edges whose Removal Gives a Planar Graph

Wenakorn leosanurak<sup>1</sup> and Keaitsuda Nakprasit<sup>1\*</sup>

#### บทคัดย่อ

กำหนดให้  $Ce(G)$  คือจำนวนเส้นเชื่อมน้อยที่สุดที่ลบออกจากกราฟ  $G$  แล้วทำให้กราฟย่อยที่เหลือเป็นกราฟเชิงระนาบ เรากำหนด  $Ce(G)$  เมื่อ  $G$  เป็นกราฟแบบบริบูรณ์ หรือกราฟ  $k$  ส่วนแบบบริบูรณ์

#### ABSTRACT

Let  $Ce(G)$  be the minimum number of edges whose removal from a graph  $G$  gives a planar graph. We investigate  $Ce(G)$  for complete graphs and complete  $k$ -partite graphs.

**คำสำคัญ:** กราฟ กราฟระนาบ กราฟแบบบริบูรณ์ กราฟ  $k$  ส่วนแบบบริบูรณ์

**Keywords:** Graph, Planar graph, Complete graph, Complete  $k$ -partite graph

#### Introduction

A *graph*  $G$  is a triple consisting of a vertex set  $V(G)$ , an edge set  $E(G)$ , and a relation that associates with each edge two vertices (not necessarily distinct) called its endpoints. Sometimes, we write  $G(V(G), E(G))$ ,  $V(G)$  and  $E(G)$  instead of  $G$ ,  $V$  and  $E$  respectively. A *subgraph* of a graph  $G$  is a graph  $H$  such that  $V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$  and the assignment of endpoints to edges in  $H$  is the same as in  $G$ . We write  $H \subseteq G$  and say that " $G$  contains  $H$ ". A *complete graph* is a graph where every vertex is adjacent to every other vertex. A complete graph on  $n$  vertices is denoted by  $K_n$ . A  *$k$ -partite graph* is a graph whose vertices can be partitioned into  $k$  disjoint sets  $V_1, \dots, V_k$  so that no two vertices within the same set are adjacent. We call  $V_1, \dots, V_k$  *partite sets* of  $G$ . If  $V_1, \dots, V_k$  are partite sets of a  $k$ -partite graph then

<sup>1</sup>Department of Mathematics, Faculty of Science, Khon Kaen University, Thailand 40002

\*Corresponding Author, E-mail: kmaneeruk@hotmail.com

graph is denoted by  $G(V_1, \dots, V_k)$ . A graph  $G(V_1, \dots, V_k)$  is a *complete k-partite graph* if  $uv \in E(G)$  for each  $u$  and  $v$  in different partite sets. If  $|V_i| = n_i$  for  $1 \leq i \leq k$ , then a complete  $k$ -partite graph is denoted by  $K_{n_1, \dots, n_k}$ . A graph  $G$  is *plane* if it is drawn in a plane without edges crossing and a graph  $G$  is *planar* if it can be drawn into a plane graph. The following fact about planar graphs is well-known and can be found in standard texts about graph theory such as (West, 2001; Nakprasit, 2011).

**Theorem** (West, 2001) [Euler's formula] If  $G$  is a finite, connected plane graph, then  $n(G) - e(G) + f(G) = 2$  where  $n(G)$  is the number of vertices,  $e(G)$  is the number of edges and  $f(G)$  is the number of faces (regions bounded by edges, including the outer, infinitely large region).

If  $G$  is a connected plane graph with at least 3 vertices, then  $e(G) \leq 3n(G) - 6$  and  $e(G) = 3n(G) - 6$  if and only if all faces of  $G$  are  $C_3$ 's, where  $C_3$  is a 3-cycle (see, (West, 2001)).

If  $G$  is a planar bipartite graph with at least 3 vertices, then  $e(G) \leq 2n(G) - 4$  (see, (West, 2001)).

**Corollary A** (West, 2001) If  $G$  has  $K_5$  or  $K_{3,3}$  as a subgraph, then  $G$  is not a planar graph.

In this paper, we investigate the minimum number of edges whose removal from a graph gives a planar graph for complete graphs and complete  $k$ -partite graphs.

## Main Results

**Definition 1** Let  $Ce(G)$  be the minimum number of edges whose removal from a graph  $G$  gives a planar graph.

**Obsevation:** Let  $H \subseteq G$ . If  $Ce(H) = k$  then  $Ce(G) \geq k$ .

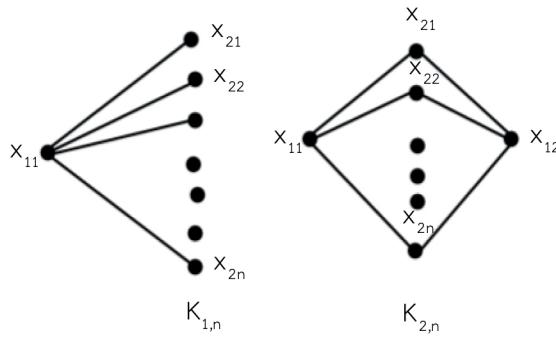
**Theorem 2** The complete bipartite graph  $K_{m,n}$  ( $m \leq n$ ) is not a planar graph if and only if  $K_{m,n}$  is not isomorphic to  $K_{1,n}$  and  $K_{2,n}$ .

**Proof.** Let  $V_1 = \{x_{11}, \dots, x_{1m}\}$  and  $V_2 = \{x_{21}, \dots, x_{2n}\}$  be partite sets of  $K_{m,n}$ .

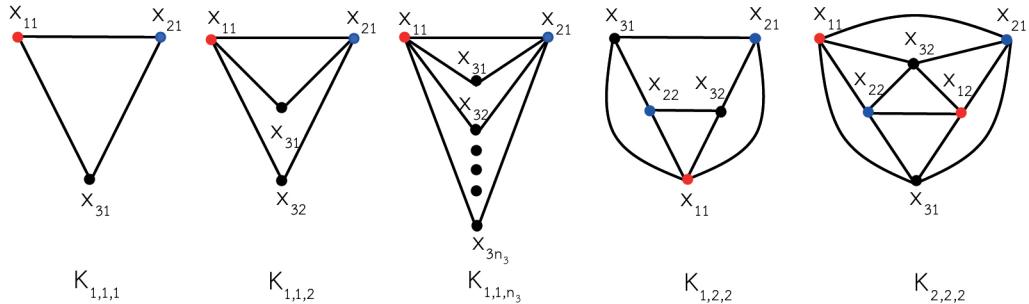
( $\Rightarrow$ ) We will prove by contrapositive. Suppose that  $K_{m,n}$  is isomorphic to  $K_{1,n}$  or  $K_{2,n}$ . We can draw  $K_{m,n}$  in the plane as in Figure 1.

( $\Leftarrow$ ) Let  $K_{m,n}$  be not isomorphic to  $K_{1,n}$  and  $K_{2,n}$ . Then  $m \geq 3$  and  $n \geq 3$ . Note that  $K_{m,n}$  ( $3 \leq m \leq n$ ) has  $K_{3,3}$  as a subgraph.

Thus, Corollary A implies that  $K_{m,n}$  is not a planar graph. □

Figure 1.  $K_{1,n}$  and  $K_{2,n}$ 

**Theorem 3** The complete 3-partite graph  $K_{n_1, n_2, n_3}$  ( $n_1 \leq n_2 \leq n_3$ ) is not a planar graph if and only if  $n_2 \geq 2$  and  $n_3 \geq 3$ .

Figure 2.  $K_{1,1,1}$ ,  $K_{1,1,2}$ ,  $K_{1,1,n_3}$ ,  $K_{1,2,2}$  and  $K_{2,2,2}$ 

**Proof.** Let  $V_1 = \{x_{11}, \dots, x_{1n_1}\}$ ,  $V_2 = \{x_{21}, \dots, x_{2n_2}\}$  and  $V_3 = \{x_{31}, \dots, x_{3n_3}\}$  be partite sets of  $K_{n_1, n_2, n_3}$ .

( $\Rightarrow$ ) We will prove by contrapositive. We consider two cases.

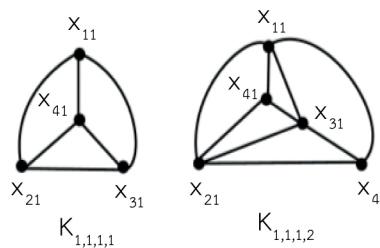
*Case 1:*  $n_2 < 2$ . We obtain that  $K_{1,1,n_3}$  ( $n_3 \geq 2$ ) is able to be drawn as a plane graph shown in Figure 2.

*Case 2:*  $n_3 < 3$ . We obtain that  $n_2 = 1, 2$  implies that  $K_{n_1, n_2, n_3}$  is  $K_{1,1,1}$ ,  $K_{1,1,2}$ ,  $K_{1,2,2}$  or  $K_{2,2,2}$  which is able to be drawn as a plane graph shown in Figure 2.

From case 1 and case 2,  $K_{n_1, n_2, n_3}$  where  $n_2 < 2$  or  $n_3 < 3$  is a planar graph.

( $\Leftarrow$ ) Consider  $K_{n_1, n_2, n_3}$  where  $n_2 \geq 2$  and  $n_3 \geq 3$ .

Note that  $K_{n_1, n_2, n_3}$  has  $K_{3,3}$  as a subgraph. Thus, Corollary A implies that  $K_{n_1, n_2, n_3}$  is not a planar graph.  $\square$

Figure 3.  $K_{1,1,1,1}$  and  $K_{1,1,1,2}$ 

**Theorem 4** The complete 4-partite graph  $K_{n_1, n_2, n_3, n_4}$ ,  $n_1 \leq n_2 \leq n_3 \leq n_4$  is not a planar graph if and only if  $K_{n_1, n_2, n_3, n_4}$  is not isomorphic to  $K_{1,1,1,1}$  and  $K_{1,1,1,2}$ .

**Proof.** Let  $V_1 = \{x_{11}, \dots, x_{1n_1}\}$ ,  $V_2 = \{x_{21}, \dots, x_{2n_2}\}$ ,  $V_3 = \{x_{31}, \dots, x_{3n_3}\}$  and  $V_4 = \{x_{41}, \dots, x_{4n_4}\}$  be partite sets of  $K_{n_1, n_2, n_3, n_4}$ .

( $\Rightarrow$ ) We will prove by contrapositive. Suppose that  $K_{n_1, n_2, n_3, n_4}$  is isomorphic to  $K_{1,1,1,1}$  or  $K_{1,1,1,2}$ . So we can draw  $K_{1,1,1,1}$  and  $K_{1,1,1,2}$  as a plane graph shown in Figure 3. Therefore  $K_{n_1, n_2, n_3, n_4}$  is a planar graph.

( $\Leftarrow$ ) Consider  $K_{n_1, n_2, n_3, n_4}$  that is not isomorphic to  $K_{1,1,1,1}$  and  $K_{1,1,1,2}$ . Note that  $K_{n_1, n_2, n_3, n_4}$  has  $K_{3,3}$  as a subgraph. Thus, Corollary A implies that  $K_{n_1, n_2, n_3, n_4}$  is not a planar graph.  $\square$

**Theorem 5** The complete  $k$ -partite graph  $K_{n_1, n_2, n_3, \dots, n_k}$  is not a planar graph where  $n_1 \leq n_2 \leq n_3 \leq \dots \leq n_k$  and  $k \geq 5$ .

**Proof.** Note that  $K_{n_1, n_2, n_3, \dots, n_k}$  where  $k \geq 5$  has  $K_5$  as a subgraph.

Thus, Corollary A implies that  $K_{n_1, n_2, n_3, \dots, n_k}$  is not a planar graph.  $\square$

**Observation:** It is obvious that  $Ce(G) = 0$  if and only if  $G$  is a planar graph.

From the definition of  $Ce(G)$ , Theorem 2, 3 and 4, we obtain the following results (see Figure 4).

1.  $Ce(K_n) = 0$  if and only if  $n = 1, 2, 3, 4$ .
2.  $Ce(K_{m,n}) = 0$  ( $m \leq n$ ) if and only if  $m = 1, 2$ .
3.  $Ce(K_{n_1, n_2, n_3}) = 0$  ( $n_1 \leq n_2 \leq n_3$ ) if and only if  $n_2 < 2$  or  $n_3 < 3$ .
4.  $Ce(K_{n_1, n_2, n_3, n_4}) = 0$  ( $n_1 \leq n_2 \leq n_3 \leq n_4$ ) if and only if  $(n_1, n_2, n_3, n_4) = (1, 1, 1, 1)$  or  $(1, 1, 1, 2)$ .

Moreover, it is easy to show for complete graphs and complete  $k$ -partite graphs  $G$  that

5.  $Ce(G) = 1$  if and only if  $G$  is isomorphic to  $K_5, K_{3,3}, K_{1,2,3}, K_{1,1,1,3}$  or  $K_{1,1,2,2}$  (see Figure 5).

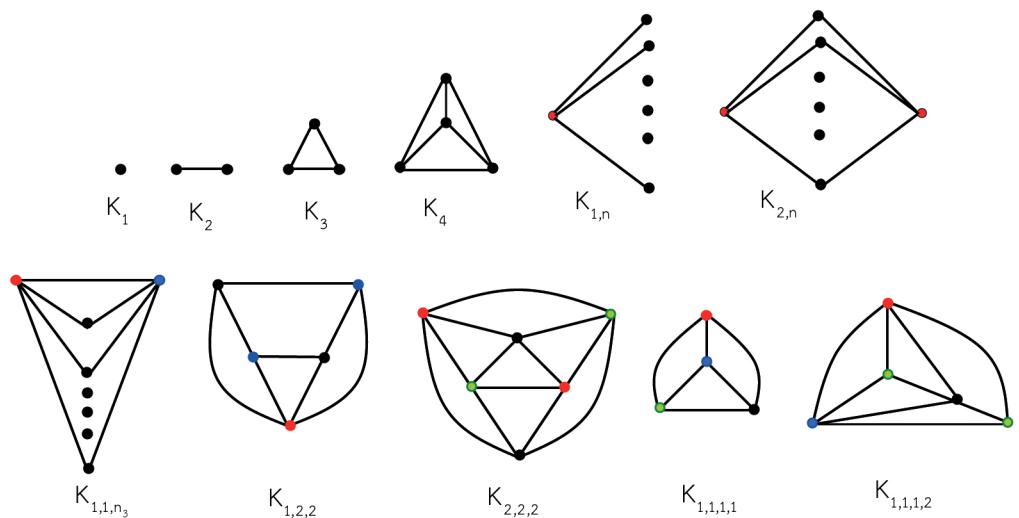


Figure 4. Complete graphs and complete  $k$ -partite graphs  $G$  with  $Ce(G) = 0$

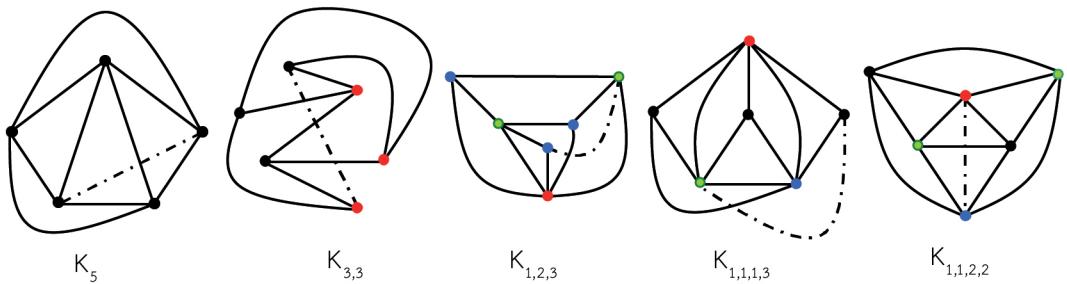


Figure 5. Complete graphs and complete  $k$ -partite graphs  $G$  with  $Ce(G) = 1$

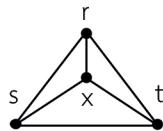


Figure 6.  $C_3$

**Lemma 6** For  $n \geq 3$ , there is a planar graph  $G$  with  $n$  vertices,  $3n - 6$  edges and at least one face that is  $C_3$ .

**proof.** We prove by mathematical induction on the number of vertices.

**Base.** Consider  $n = 3$ . We have a planar graph  $G = C_3$  with 3 vertices, 3 edges and inner face  $C_3$ .

**Induction step.** Let  $n \geq 4$ . Suppose there is a planar graph  $G'$  with  $n-1$  vertices,  $3(n-1)-6$  edges and there is a face  $rstr$  as  $C_3$  shown in Figure 6. Next, we will draw a graph  $G$  from  $G'$  by adding vertex  $x$  in the face  $rstr$  and adding edges  $xr$ ,  $xs$ , and  $xt$ . Since we add 3 edges,  $e(G) = 3(n-1)-6+3 = 3n-6$ ,  $G$  is a plane graph and there is  $xrtx$  as a face  $C_3$ .

By mathematical induction, we have a planar graph  $G$  with  $n$  vertices,  $3n - 6$  edges and at least one face that is  $C_3$ .  $\square$

**Theorem 7** For  $n \geq 5$ ,  $Ce(K_n) = \binom{n}{2} - (3n - 6)$ .

**Proof.** We can eliminate  $\binom{n}{2} - (3n - 6)$  edges from  $K_n$  to obtain a planar graph  $G$  in Lemma 6, so

$$Ce(K_n) \leq \binom{n}{2} - (3n - 6). \quad (1)$$

The Euler's formula implies that if  $G$  is a planar graph then  $G$  has at most  $3n - 6$  edges.

We have to remove at least  $\binom{n}{2} - (3n - 6)$  edges from  $K_n$ , so

$$Ce(K_n) \geq \binom{n}{2} - (3n - 6). \quad (2)$$

From (1) and (2), we obtain  $Ce(K_n) = \binom{n}{2} - (3n - 6)$ .  $\square$

**Lemma 8** For  $3 \leq m \leq n$ , there is a planar bipartite graph  $G(V_1, V_2)$  with  $|V_1| = m$ ,  $|V_2| = n$  and  $e(G) = 2(m + n) - 4$ .

**Proof.** Let  $m$  and  $n$  be positive integers with  $3 \leq m \leq n$ . Let  $V_1 = \{x_{11}, \dots, x_{1m}\}$ ,  $V_2 = \{x_{21}, \dots, x_{2n}\}$  be partite sets of  $G(V_1, V_2)$ . We can draw a planar bipartite graph  $G(V_1, V_2)$  with  $|V_1| = m$ ,  $|V_2| = n$  and  $e(G) = 2(m + n) - 4$  as follows:

*Step 1.* Draw a vertex in a partite set  $V_1$  in the horizontal line by putting  $\lceil \frac{m}{2} \rceil$  vertices on the left side and the others vertices are on the right side. Leave some space between a vertex  $x_{1\lceil \frac{m}{2} \rceil}$  and a vertex  $x_{1(\lceil \frac{m}{2} \rceil + 1)}$ .

*Step 2.* Draw a vertex in a partite set  $V_2$  in the vertical line between a vertex  $x_{1\lceil \frac{m}{2} \rceil}$  and a vertex  $x_{1(\lceil \frac{m}{2} \rceil + 1)}$  where  $\lceil \frac{n}{2} \rceil$  vertices are over vertices in a partite set  $V_1$  and the others vertices are under vertices in a partite set  $V_1$ .

*Step 3.* Draw edges  $x_{21}x_{1i}$  and edges  $x_{2n}x_{1i}$  for  $i \in \{1, 2, 3, \dots, m\}$ . In this step, we have  $2m$  edges.

*Step 4.* Draw edges  $x_{1\lceil \frac{m}{2} \rceil}x_{2j}$  and edges  $x_{1(\lceil \frac{m}{2} \rceil + 1)}x_{2j}$  for  $j \in \{2, 3, \dots, n - 1\}$ . In this step, we have  $2(n - 2)$  edges.

Thus, we have a planar bipartite graph  $G(V_1, V_2)$  with  $e(G) = 2(m+n) - 4$ , as shown in Figure 7.  $\square$

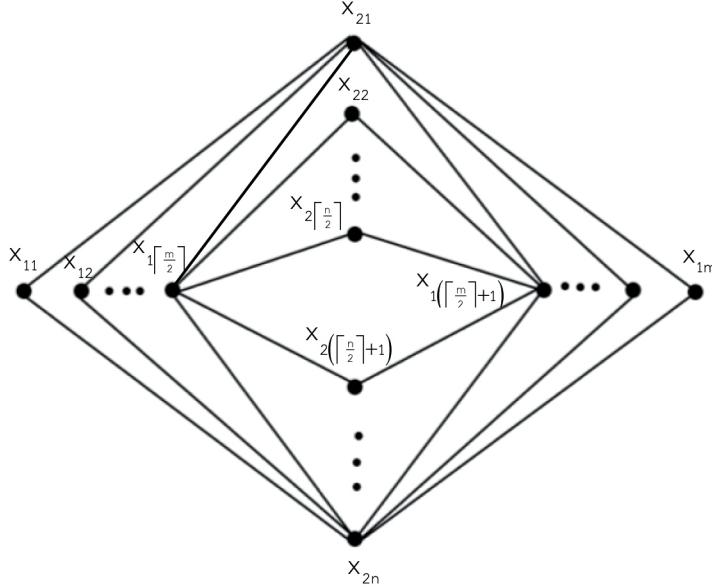


Figure 7.  $K_{m,n}$

**Theorem 9** For  $2 \leq m \leq n$ ,  $Ce(K_{m,n}) = (m-2)(n-2)$ .

**Proof.** We can remove  $mn - [2(m+n) - 4]$  edges from  $K_{m,n}$  to obtain a planar bipartite graph  $G$  in Lemma 8, so

$$Ce(K_{m,n}) \leq mn - 2(m+n) + 4 = (m-2)(n-2). \quad (3)$$

The Euler's formula implies that if  $G$  is a planar bipartite graph then  $G$  has at most  $2(m+n) - 4$  edges. We have to remove at least  $mn - 2(m+n) + 4$  edges from  $K_{m,n}$ .

Thus, we obtain that

$$Ce(K_{m,n}) \geq mn - 2(m+n) + 4 = (m-2)(n-2). \quad (4)$$

From (3) and (4), we have  $Ce(K_{m,n}) = (m-2)(n-2)$ .  $\square$

**Lemma 10** For  $1 \leq n_2 \leq n_3$ , there is a planar 3-partite graph  $G(V_1, V_2, V_3)$  with  $|V_1| = 1$ ,  $|V_2| = n_2$ ,  $|V_3| = n_3$ , and  $e(G) = 3n_2 + 2n_3 - 2$ .

**Proof.** Let  $n_2$  and  $n_3$  be positive integers with  $1 \leq n_2 \leq n_3$ .

Let  $V_1 = \{x_{11}\}$ ,  $V_2 = \{x_{21}, \dots, x_{2n_2}\}$ , and  $V_3 = \{x_{31}, \dots, x_{3n_3}\}$  be partite sets of  $G(V_1, V_2, V_3)$ . We can draw a planar 3-partite graph  $G(V_1, V_2, V_3)$  with  $|V_1| = 1$ ,  $|V_2| = n_2$ ,  $|V_3| = n_3$ , as follows:

Step 1. Draw a vertex  $x_{11}$  and a vertex  $x_{21}$  in the horizontal line and leave some space between a vertex  $x_{11}$  and a vertex  $x_{21}$ .

Step 2. Draw vertices  $x_{31}, \dots, x_{3n_3}$  in the vertical line between a vertex  $x_{11}$  and a vertex  $x_{21}$ .

Step 3. For each  $i \in \{2, 3, \dots, n_2\}$ , draw a vertex  $x_{2i}$  between vertices  $x_{3(i-1)}$  and  $x_{3i}$ .

Step 4. Draw edges  $x_{11}x_{2i}$  for all  $i \in \{1, 2, 3, \dots, n_2\}$  and draw edges  $x_{11}x_{3j}$  for all  $j \in \{1, 2, 3, \dots, n_3\}$ . In this step, we have  $n_2 + n_3$  edges.

Step 5. Draw edges  $x_{2i}x_{3(i-1)}$  and edges  $x_{2i}x_{3i}$  for all  $i \in \{2, 3, \dots, n_2\}$ . In this step, we have  $2(n_2 - 1)$  edges.

Step 6. Draw edges  $x_{21}x_{3j}$  for all  $j \in \{1, 2, 3, \dots, n_3\}$ . In this step, we have  $n_3$  edges.

Therefore, we obtain a planar 3-partite graph  $G(V_1, V_2, V_3)$  with

$$e(G) = n_2 + n_3 + n_3 + 2(n_2 - 1) = 3n_2 + 2n_3 - 2 \text{ as shown in Figure 8.}$$

□

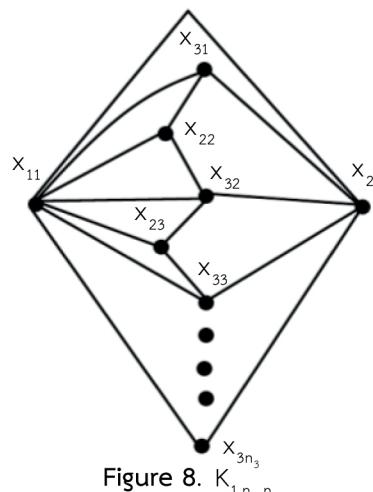


Figure 8.  $K_{1,n_2,n_3}$

**Theorem 11** For  $1 \leq n_2 \leq n_3$ ,  $Ce(K_{1,n_2,n_3}) = (n_2 - 1)(n_3 - 2)$ .

**Proof.** We can remove  $n_2n_3 - 2n_2 - n_3 + 2$  edges from  $K_{1,n_2,n_3}$  to obtain a planar 3-partite graph  $G$  in Lemma 10, so

$$Ce(K_{1,n_2,n_3}) \leq n_2n_3 - 2n_2 - n_3 + 2 = (n_2 - 1)(n_3 - 2). \quad (5)$$

Note that  $K_{1+n_2,n_3}$  is a subgraph of  $K_{1,n_2,n_3}$  and  $Ce(K_{1+n_2,n_3}) = (n_2 - 1)(n_3 - 2)$ . So

$$Ce(K_{1,n_2,n_3}) \geq (n_2 - 1)(n_3 - 2). \quad (6)$$

From (5) and (6), we have  $Ce(K_{1,n_2,n_3}) = (n_2 - 1)(n_3 - 2)$ .

□

**Lemma 12** For  $2 \leq n_2 \leq n_3$ , there is a planar 3-partite  $G(V_1, V_2, V_3)$  with  $|V_1| = 2$ ,  $|V_2| = n_2$ ,  $|V_3| = n_3$ , and  $e(G) = 4n_2 + 2n_3$ .

**Proof.** Let  $n_2$  and  $n_3$  be positive integers with  $2 \leq n_2 \leq n_3$ .

Let  $V_1 = \{x_{11}, x_{12}\}$ ,  $V_2 = \{x_{21}, \dots, x_{2n_2}\}$ , and  $V_3 = \{x_{31}, \dots, x_{3n_3}\}$  be partite sets of  $G(V_1, V_2, V_3)$ .

We can draw a planar 3-partite graph  $G(V_1, V_2, V_3)$  with  $|V_1| = 2$ ,  $|V_2| = n_2$ ,  $|V_3| = n_3$ , and  $e(G) = 4n_2 + 2n_3$  as follows:

*Step 1.* Draw a vertex  $x_{11}$  and a vertex  $x_{12}$  in the horizontal line and leave some space between a vertex  $x_{11}$  and a vertex  $x_{12}$ .

*Step 2.* Draw vertices  $x_{31}, \dots, x_{3n_3}$  in the vertical line between a vertex  $x_{11}$  and a vertex  $x_{12}$ .

*Step 3.* For each  $i \in \{1, 2, 3, \dots, n_2\}$ , draw a vertex  $x_{2i}$  between vertices  $x_{3i}$  and  $x_{3(i+1)}$ .

*Step 4.* Draw edges  $x_{11}x_{2i}$  for all  $i \in \{1, 2, 3, \dots, n_2\}$  and draw edges  $x_{11}x_{3j}$  for all  $j \in \{1, 2, 3, \dots, n_3\}$ . In this step, we have  $n_2 + n_3$  edges.

*Step 5.* Draw edges  $x_{12}x_{2i}$  for all  $i \in \{1, 2, 3, \dots, n_2\}$  and draw edges  $x_{12}x_{3j}$  for all  $j \in \{1, 2, 3, \dots, n_3\}$ . In this step, we have  $n_2 + n_3$  edges.

*Step 6.* Draw edges  $x_{2i}x_{3i}$  and edges  $x_{2i}x_{3(i+1)}$  for all  $i \in \{1, 2, 3, \dots, n_2\}$ . In this step, we have  $2n_2$  edges.

Therefore, we obtain a planar 3-partite  $G(V_1, V_2, V_3)$  with

$e(G) = (n_2 + n_3) + (n_2 + n_3) + 2n_2 = 4n_2 + 2n_3$  as shown in Figure 9. □

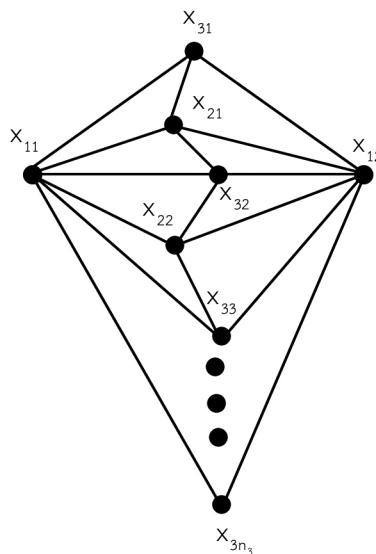


Figure 9.  $K_{2,n_2,n_3}$

**Theorem 13** For  $2 \leq n_2 \leq n_3$ ,  $Ce(K_{2,n_2,n_3}) = n_2(n_3 - 2)$ .

**Proof.** We can remove  $n_2(n_3 - 2)$  edges from  $K_{2,n_2,n_3}$  to obtain a planar 3-partite graph  $G$  in Lemma 12, so

$$Ce(K_{2,n_2,n_3}) \leq n_2(n_3 - 2). \quad (7)$$

Note that  $K_{2+n_2,n_3}$  is a subgraph of  $K_{2,n_2,n_3}$  and  $Ce(K_{2+n_2,n_3}) = n_2(n_3 - 2)$ . So

$$Ce(K_{2,n_2,n_3}) \geq n_2(n_3 - 2). \quad (8)$$

From (7) and (8), we have  $Ce(K_{2,n_2,n_3}) = n_2(n_3 - 2)$ .  $\square$

**Lemma 14** For a positive integer  $n$ , there is a planar 3-partite graph  $G(V_1, V_2, V_3)$  with  $|V_1| = |V_2| = |V_3| = n$ ,  $e(G) = 9n - 6$  and  $f(G) = 6n - 4$ .

**Proof.** Let  $n$  be a positive integer,  $V_1 = \{x_{11}, \dots, x_{1n}\}$ ,  $V_2 = \{x_{21}, \dots, x_{2n}\}$ , and  $V_3 = \{x_{31}, \dots, x_{3n}\}$  be partite sets of  $G(V_1, V_2, V_3)$ . We can draw a planar 3-partite graph  $G(V_1, V_2, V_3)$  with  $|V_1| = |V_2| = |V_3| = n$ ,  $e(G) = 9n - 6$  and  $f(G) = 6n - 4$  as follows:

*Step 1.* Draw a vertex  $x_{11}$  and a vertex  $x_{21}$  in the horizontal line and leave some space between a vertex  $x_{11}$  and a vertex  $x_{21}$ .

*Step 2.* Draw vertices  $x_{31}, \dots, x_{3n}$  in the vertical line between a vertex  $x_{11}$  and a vertex  $x_{21}$ .

*Step 3.* For each  $j \in \{2, 3, \dots, n\}$ , draw a vertex  $x_{2j}$  between vertices  $x_{3(j-1)}$  and  $x_{3j}$  on the left side.

*Step 4.* For each  $i \in \{2, 3, \dots, n\}$ , draw a vertex  $x_{1i}$  between vertices  $x_{3(i-1)}$  and  $x_{3i}$  on the right side.

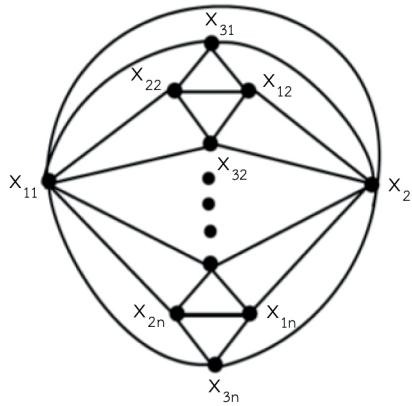
*Step 5.* Draw edges  $x_{11}x_{2i}$  and edges  $x_{11}x_{3i}$  for all  $i \in \{1, 2, 3, \dots, n\}$ . In this step, we have  $2n$  edges.

*Step 6.* Draw edges  $x_{21}x_{1i}$ , for all  $i \in \{2, 3, \dots, n\}$  and edges  $x_{21}x_{3k}$  for all  $k \in \{1, 2, 3, \dots, n\}$ . In this step, we have  $(n-1) + n = 2n-1$  edges.

*Step 7.* Draw edges  $x_{2j}x_{3(j-1)}$  and edges  $x_{2j}x_{3j}$  for all  $j \in \{2, 3, \dots, n\}$ . Draw edges  $x_{1i}x_{3(i-1)}$  and edges  $x_{1i}x_{3i}$  for all  $i \in \{2, 3, \dots, n\}$ . Draw edges  $x_{11}x_{2i}$  for all  $i \in \{2, 3, \dots, n\}$ . In this step, we have  $2(n-1) + 2(n-1) + (n-1) = 5n-5$  edges.

We obtain a planar 3-partite graph  $G(V_1, V_2, V_3)$  with  $e(G) = 2n + (2n-1) + (5n-5) = 9n-6$  as shown in Figure 10. The Euler's formula implies that

$$f(G) = 2 - n(G) + e(G) = 2 - 3n + 9n - 6 = 6n - 4. \quad \square$$

Figure 10.  $K_{n,n,n}$ 

**Theorem 15** For  $n \geq 1$ ,  $Ce(K_{n,n,n}) = 3n^2 - (9n - 6)$ .

**Proof.** We can remove  $3n^2 - (9n - 6)$  edges from  $K_{n,n,n}$  to obtain a planar 3-partite graph  $G$  in Lemma 14, so

$$Ce(K_{n,n,n}) \leq 3n^2 - (9n - 6). \quad (9)$$

The Euler's formula implies that if  $G$  is a planar graph then  $G$  has at most  $9n - 6$  edges.

So we have to remove at least  $3n^2 - (9n - 6)$  edges, and obtain that

$$Ce(K_{n,n,n}) \geq 3n^2 - (9n - 6). \quad (10)$$

From (9) and (10), we have  $Ce(K_{n,n,n}) = 3n^2 - (9n - 6)$ .  $\square$

**Lemma 16** For  $n \geq 1, 1 \leq r \leq 6n - 4$ , there is a planar 4-partite graph  $G(V_1, V_2, V_3, V_4)$  with  $|V_1| = |V_2| = |V_3| = n, |V_4| = r$ ,  $e(G) = 9n + 3r - 6$  and  $f(G) = 6n + 2r - 4$ .

**Proof.** Lemma 14 implies that  $K_{n,n,n}$  have  $\tilde{G} = \tilde{G}(V_1, V_2, V_3)$  as a subgraph with  $|V_1| = |V_2| = |V_3| = n$ ,  $e(\tilde{G}) = 9n - 6$ , all  $6n - 4$  faces are  $C_3$  and each face contains a vertex of each partite sets  $V_1, V_2, V_3$ .

Let  $\{f_1, f_2, \dots, f_{6n-4}\}$  be the set of faces  $C_3$  of  $\tilde{G}$ .

For each  $i \in \{1, 2, \dots, r\}$ , draw a vertex  $x_{4i}$  in a face  $f_i$ , and draw edges joining a vertex  $x_{4i}$  and all vertices in a face  $C_3$ . For one vertex added, we add 3 edges and 2 faces. If we add  $r$  vertices, then we add  $3r$  edges, and  $2r$  faces. So,  $e(G) = 9n + 3r - 6$  where  $1 \leq r \leq 6n - 4$  and  $f(G) = 6n + 2r - 4$ .  $\square$

**Theorem 17** For  $1 \leq n \leq r$ ,  $Ce(K_{n,n,n,r}) = 3n^2 + 3nr - (9n + 3r - 6)$ .

**Proof.** We can remove  $3n^2 + 3nr - (9n + 3r - 6)$  edges from  $K_{n,n,n,r}$  to obtain a graph  $G$  in Lemma 16 which is a planar graph, so

$$Ce(K_{n,n,n,r}) \leq 3n^2 + 3nr - (9n + 3r - 6). \quad (11)$$

The Euler's formula implies that if  $G$  is a planar graph then  $G$  has at most  $9n + 3r - 6$  edges.

So we have to remove at least  $3n^2 + 3nr - (9n + 3r - 6)$  edges.

We obtain that

$$Ce(K_{n,n,n,r}) \geq 3n^2 + 3nr - (9n + 3r - 6). \quad (12)$$

From (11) and (12), we have  $Ce(K_{n,n,n,r}) = 3n^2 + 3nr - (9n + 3r - 6)$ .  $\square$

**Lemma 18** For  $n \geq 1, 1 \leq n_k \leq |V_1| + |V_2| + \dots + |V_{k-1}|, k \geq 4$ , there is a planar  $k$ -partite graph  $G(V_1, V_2, \dots, V_k)$  with  $|V_1| = |V_2| = |V_3| = n, |V_4| = n_4, \dots, |V_k| = n_k$ ,  $e(G) = 9n + 3(n_4 + \dots + n_k) - 6$  and  $f(G) = 6n + 2(n_4 + \dots + n_k) - 4$ .

**Proof.** We prove by mathematical induction on the number of partite sets.

*Base.* Consider  $k = 4$ . By Lemma 17, we have a planar 4-partite graph  $G(V_1, V_2, V_3, V_4)$  with  $|V_1| = |V_2| = |V_3| = n, |V_4| = n_4, e(G) = 9n + 3n_4 - 6$  and  $f(G) = 6n + 2n_4 - 4$ .

*Induction step.* Let  $k \geq 5$ . Suppose there is a planar  $(k-1)$ -partite graph  $G(V_1, V_2, \dots, V_{k-1})$  with  $3n + n_4 + \dots + n_{k-1}$  vertices,  $9n + 3(n_4 + \dots + n_{k-1}) - 6$  edges and  $6n + 2(n_4 + \dots + n_{k-1}) - 4$  faces.

Next, we will draw a planar  $k$ -partite graph  $G(V_1, V_2, \dots, V_k)$  where each face contains 3 vertices from different partite sets  $V_1, V_2, \dots, V_{k-1}$ .

Let  $\{f_1, f_2, \dots, f_{n_k}\}$  be the set of faces  $C_3$  of  $\tilde{G}$  where  $n_k \leq 6n + 2(n_4 + \dots + n_{k-1}) - 4$ . For each  $i \in \{1, 2, \dots, n_k\}$ , draw a vertex  $x_{ki}$  in a face  $f_i$  by drawing edges joining a vertex  $x_{ki}$  and all vertices in face  $C_3$ . For one vertex we added, there are 3 edges and 2 faces added. If we add  $n_k$  vertices, then we added  $3n_k$  edges and  $2n_k$  faces.

Therefore, we obtain a planar  $k$ -partite graph  $G(V_1, V_2, \dots, V_k)$  with  $e(G) = 9n + 3(n_4 + \dots + n_k) - 6$  and  $f(G) = 6n + 2(n_4 + \dots + n_k) - 4$  where  $1 \leq n_k \leq 6n + 3(n_4 + \dots + n_k) - 4$ .

By mathematical induction, we have a planar  $k$ -partite graph  $G(V_1, V_2, \dots, V_k)$  with  $|V_1| = |V_2| = |V_3| = n, |V_4| = n_4, \dots, |V_k| = n_k$ ,  $e(G) = 9n + 3(n_4 + \dots + n_k) - 6$  and  $f(G) = 6n + 2(n_4 + \dots + n_k) - 4$ .  $\square$

**Theorem 19** Let  $k \geq 5$ . For  $1 \leq n \leq n_4 \leq \dots \leq n_k$ ,

$$Ce(K_{n,n,n_4,\dots,n_k})$$

$$= 3n^2 + 3nn_4 + n_5(3n + n_4) + \dots + n_k(3n + n_4 + \dots + n_{k-1}) - (9n + 3(n_4 + \dots + n_k) - 6).$$

**Proof.** We can remove

$$3n^2 + 3nn_4 + n_5(3n + n_4) + \dots + n_k(3n + n_4 + \dots + n_{k-1}) - (9n + 3(n_4 + \dots + n_k) - 6) \text{ edges}$$

from  $K_{n,n,n_4,\dots,n_k}$  to obtain a planar  $k$ -partite graph  $G$  in Lemma 18, so

$$\begin{aligned} Ce(K_{n,n,n_4,\dots,n_k}) &\leq 3n^2 + 3nn_4 + n_5(3n + n_4) + \dots + n_k(3n + n_4 + \dots + n_{k-1}) \\ &\quad - (9n + 3(n_4 + \dots + n_k) - 6). \end{aligned} \tag{13}$$

The Euler's formula implies that if  $G$  is a planar graph then  $G$  has at most

$$9n + 3(n_4 + \dots + n_k) - 6 \text{ edges. We have to remove at least}$$

$$3n^2 + 3nn_4 + n_5(3n + n_4) + \dots + n_k(3n + n_4 + \dots + n_{k-1}) - (9n + 3(n_4 + \dots + n_k) - 6) \text{ edges.}$$

So

$$\begin{aligned} Ce(K_{n,n,n_4,\dots,n_k}) &\geq 3n^2 + 3nn_4 + n_5(3n + n_4) + \dots + n_k(3n + n_4 + \dots + n_{k-1}) \\ &\quad - (9n + 3(n_4 + \dots + n_k) - 6). \end{aligned} \tag{14}$$

From (13) and (14), we obtain that

$$\begin{aligned} Ce(K_{n,n,n_4,\dots,n_k}) &= 3n^2 + 3nn_4 + n_5(3n + n_4) + \dots + n_k(3n + n_4 + \dots + n_{k-1}) \\ &\quad - (9n + 3(n_4 + \dots + n_k) - 6). \end{aligned}$$

□

## Conclusion

We conclude our results in Table 1.

**Table 1.** Summary results for  $Ce(G)$  where  $G$  is a complete graph or a complete  $k$ -partite graph

| Graph $G$                                                                        | $Ce(G)$                                                                                                    |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $K_n$ ( $n \geq 5$ )                                                             | $\binom{n}{2} - (3n - 6)$                                                                                  |
| $K_{m,n}$ ( $2 \leq m \leq n$ )                                                  | $(m - 2)(n - 2)$                                                                                           |
| $K_{1,n_2,n_3}$ ( $1 \leq n_2 \leq n_3$ )                                        | $(n_2 - 1)(n_3 - 2)$                                                                                       |
| $K_{2,n_2,n_3}$ ( $2 \leq n_2 \leq n_3$ )                                        | $n_2(n_3 - 2)$                                                                                             |
| $K_{n,n,n}$ ( $n \geq 1$ )                                                       | $3n^2 - (9n - 6)$                                                                                          |
| $K_{n,n,n,r}$ ( $1 \leq n \leq r$ )                                              | $3n^2 + 3nr - (9n + 3r - 6)$                                                                               |
| $K_{n,n,n_4,\dots,n_k}$<br>( $1 \leq n \leq n_4 \leq \dots \leq n_k, k \geq 5$ ) | $3n^2 + 3nn_4 + n_5(3n + n_4) + \dots + n_k(3n + n_4 + \dots + n_{k-1}) - (9n + 3(n_4 + \dots + n_k) - 6)$ |

## Acknowledgements

The first author was supported by the Development and Promotion of Science and Technology Talents Project (DPST). We would like to thank Asst. Prof. Dr. Kittikorn Nakprasit for some advice and inspiration.

## References

Nakprasit, K. (2011). Lecture Note of 314472: Introduction to graph theory. Thailand: Department of Mathematics, Faculty of Science, Khon Kaen University.

West, D. B. (2001). Introduction to Graph Theory. (Second Edition). Upper saddle River, NJ: Prentice Hall, Inc.

