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Properties of Estimators for Generalized Poisson Distribution
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ABSTRACT
Some properties of estimators for generalized Poisson distribution were considered,
they were derived the asymptotic properties of the method of moments estimators (MME),
maximum likelihood estimators (MLE) and maximum Bayesian likelihood estimators (MBLE).
Kumar and Consul (1980) have obtained their expectations up to the first order approximation.
They derived asymptotic variances and the covariance of the method of moments estimators,

A" and 6" . Consul and Shoukri (1984) derived the asymptotic variance and the covariance

of the maximum likelihood estimators, 4", 0" and Suraporn, B. (2006) derived the asymptotic
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variance and the covariance of the maximum Bayesian likelihood estimators, A" and 6" . In
this paper, some properties of existing estimators, the properties of estimators; consistency,

bound and relative efficiency of estimators are considered.
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1. Introduction
1.1 Generalized Poisson Distribution (GPD)
Consul and Jain (1973a) proposed a new generalization of the discrete Poisson
distribution which was later modified by Consul and Shoukri (1984). In 1989, Consul presented
the GPD, a non-negative integer-valued distribution with two parameters A and 6. A discrete
random variable X has a generalized Poisson distribution, denoted by GPD (4,6), if and only if its
probability mass function (pmf) f(x;4,0) is given by
/1(/1+9x)x_1e_/1_9x

x!

f(x;A,0) = (1)

forx = 0,1, 2, 3,.., where 1 > 0, and 0 < @< 1. Furthermore, all of its moments exist as long as
6 < 1. This GPD model accounts for many branching processes and queuing processes. Negative
values of 0 of this GPD model are considered else where, but in this study on only nonnegative
values of @ will be considered.

If @ = OA, equation (1) becomes

X 14551 —A—6Ax
fa,5) = 2 1¥0x) ' ¢ x=0,1,2,3,. )
X

where 2 > 0, and 0 < §< 0" When 0 = 0 the GPD model reduces to the usual Poisson
distribution. Consul and Jain (1973a) proved that

< A(+0x)* e A70%

!
x=0 x:

=1
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1.2 Estimation of Parameters
1.2.1 Method of Moments Estimators (MME)
Let fix;4,0) be a pmf of a random variable X from the GPD model (1) with two unknown

parameters A and 6. As before let u,. denote the " moment about 0; that is, u;ZE(Xr). In
general ﬂ;:ﬂ; (4,0) is a known function of the two parameters A and 6. Let X;, X,, ..., X, be a

random sample from the density fix; 4,6), and, let M] be the jth sample moment; that is

v _] ':' .
M= IIX,. Put M =p;(2,0),j=1,2

The estimators of the two variables A and 6 are obtained by replacing population

I |~
M=

moments by sample moments. We have

Al 2‘ 1 —_—
w=EX)=—==M=—3YX,=X
1-6 ni=1
' 2 A 22 T B
wm=E(X")= 3+ 5 =M, =—2X;.
1-60y @1-06) n =l
So, (1—19)2 =£2,for s? :liXiz—)_(2 :li(Xi—)_()2 , hence, we have
S ni=| n =]
- —
JMME = /X— and 6'F =1 — [ %X (3)
s? 52
JMME

Shoukri (1980) computed the asymptotic variances of the moment estimators
up to the second order of approximation. The computations are very messy and the

and 9MVE
expressions are very long. Herewith we give their values up to the first order of approximation.

2
P 2-20+360 ’
1-6

1_9[,1—,19 +29+312]

A

vV iMME ~
@)=

V(OMME Y ~
( ) 2nd
- A 1
and Cov(JMME | GMMEY o _ 2—[,1(1 —0)+ 392] @
n
1.2.2 Maximum Likelihood Estimators (MLE)
., X, is defined to be the joint

The likelihood function of n random variables X;, X,
density of the n random variables, say prXz s, 5 2 5 X3 4,6), which is considered to be a

function of A and 6. In particular, if X;, X, ..., X,, are a random sample from the density GPD

models (1), fix;4,0), then the likelihood function is fix;;A,0)fx;4,0)....fix.;A,60), we shall use the
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notation L(4,0x,, x,, ..., x,) = L(4,0|x) for the likelihood function where (x;, x,, ..., x,) are
the values of a random sample observed (X;, X,, ..., X;,) of size n.

Consider the likelihood and the log-likelihood functions of GPD:
n
L(ﬂ”e | xl, x25 LRXE) xn) = Hf(xlalag)
i=l
1
_f A(A+0x;)% 0%
i=1 x;!
—nA— 02 X n x
A+0x;)1
= )" [%} (5)
i=1 x;!
n n n
and InL(A,0|x,, x5, ..., x,) =nln(A) —nA -0 x; + 2 (x; —1)In(1 + 0x;) — X In(x;!)
i=1 i=l i=1
-1
L6015, %y ek = Loy D
oA L AGvex)
no(x;—1 1
> (’—) =n(l--) (6)
i=1 (A +0x;) A
n
L6015, % s x) == S x + 3G TD g
060 i=1 i=1 (A +0x;)
nox(x; —1
A @)
i=1 (A +0x;)
From equation (6) and (7), we have JMLE = ( —éMLE))?, and
A n —
H@wey =3 —50D g
i=1 (X — OMEX +OMF x )
n (x: —1 —
- )i’(x’ ) —-nX =0. (8)
i=1 X + 0" (x;, — X)
The asymptotic variances and the covariances of the ML estimators, that is, )tMLE,éMLE and

Cov(ﬂtMLE ,éMLE ) are
AA+2)
2n
1 —6)(A+26-10)

2ni ’
COV(iMLE, éMLE)z_/l(lz—Q)
n

V(iMLE) ~

)

V(éMLE) ~ (

, (Consul and Shoukri, 1984).

)
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2. Main Results
2.1 Maximum Bayesian Likelihood Estimators (MBLE)

We have assumed that random sample comes from the same density fix;4,6), where
the function fix;4,6) is assumed known. Moreover, we have assumed that A and 6 are fixed,
though unknown. In some real situations where the density fix;4,0) is attached with some prior
information about A and 0. Bayes-type estimator may be more appropriate.

While Bayes’s posterior estimator is the mean of posterior distribution, the maximum
Bayesian likelihood (MBL) estimators are defined as the posterior mode, which maximize
f(A4,0]x)h(A,0) . This quantity bypasses the computation of the marginal distribution and can
be also expressed as a penalized maximum likelihood estimator in the classical sense. If the
sample size grows to infinity, maximum Bayesian likelihood estimators are asymptotically
equivalent to the classical maximum likelihood estimators.

With reference to equation (5), the likelihood function is
—niA— 02X1n|:(l+9x)xl ]
1 .

L(A,0]x)=L(1,0|x,, x,, ..., x,,) = A"e

i x;!

Given prior distribution of A and @ that A is distributed as gamma (g, b), and 6 is distributed as
uniform (0,1). Assume that 4 and @ are a prior independent, so the joint density of (1,0) is

defined as follows:
1 aqa-1 _—bA
h(l,@):mbi e’ ,where A>0and0< 0< 1.
a

Then, the posterior density is

L(A,0|x)h(A,0)

21,0 x) = ,
%010 [[L(A,0 ] x)h(1,0)d 2dO
—nA— 92 x; X;
Consider (101 (10) = ——pialebine =t | O
( ) i 1 x '
balm—a -1

F(a) ; X!

Hence, the posterior density is

—A(n+b)— BZx, ”|:(l+9 )xz :|
1 .
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n
—A(n+b)-0Y x; "

Anrale = T](A+0x,)%
[(2.01x)= — =
1o —An+b)-03 x;
[[arrale =l T](A+6x;)5'dAd6
00 i=1

n
~An+b)-03 x; ,

ln+a—le i=1 I (i n exi)xi—l
Or A1,0|x)= i=l ,
f(4,0]x) )
n
1o ~An+b)-03 x; ,
where k(x) =[] Arrale = 114+ Qxi)xi_ldidé? is the marginal density of X.
00 i=1

Consider a generalized Poisson distribution with probability mass function

/ﬁi(ﬂ,-l-@x)x_le_l _0x

x!

f(x1,0)= ,A>0,0<0<1.

The prior distribution of A is gamma (g, b) and @ is uniform (0, 1), the maximum Bayesian

likelihood estimators of A and @ are as follows:

/{MBLE _ an(l_éMBLE)‘Fa_l

n+b
where 0MLE s such that
A n . R —
R(O™EY = (n+ b)Y | — =D |y~ 00 o
i=1| nX +a—1+[(n+b)x; - nX10"*"*

The asymptotic variances and the covariances of the MBL estimators, that is, AMBLE,QMBLE and

Cov(iMBLE,QAMBLE) are

V(iMBLE) ~ nﬂ,(l+2)
2(n+b)?
2
V(éMBLE)z[me (1 —6)(A+26-26)
n 2nl ’

2
Cov(/{MBLE,éMBLE)z—[n-FbJ /1(12_9), (Bunthom  Suraporn.,2006). (11)
n n
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2.2 Some Properties of Estimators

2.2.1 Consistent Estimators

A

A A

,when A and @ are MBLE of A and 6,

Lamma 1 — is a consistence estimator of

respectively.

proof

Necessary and sufficient conditions for consistency are
lim 2

@ " B2 |= -2 and
n—owo | (1-0) 1-6

lim p)
(b) V{ = } =0.
n—owo | (1-0)

These two conditions can be proved as follows:

~ nX(1-6 1 X
Recattthatﬂ,=nX(1 9),50 /IA =" .
n+b (1-0) n+b
Therefore, E lA =F nX =" E[/\_’]
(1-0) n+b n+b
S X
i
n i=1 o 1 n
= = E|X;
n+b n n+bl§1 [ 1]

1 "[ A } 1 (nﬂ,) 1 [ A )
= Z = = .
n+bi 1-6 n+b\1-6 1+é 1-6

lim p) lim 1 ( A ) A
Hence El——| = = ,
n—>w | (1-0) n—> o 1+é 1-6 1-6

n

i.e., equation (a) is true

p) nX n’ -
V|| =¥ - v[ X
{(1—9)} {n+b} (n+b)* [ ]
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T st
(n+b)*\ 1-06)° (ni2b+ )(1 0y’

lim y) lim 1 A
V1 3 I - 0.
n—» oo — n
(n+2b+ ) (- 9)

Therefore, equation (b) is proved.

2.2.2 Bound of Estimators

Recall that 1 :nX(l—G) i % (% —1) -nX=0,1>0, 0<0 <1 and x = 0 for
n+b i=1 /l+0x
alli=1,2, .., n.
So i{—x"(xi_l)}—n)_(:o = i —_xi(xiA_ D —nX
i=1l A+6x i=1 nX(1_9)+éxl~
n+b
=3 |t ] f[x(x D _n+b 3 [~ D]
i=l| nX(1-0) 4 i=l nX(1-0) 0) nX(1-0)i0
4+ 0x;
n+b n+b
Thus  (1- 9)< n+b2 [x(x )] or
(nX) i=1
A n
021-—— z[x,-(x,-—l)] (12)
X) i=1
_poth [(n 182 4 nX (X - 1)}
(nX)*
1 (n+b)(n—l)S2 +(n+b)()_(—1)
(nX)? nX
. (n+b)nX nbX? —(n+b)(n—-1)S>
(nX)? ’
z 712
B le Z(xi—X)
Where X ==L and §% ==L
n n—1

Similarly,
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o= | =D Sz{x-(x-—l)}
i=1 nX(l—H)_'_éXZ i=1 Hxl'
n+b
S (x;—1)
xl'— —
So <zt _rX-n_, 1 (13)
nX nX X
From equation (12) and (13) , it is concluded that
n+b A 1
Zx(x -] £0 <L 1-—=,
S L) !
S0
1 ~ n+b
—<1-0< Z x; (x; —1)
o105 Rl 0] -]
1 n
1 < A—_Z x-(x-—l) or
l(nX)izl[l ' ]
n — n 2
2x —-nX Y x
A<—3[x(x-)]=EL— ==L
E[xl(xl )] X nX
. 2 v2 . 2 _
:W—jﬂ_l:("_ljb;”_l_
nX n

Consider the case where g and b are unknown.
Both values of a and b in prior distribution gamma (a, b) may be specified as follow. Let

X1, X5, .., Xy, be a random sample. If the mean and variance of prior distribution is the same as

the mean and variance of parent distribution, we may define % = X, and biz =52
Solving these two equations for a and b yield

s _ X X

a=bX = ,and b= —-. (14)
52 S

We suggest that the values of a and b in maximum Bayesian likelihood estimators

should be the expressions above, so the maximum Bayesian likelihood estimators from

equations (10), yield
_ R X2
nX(1-0" Yy = 1
S2

iMBLE _

gl 3’

X
n+-—

S2
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_ nXS2(1-6"P1Fy 4 X2 - 52

nS*+ X ’
Y =n (x. —1 —
and (n+£2)2 = % (% _) = nX (15)
S i=l = X X 1 AMBLE
nX+—2—1+[(n+—2)xi—nX]9
S S

Note that these values of a and b will be used later in the simulation study as well.
2.3 Relative Efficiency of Estimators

The asymptotic relative efficiency (ARE) provides a reasonable basis for the comparison
of the estimators. Previously, asymptotic variances of MME (method of moments estimators),
MLE (maximum likelihood estimators) and MBLE (maximum Bayesian likelihood estimators) are
given in equations (4), (9) and (11) respectively.

Therefore AREs of these estimators can be obtained as follows:

nA(A+2)
VAYEY  2(n+b)? _nl(l+2)(2_n) 1-6
VMY P 392 ) 2(n+b)>\ A J(1-0)A+2)+36°
2n 1-6
n*(A+2) 1-6 <n2(ﬂ,+2) 1-6

T n+b)? (1-0)A+2)+36°  (n+b)> 1-0)(A+2)

2
:( " ) <.
n+b

(iMBLE )

That is the ratio of <1or V(/{MBLE) < V(/{MME). It means that the

v( iMME)
maximum Bayesian Likelihood Estimator is more efficient than the method of moments
estimator. In addition when n approaches to infinity, the relative efficiency of the above
equation goes to one as expected.

Consider
nA(A+2)

V(iMBLE)zW:nz(,1+2)[ 2 j:( n jz
V(AMEY ;L(;LJrz) 2(n+b)> \A(A+2) n+b)

2n

Again, the MBLE is more asymptotic efficient than the MLE and the relative efficiency of the

MBLE to MLE converges to one as n —» 0.
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2.4 Examples

According to the general properties of the GPD models described in session 1. The
value of the first parameter A is the average rate of the natural chance process for the
occurrence of the events and, accordingly, it is an indicator of the intensity of the natural
Poisson process. The second parameter 6 is an indicator of overdispersion, underdispersion, or
of no dispersion relative to the Poisson distribution. Thus the parameter € may be regarded as a
measure of departure from Poisson model.

The GPD model can be applied in many areas. The following 3 data set are selected
from Consul (1989). They are : (1) Bortkiewicz’ s data of deaths due to horse-kicks in the Prussian
Army cited in Fisher (1954) ; (2) Data of Zaire (1976) on numbers of automobile accident injuries ;
(3) Thorndike (1926)’s data on number of lost articles found in the Telephone and Telegraph
Building, New York City.

In each data set, the expected frequencies are calculated under two underlying

distribution namely usual Poisson distribution (UPD) and generalized Poisson distribution (GPD).

For UPD, the parameter A is estimated by the sample mean, iZJ_( For GPD, the two
parameters, A and 6, are estimated by method of moments (MM), maximum likelihood method

(ML) and maximum Bayesian likelihood method (MBL). See equations (3), (8) and (10).

For each method of estimation, Xz—test is applied for considering goodness of fit
between the observed frequencies and the expected frequencies.
2.5 Discussion

For the first data set shown in Table 1, the sample mean and variance are 0.605 and
0.592, respectively. In this example the difference between the mean and the variance is
negligible and hence usual Poisson distribution seems to fit the data very well. Estimates from
all methods are slightly different. The other two examples are different situations where
overdispersion exists. Table 2 exhibits on data of automobile accidents where the sample mean
is 0.625 and variance is 1.002, while Table 3 exhibits the data of lost articles found with mean
1.033 and variance is 1.226. It is found that, in both cases, usual Poisson distribution does not fit
to the data (Xz—test statistics are respectively 10.694 and 9.346). The coefficient of variation (CV)
of these two cases are 1.602 and 1.072 respectively. That is, overdispersion is concerned.

Therefore, GPD is preferred to UPD.
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Table 1. Number of death due to horse-kicks in Prussian Army with expected frequencies

obtained from different distributions assumed and method of parameter estimation.

Expected Frequencies

Number of Deaths Observed Frequency GPD assumed
UPD assumed
MME MLE MBLE
0 109 109.215 108.492 108.309 109.023
1 65 66.075 67.090 67.350 66.894
2 23 19.988 19.999 20.000 19.766
3 2 4.031 3.828 3.775 3.746
4 or more 1 0.691 0.529 0.509 0.512
Total 200 200.000 200.000 200.000 200.000
, A=X=0605 1=0612 A=0613 1=0.607
estimates R R R
52 =0.592 0=0.011 6=0.014 6=0.011
Y Statistics 1.633 1.674 1.704 1.719

Source: Consul, 1989.

Table 2. Number of automobile accident injury with expected frequencies obtained from

different distribution assumed and methods of parameter estimation.

Expected Frequencies

Number of Accidents Observed Frequency GPD assumed
UPD assumed
MME MLE MBLE
0 36 29.975 34.185 35.155 35.859
1 10 18.734 13.672 12.683 12.297
2 6 5.854 5.064 4.794 4.589
3 3 1.219 1.892 1.922 1.843
4 or more 1 0.218 1.187 1.446 1.412
Total 56 56.000 56.000 56.000 56.000
' A=X=0625 1=0493 A=0.466 i=0.446
Estimates N A A
S? =1.002 0=0210 6=0255 6=0.262
Xz Statistics 10.694* 1.934 1.633 1.710

Source: Consul, 1989. Remark: * represent significance at 5% level.
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Table 3. Number of lost articles found in a day in the Telephone and Telegraph Building, New

York City with expected frequencies obtained from different distributions assumed and

methods of parameter estimation.

Expected Frequencies

Number of Lost articles Observed Frequency GPD assumed
UPD assumed

MME MLE MBLE

0 169 150.547 163.887 164.861 165.399

1 134 155.529 143.137 142.269 142.088

2 74 80.338 73.342 72.842 72.598

3 32 27.666 28.891 28.927 28.826

4 11 7.145 9.704 9.865 9.844

5 or more 3 1.775 4.039 4.236 4.245
Total 423 423.000 423.000 423.000 423.000
, A=X=1033 71=0948 71=0942 £=0.939

estimates . . .

S22 =126 0=0.082 6=0.088 6=0.091

Xz Statistics 9.346* 1.524 1.421 1.416
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