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บทคัดยอ 

 สมบัติบางประการของตัวประมาณคาพารามิเตอรสําหรับการแจกแจงแบบเจนเนอรไลดปวสซง ไดถูกทํา

การ ศึกษามาบางแลว มีหลายทานไดศึกษาสมบัติโดยประมาณของตัวประมาณที่ไดมาโดยวิธีโมเมนต ตัวประมาณ

ที่ไดมาโดยวิธีภาวะนาจะเปนสูงสุด และตัวประมาณที่ไดมาโดยวิธีเบยเชียลภาวะนาจะเปนสูงสุด ในป 1980 

Kumar and Consul ไดหาคาคาดหวังตาง ๆ โดยใชวิธีการประมาณ เขาไดหาคาความแปรปรวนและความ

แปรปรวนรวมโดยประมาณของตัวประมาณคาท่ีไดมาโดยวิธีโมเมนต ในป 1984 Consul and Shoukri ไดหาคา

ความแปรปรวนและความแปรปรวนรวมโดยประมาณของตัวประมาณคาที่ไดมาโดยวิธีภาวะนาจะเปนสูงสุด และ

ในป 2006 Suraporn, B. ไดหาคาความแปรปรวนและความแปรปรวนรวมโดยประมาณของตัวประมาณคาที่ไดมา

โดยวิธีเบยเชียลภาวะนาจะเปนสูงสุด ซ่ึงในบทความน้ีไดพิจารณาสมบัติบางประการของตัวประมาณ ความคงเสน

คงวา และพิจารณาประสิทธิภาพสัมพัทธของตัวประมาณ 

 

ABSTRACT 

Some properties of estimators for generalized Poisson distribution were considered, 

they were derived the asymptotic properties of the method of moments estimators (MME), 

maximum likelihood estimators (MLE) and maximum Bayesian likelihood estimators (MBLE). 

Kumar and Consul (1980) have obtained their expectations up to the first order approximation. 

They derived asymptotic variances and the covariance of the method of moments estimators, 

ˆMME  and ˆ .MME  Consul and Shoukri (1984) derived the asymptotic variance and the covariance 

of the maximum likelihood estimators, ˆMLE , ˆMLE and Suraporn, B. (2006) derived the asymptotic 
 

 

 

1ภาควิชาคณิตศาสตร สถติิและคอมพิวเตอร คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี 

E-mail: scbuntsu@ubu.ac.th 



วารสารวิทยาศาสตร์ มข. ปีที่ 42 ฉบับที่ 1 85บทความบทความ วารสารวิทยาศาสตร มข. ปที่ 42 ฉบับที่ 1 85 

 

 

variance and the covariance of the maximum Bayesian likelihood estimators, ˆMBLE  and ˆMBLE . In 

this paper, some properties of existing estimators, the properties of estimators; consistency, 

bound and relative efficiency of estimators are considered. 

 

คําสําคัญ: ฟงกชันความนาจะเปนแบบปวสซง ฟงกชันความนาจะเปนแบบเจนเนอรไลดปวสซง การกระจาย 

ตัวประมาณคาที่ไดมาโดยวิธีโมเมนต ตัวประมาณคาที่ไดมาโดยวิธีภาวะนาจะเปนสูงสุด ตัวประมาณ

คาที่ไดมาโดยวิธีเบยเชียลภาวะนาจะเปนสูงสุด 

Keywords: Poisson probability distribution, Generalized Poisson distribution, Dispersion, The 

method of moments estimators, The maximum likelihood estimators, The maximum 

Bayesian likelihood estimators. 

 

1. Introduction 

1.1 Generalized Poisson Distribution (GPD) 

Consul and Jain (1973a) proposed a new generalization of the discrete Poisson 

distribution which was later modified by Consul and Shoukri (1984). In 1989, Consul presented 

the GPD, a non-negative integer-valued distribution with two parameters  and . A discrete 

random variable X has a generalized Poisson distribution, denoted by GPD (,), if and only if its 

probability mass function (pmf) ( ; , )f x    is given by 

1( + )( ; , ) =   
!

x xx ef x
x

    
  

                                      (1) 

for x = 0, 1, 2, 3,…, where  > 0, and 0   < 1. Furthermore, all of its moments exist as long as 

 < 1. This GPD model accounts for many branching processes and queuing processes. Negative 

values of  of this GPD model are considered else where, but in this study on only nonnegative 

values of  will be considered. 

If  = , equation (1) becomes 

1(1+ )( ; , ) =   
!

x x xx ef x
x

   
  

; x = 0, 1, 2, 3,…                         (2) 

where  > 0, and 0   < 1  . When  = 0 the GPD model reduces to the usual Poisson 

distribution. Consul and Jain (1973a) proved that 

1( + )
!0

x xx e
xx

      



 = 1. 
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1.2 Estimation of Parameters 

1.2.1 Method of Moments Estimators (MME) 

Let f(x;,) be a pmf of a random variable X from the GPD model (1) with two unknown 

parameters  and . As before let '
r  denote the rth moment about 0; that is, ' = ( )r

r E X . In 

general ' '= ( , )r r     is a known function of the two parameters  and . Let X1, X2, …, Xn be a 

random sample from the density f(x; ,), and, let '
jM  be the jth sample moment; that is 

'

1

1 = 
n j

j i
i

M X
n 
 . Put ' ' = ( , )j jM    , j = 1, 2. 

The estimators of the two variables  and  are obtained by replacing population 

moments by sample moments. We have 

1 1
' '

1

1( )  =   
1

n
i

i
E X M X X

n



 

   


 

2 2

2
' 2 ' 2

3 2 1

1= ( ) +  = 
(1 ) (1 )

n
i

i
E X M X

n
 


  

  
 

. 

So, 2
2(1 ) X

S
  , for 2 2 2 2

1 1

1 1 ( )
n n

i i
i i

S X X X X
n n 

     , hence, we have  

3

2
ˆMME X

S
   and 2

ˆ 1 .MME X
S

                                          (3) 

Shoukri (1980) computed the asymptotic variances of the moment estimators ˆMME  

and ˆMME  up to the second order of approximation. The computations are very messy and the 

expressions are very long. Herewith we give their values up to the first order of approximation. 

22 2  + 3ˆ( )  + 
2 1  

MMEV
n
   



 
  

  
, 

21ˆ( )  + 2 +3
2

MMEV
n


    


     , 

and                                
21ˆ ˆ( , )  (1 ) + 3

2
MME MMECov

n
         .                              (4) 

1.2.2 Maximum Likelihood Estimators (MLE) 

The likelihood function of n random variables X1, X2, …, Xn is defined to be the joint 

density of the n random variables, say 1 2 nn1 2,  ,..., ( ,  ,..., ; , )X X Xf x x x  , which is considered to be a 

function of  and . In particular, if X1, X2, …, Xn  are a random sample from the density GPD 

models (1), f(x;,), then the likelihood function is f(x1;,)f(x2;,)…f(xn;,), we shall use the 



วารสารวิทยาศาสตร์ มข. ปีที่ 42 ฉบับที่ 1 87บทความบทความ วารสารวิทยาศาสตร มข. ปที่ 42 ฉบับที่ 1 87 

 

 

notation 1 2( , | ,  , ..., )  =  ( , | )nL x x x L x   


 for the likelihood function where (x1, x2, …, xn) are 

the values of a random sample observed (X1, X2, …, Xn) of size n. 

Consider the likelihood and the log-likelihood functions of GPD: 

                        1 2
1

( , | ,  , ..., ) = ( ; , )
n

n i
i

L x x x f x   

  

                                                                  
1

1

( )= 
!

xin xi i
i i

x e
x

    
 



 
 
  

 

                                                                   
1

1
1

( )
= 

!

n
n x xi inn ii

i i

x
e

x

   


  




  
 
  

             (5) 

and 1 2
1 1 1

ln ( , | ,  , ..., ) = ln( ) ( 1) ln( ) ln( !)
n n n

n i i i i
i i i

L x x x n n x x x x      
  

         

1 2
1

( 1)ln ( , | ,  , ..., ) =  + 0
( )

n i
n

i i

xnL x x x n
x

 
   


 

 
 

1

( 1) 1(1 )
( )

n i

i i

x n
x  


 


                                   (6) 

1 2
1 1

( 1)ln ( , | ,  , ..., ) =  +  0
( )

n n i i
n i

i i i

x xL x x x x
x

 
   


  

 
, or 

1

( 1)
( )

n i i

i i

x x nx
x 





                                                                       (7)  

 

From equation (6) and (7), we have ˆ ˆ= (1 )MLE MLE X  , and 

1

( 1)ˆ( ) = 0ˆ ˆ( )
MLE

MLE MLE

n i i

i i

x x
H nX

X X x


 


 

 
 

                                      

  1

( 1)
0.ˆ ( )MLE

n i i

i i

x x
nX

X x X


 

 
                                               (8) 

The asymptotic variances and the covariances of the ML estimators, that is, ˆ ˆ,MLE MLE   and 

ˆ ˆ( , )MLE MLECov    are 

( 2)ˆ( )
2

MLEV
n

 



 , 

(1 )( +2 )ˆ( )
2

MLEV
n

   



 

 , 

 
(1 )ˆ ˆ( , )

2
MLE MLECov

n
 

 


  , (Consul and Shoukri, 1984).                                  (9)  

 



KKU Science Journal Volume 42 Number 188 Review88 KKU Science Journal Volume 42 Number 1 Review 

 

 

2. Main Results 

2.1 Maximum Bayesian Likelihood Estimators (MBLE) 
 We have assumed that random sample comes from the same density f(x;,), where 

the function f(x;,) is assumed known. Moreover, we have assumed that  and  are fixed, 

though unknown. In some real situations where the density f(x;,) is attached with some prior 

information about  and . Bayes-type estimator may be more appropriate. 

 While Bayes’s posterior estimator is the mean of posterior distribution, the maximum 

Bayesian likelihood (MBL) estimators are defined as the posterior mode, which maximize 

( , | ) ( , )f x h   


. This quantity bypasses the computation of the marginal distribution and can 

be also expressed as a penalized maximum likelihood estimator in the classical sense. If the 

sample size grows to infinity, maximum Bayesian likelihood estimators are asymptotically 

equivalent to the classical maximum likelihood estimators. 

With reference to equation (5), the likelihood function is 

1 2

1
1

1

( )
( , | ) = ( , | ,  , ..., )  =  

!

n
n x xi inn ii

n
i i

x
L x L x x x e

x

   
    

  




  
 
  

. 

Given prior distribution of  and  that  is distributed as gamma (a, b), and  is distributed as 

uniform (0,1). Assume that  and  are a prior independent, so the joint density of (,) is 

defined as follows: 

( , )h    = 11
( )

a a bb e
a

  


 , where  > 0 and 0   < 1. 

Then, the posterior density is 

( , | ) ( , )( , | )
( , | ) ( , )
L x hf x

L x h d d
   

 
     


 




. 

Consider 
1

1 1
1

( )1( , | ) ( , )
( ) !

n
n x xi ina a b n ii

i i

x
f x h b e e

a x

 
  

     
  

  



  
  
   

 

                                       
( ) 1

1 1
1

( )1
( ) !

n
n b x xi ina n a ii

i i

x
b e

a x

   


   
  



  
  
   

. 

Hence, the posterior density is  
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( )
11 1

1

( )1 11 1
10 0

( )
( , | )

( )

n
n b xi n xn a i ii

i
n

n b xi n xn a i ii
i

e x
f x

e x d d

 

 

  
 

    

  
  



     








 


 

Or                    

( )
11 1

1
( )

( , | ) = 
( )

n
n b xi n xn a i ii

i
e x

f x
k x

 

  
 

  
  







, 

where 
( )1 11 1

10 0
( ) = ( )

n
n b xi n xn a i ii

i
k x e x d d

 

    
     




   is the marginal density of X. 

Consider a generalized Poisson distribution with probability mass function  

 

1( + )( ; , ) = , 0, 0 1.
!

x xx ef x
x

      
  

    

The prior distribution of  is gamma (a, b) and  is uniform (0, 1), the maximum Bayesian 

likelihood estimators of  and  are as follows: 

ˆ(1 ) 1ˆ
MBLE

MBLE nX a
n b



  




 

where ˆMBLE  is such that 

                  1

( 1)ˆ( ) = ( )    =   0ˆ1 [( ) ]
MBLE

MBLE

n i i

i i

x xR n b nX
nX a n b x nX




 
   

      
.        (10) 

The asymptotic variances and the covariances of the MBL estimators, that is, ˆ ˆ,MBLE MBLE   and 

ˆ ˆ( , )MBLE MBLECov    are 

2
( 2)ˆ( )

2( )
MBLE nV

n b
  




, 

2 (1 )( +2 )ˆ( )
2

MBLE n bV
n n

   


     
 

, 

2 (1 )ˆ ˆ( , )
2

MBLE MBLE n bCov
n n

       
 

, (Bunthom Suraporn.,2006).    (11) 
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2.2 Some Properties of Estimators 

2.2.1 Consistent Estimators 

Lamma 1 
ˆ

ˆ(1 )



 is a consistence estimator of 
1



, when ̂  and ̂  are MBLE of  and , 

respectively. 

proof 

 Necessary and sufficient conditions for consistency are 

     (a) 
ˆlim     

 = ˆ 1(1 )
E

n
 



 
   

, and 

        (b) 
ˆlim     

 = 0.ˆ(1 )
V

n



 
   

 

These two conditions can be proved as follows: 

Recall that 
ˆ(1 )ˆ = nX

n b






, so 
ˆ

 = ˆ(1 )
nX

n b

 

. 

Therefore, 
ˆ

 =  = ˆ(1 )
nX nE E E X

n b n b



   
          

 

                                 1

1

1=   = 

n
i ni

i
i

X
n E E X

n b n n b




 
 

  
  

  

 

                                
1

1 1 1=   =  = 
1 1 11

n

i

n
bn b n b
n

  
  

     
              

. 

Hence 
ˆlim     lim     1 =  = ˆ 1 1(1 ) 1

E bn n
n

  
 

 
    
            

 
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Therefore, equation (b) is proved. 

 2.2.2 Bound of Estimators  
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Consider the case where a and b are unknown. 

 Both values of a and b in prior distribution gamma (a, b) may be specified as follow. Let 

X1, X2, …, Xn, be a random sample. If the mean and variance of prior distribution is the same as 

the mean and variance of parent distribution, we may define
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b
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Solving these two equations for a and b yield 
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We suggest that the values of a and b in maximum Bayesian likelihood estimators 

should be the expressions above, so the maximum Bayesian likelihood estimators from 

equations (10), yield 
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Note that these values of a and b will be used later in the simulation study as well. 

2.3 Relative Efficiency of Estimators 

The asymptotic relative efficiency (ARE) provides a reasonable basis for the comparison 

of the estimators. Previously, asymptotic variances of MME (method of moments estimators), 

MLE (maximum likelihood estimators) and MBLE (maximum Bayesian likelihood estimators) are 

given in equations (4), (9) and (11) respectively. 

Therefore AREs of these estimators can be obtained as follows: 
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maximum Bayesian Likelihood Estimator is more efficient than the method of moments 

estimator. In addition when n approaches to infinity, the relative efficiency of the above 

equation goes to one as expected. 
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Again, the MBLE is more asymptotic efficient than the MLE and the relative efficiency of the 

MBLE to MLE converges to one as n  . 
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2.4 Examples 

According to the general properties of the GPD models described in session 1. The 

value of the first parameter  is the average rate of the natural chance process for the 

occurrence of the events and, accordingly, it is an indicator of the intensity of the natural 

Poisson process. The second parameter  is an indicator of overdispersion, underdispersion, or 

of no dispersion relative to the Poisson distribution. Thus the parameter  may be regarded as a 

measure of departure from Poisson model. 

 The GPD model can be applied in many areas. The following 3 data set are selected 

from Consul (1989). They are : (1) Bortkiewicz’ s data of deaths due to horse-kicks in the Prussian 

Army cited in Fisher (1954) ; (2) Data of Zaire (1976) on numbers of automobile accident injuries ; 

(3) Thorndike (1926)’s data on number of lost articles found in the Telephone and Telegraph 

Building, New York City. 

 In each data set, the expected frequencies are calculated under two underlying 

distribution namely usual Poisson distribution (UPD) and generalized Poisson distribution (GPD). 

For UPD, the parameter  is estimated by the sample mean, ˆ .X   For GPD, the two 

parameters,  and , are estimated by method of moments (MM), maximum likelihood method 

(ML) and maximum Bayesian likelihood method (MBL). See equations (3), (8) and (10). 

 For each method of estimation, 2-test is applied for considering goodness of fit 

between the observed frequencies and the expected frequencies. 

2.5 Discussion 

 For the first data set shown in Table 1, the sample mean and variance are 0.605 and 

0.592, respectively. In this example the difference between the mean and the variance is 

negligible and hence usual Poisson distribution seems to fit the data very well. Estimates from 

all methods are slightly different. The other two examples are different situations where 

overdispersion exists. Table 2 exhibits on data of automobile accidents where the sample mean 

is 0.625 and variance is 1.002, while Table 3 exhibits the data of lost articles found with mean 

1.033 and variance is 1.226. It is found that, in both cases, usual Poisson distribution does not fit 

to the data (2-test statistics are respectively 10.694 and 9.346). The coefficient of variation (CV) 

of these two cases are 1.602 and 1.072 respectively. That is, overdispersion is concerned. 

Therefore, GPD is preferred to UPD. 
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Table 1. Number of death due to horse-kicks in Prussian Army with expected frequencies 

obtained from different distributions assumed and method of parameter estimation. 

Number of Deaths Observed Frequency 

Expected Frequencies 

UPD assumed 
GPD assumed 

MME MLE MBLE 

0 109 109.215 108.492 108.309 109.023 

1 65 66.075 67.090 67.350 66.894 

2 23 19.988 19.999 20.000 19.766 

3 2 4.031 3.828 3.775 3.746 

4 or more 1 0.691 0.529 0.509 0.512 

Total 200 200.000 200.000 200.000 200.000 

estimates 
2

ˆ 0.605

0.592

X

S

  


 

ˆ 0.612
ˆ 0.011



 




 

ˆ 0.613
ˆ 0.014



 




 

ˆ 0.607
ˆ 0.011



 




 

2 Statistics 1.633 1.674 1.704 1.719 

Source: Consul, 1989. 
 

Table 2. Number of automobile accident injury with expected frequencies obtained from 

different distribution assumed and methods of parameter estimation. 

Number of Accidents Observed Frequency

Expected Frequencies 

UPD assumed 
GPD assumed 

MME MLE MBLE 

0 36 29.975 34.185 35.155 35.859 

1 10 18.734 13.672 12.683 12.297 

2 6 5.854 5.064 4.794 4.589 

3 3 1.219 1.892 1.922 1.843 

4 or more 1 0.218 1.187 1.446 1.412 

Total 56 56.000 56.000 56.000 56.000 

Estimates  
2

ˆ 0.625

1.002

X

S

  


 

ˆ 0 .493
ˆ 0.210








 

ˆ 0 .466
ˆ 0.255








 

ˆ 0 .446
ˆ 0.262








 

2 Statistics 10.694* 1.934 1.633 1.710 

Source: Consul, 1989. Remark: * represent significance at 5% level. 
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Table 3.  Number of lost articles found in a day in the Telephone and Telegraph Building, New 

York City with expected frequencies obtained from different distributions assumed and 

methods of parameter estimation. 

Number of Lost articles Observed Frequency

Expected Frequencies 

UPD assumed 
GPD assumed 

MME MLE MBLE 

0 169 150.547 163.887 164.861 165.399 

1 134 155.529 143.137 142.269 142.088 

2 74 80.338 73.342 72.842 72.598 

3 32 27.666 28.891 28.927 28.826 

4 11 7.145 9.704 9.865 9.844 

5 or more 3 1.775 4.039 4.236 4.245 

Total 423 423.000 423.000 423.000 423.000 

estimates  
2

ˆ 1.033

1.226

X

S

  


 

ˆ 0 .948
ˆ 0.082








 

ˆ 0 .942
ˆ 0.088








 

ˆ 0 .939
ˆ 0.091








 

2 Statistics 9.346* 1.524 1.421 1.416 
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