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ABSTRACT
This article aims to treat the problem of characterizing the trigonometric sine and cosine
function. Our method arises from Kannappan’s work of 2003 which solved the functional
equation f(x—y)=f(x)f(»)+g(x)g(y) for functions whose domain is a group and whose
range is a subset of the complex field without any additional conditions. We use Kannappan’s
technique to determine the general solutions of the functional equation
Fx+y)=f(x)f(y)—gx)g(y) which, together with Kannappan’s result, give a complete

characterization of the trigonometric sine and cosine functions.
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