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ผลเฉลยฟังก์ชันก ำลังของสมกำรเชิงอนุพันธ์ฟังก์ชันเชิงท ำซ  ำกับบำงเงื่อนไข 
Power Function Solutions of Iterative Functional  

Differential Equations with Some Conditions 
ศุกระวรรณ มะเวชะ (ตาลวงค)์1 

 
บทคัดย่อ 

สมการเชิงอนุพันธ์ฟังก์ชันเชิงท้าซ้้าเกิดขึ้นในหลายปัญหาในด้านฟิสกิส์และวิทยาศาสตร์อื่น ๆ บทความนี้

เกี่ยวข้องกับ 3 สมการต่อไปนี้   kmjn zxAzzx ][)( )(  ,   [ ]( )
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    เราจะพิจารณาการมีจริงของผลเฉลยก้าลังทีม่ี

รูปแบบ ( )x z z  ส้าหรับ 3 สมการนั้นกับเงื่อนไขที่ก้าหนดให้ โดยค้นพบว่าผลเฉลยก้าลัง เป็นผลเฉลยหนึ่ง
ของสมการเชิงอนุพันธ์ฟังก์ชันเชิงท้าซ้้า 
 

ABSTRACT 
Iterative functional differential equations occur in many problems of physics and other 

sciences. This article is concerned with three equations   ( ) [ ]( )
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consider the existence of power solutions of the form ( )x z z  for those three equations 
with given conditions. 
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บทน ำ 
พิจารณารูปแบบของผลเฉลยที่เป็นฟังก์ชันก้าลัง (power functions) ของสมการเชิงอนุพันธ์ฟังก์ชันเชิง

ท้าซ้้า (iterative functional differential equations) ส้าหรับบางเง่ือนไขของสมการ ซึ่งเป็นสมการที่
ประกอบด้วยอนุพันธ์และการท้าซ้้าของฟังก์ชัน ให้ )(zxx  เป็นฟังก์ชันจ้านวนเชิงซ้อน กำรท ำซ  ำ (iterates) 
ของฟังก์ชัน )(zx  นิยามโดย )))((()()),(()(),()(,)( ]3[]2[]1[]0[ zxxxzxzxxzxzxzxzzx   และ 

)))(()( ][]1[ zxxzx nn   ให้สัญลักษณ์ )()( zx n  แทน อนุพันธ์อันดับที่ n  ของฟังก์ชัน )(zx  นักคณิตศาสตร์
ได้พยายามศึกษาว่าสมการเชิงอนุพันธ์ฟังก์ชัน เชิงท้าซ้้ามีผลเฉลยจริงและหารูปแบบของผลเฉลยนั้น นัก
คณิตศาสตร์มากมายสนใจศึกษาสมการเชิงอนุพันธ์ฟังก์ชันเชิงท้าซ้้ารูปแบบ 

( ) [1] [ ]( ) ( , ( ), , ( ))n mx t H t x t x t  
ซึ่งเกิดขึ้นในปัญหาที่สัมพันธ์กับแบบจ้าลองการติดเช้ือ (infection model) เริ่มจากเอ็ดเดอร์ (Eder, 1984) เริ่ม
วิเคราะห์ผลเฉลยของสมการรูปแบบเฉพาะ ))(()( zxxzx  และ 13 ปีต่อมา Si et al. (1997) ค้นพบรูปแบบ
ผลเฉลยฟังชันก้าลังวิเคราะห์ของสมการ )()( ][ zxzx m  เมื่อ 2m  นั่นคือ  zzx )(  เมื่อ   และ   
เป็นค่าคงตัวท่ีสอดคล้องกับสมการ 1m  และ    1m  หลังจากนั้น Li et. al. (2001) ได้พิจารณา
สมการที่กว้างมากขึ้นนั่นคือ 

  kmjn zxAzzx ][)( )(                           (1) 

เมื่อ nmk ,,  เป็นจ้านวนนับซึ่ง 2m , j  เป็นจ้านวนนับหรือศูนย์ และ A  เป็นจ้านวนเชิงซ้อนท่ีไม่เป็นศูนย์ มี
ฟังก์ชันก้าลัง  zzx )(  เป็นผลเฉลยของ (1) ดังทฤษฎีบทต่อไปนี้ 

ทฤษฎีบท 1 (Li et. al., 2001) ให้ D  เป็นโดเมนของระนาบจ้านวนเชิงซ้อนซึ่งไม่รวมแกนจริงลบและ
ศู น ย์  ใ ห้  )(zx  เ ป็ น ฟั ง ชั น บ น  D  แ ล ะ ให้  1, , m   เ ป็ น ค่ า ร า ก ที่ แ ต ก ต่ า ง กั น ขอ ง พหุ น า ม 

jnzkzzf m )(  แล้ว มีฟังก์ชันก้าลังวิเคราะห์ไม่เป็นศูนย์ท่ีแตกต่างกัน m  ฟังก์ชันซึ่งเป็นผลเฉลยของ
สมการ (1) บน D  และมีรูปแบบ ( ) i

i ix z z  ซึ่ง mi ,,1  เมื่อ 
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บทพิสูจน์ (Li et. al., 2001) แทน  zzx )(  ในสมการ (1) จะได้ 
1- 1( -1) ( - +1)z ( )

m mn j kn Az z      
     

หรือ 
1- ( 1)( -1) ( - +1)z

m mn k k jn A z      
                   (2) 

โดยการเทียบสัมประสิทธ์ิสมการ (2) ได้ระบบสมการดังนี้ 
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1( 1)( -1) ( - +1)
mkn A     
                             (3) 

และ 

- mn k j                                                     (4) 
ให้ ( ) mf z kz z n j     เป็นฟังก์ชันจ้านวนเชิงซ้อน 
พิจารณาหารากของฟังก์ชัน f  เมื่อ z  เป็นจ้านวนจริง ดังต่อไปนี้ 

กรณี  m เ ป็นจ้ านวนคู่  จากสมการ 1( ) 1 0mf z kmz      พบว่าค่ าต่้ าสุดของ  f  อยู่ ที่
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ดังนั้น 1 1( ) ( ) 1 1 0f z f n j n j
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 ทุกจ้านวนจริง z  
กรณี m  เป็นจ้านวนคี่ ( )f z  มี 2 ราก คือ   

เนื่องจาก  min ( ) min ( ), ( ) ( ) 0z f z f f f         ดังนั้น f  ไม่มีราก ในช่วง ( , )   
เนื่องจาก ( ) 0f    และ ( ) 0f    ดังนั้น f  มีรากจริงอย่างน้อย 1 ราก ในช่วง ( , )   
เนื่องจาก ( ) 0f z   ทุก z    และ f  เป็นฟังก์ชันเพิ่มในช่วง ( , )   ดังนั้น รากจริงของ f  มีเพียง
หนึ่งเดียวเท่านั้นและเป็นจ้านวนลบ 
ดังนั้นในแต่ละกรณีสรุปได้ว่า รากจริงของ f  ต้องไม่เป็น 0,1, , 1n  

จะแสดงว่าราก ( )f z  เป็นรากเชิงเดียวเท่านั้น 
สมมติว่าไม่จริง ให้ r  เป็นรากซ้้าของ f  ดังนั้น r  เป็นรากของ f   และ 

  1( ) ( )z mf z f z z n j
m m

                                            (5) 

จาก (5) ได้ว่า ( ) /( 1)r m n j m    เป็นจ้านวนจริงบวก ขัดแย้งกับรากจริงของ f  เป็นจ้านวนลบเท่านั้น 
ให ้ 1, , m   เป็นรากที่แตกต่างกันของสมการ (4) 
แทน i   เมื่อ 1, ,i m  ใน (3) จะได้ i   ที่แตกต่างกัน m  ค่าดังนี ้
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 ; 1, ,i m  

เนื่องจาก i  ไม่เป็น 0,1, , 1n  ทุก 1,2, ,i m  ดังนั้น 0i   ทุก 1,2, ,i m  สรุปได้ว่า 
( ) i

i ix z z  เป็นฟังก์ชันก้าลังไม่เป็นศูนยซ์ึ่งเปน็ผลเฉลยของสมการ (1)                                            
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โดยการพิสูจน์ท้านองเดียวกับบทพิสูจน์ของทฤษฎีบท 1 จะได้ทฤษฎีบท 2 และ ทฤษฎีบท 3 ดังจะกล่าว
ต่อไปนี้ ทฤษฎีบท 2 เป็นการขยายสมการ (1) ในเทอมของฟงัก์ชันเชิงท้าซ้้า พิสูจน์โดย Li et al. (2002) มีรูปแบบ
สมการดังนี ้

                                [ ]( )

1
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i
i

x z A x q z


                                            (6) 

เมื่อ 1 1 2, , , , , , , , {0}l ln l k k m m m    ซึ่ง 1 2 2lm m m     และ 1, , , lA q q  เป็น
จ้านวนเชิงซ้อนท่ีไม่เป็นศูนย์ ต่อมา Talwong et. al. (2004) ได้ขยายเป็นสมการในรูปแบบท่ัวไปดังนี้ 

                 1 1
1 1( ) [ ]( ) [ ]

1 1( ) ( ) a b
a b

N MN Mn mn mj
a bx p z x p z Az x q z x q z          (7) 

เมื่อ 1 1 1 1, , , , , , , , , , , , ,a b a ba b N N M M n n m m    
ซึ่ ง  1 2 1 2, ,a bn n n m m m      {0}j  แ ล ะ  1 1, , , , ,a bp p q q  เ ป็ น จ้ า น ว น
เชิงซ้อนท่ีไม่เป็นศูนย์ ซึ่งจะกล่าวในทฤษฎีบท 3 

 

ทฤษฎีบท 2 (Li et al., 2002) ให้ D  เป็นโดเมนของระนาบจ้านวนเชิงซ้อนซึ่งไม่รวมแกนลบและศูนย์ 
ให้ )(zx  เป็นฟังก์ชันบน D  แล้ว มีฟังก์ชันก้าลังวิเคราะห์ไม่เป็นศูนย์ท่ีแตกต่างกัน m ฟังก์ชัน เมื่อ 11 m m   
ซึ่งเป็นผลเฉลยของสมการ (6) และมีรูปแบบ ( ) i

i ix z z , 1,2, ,i m เมื่อ 1, , m   เป็นรากที่

แตกต่างกันของพหุนาม 
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บทพิสูจน์ ท้านองเดียวกับการพิสูจน์ของทฤษฎีบท 1 หรือดูจากงานวิจัยของ Li et al. (2002) 
 

ทฤษฎีบท 3 (Talwong et. al., 2004) ให้ D  เป็นโดเมนของระนาบจ้านวนเชิงซ้อนซึ่งไม่รวมแกนลบ
และศูนย์ ให้ ( )x z  เป็นฟังก์ชันบน D  ก้าหนด 1 1( , ) , ( , )a bs N a N N s M b M M       และ 

1 1( , )s nN a N n a aN n   ให ้ 1, , m   เป็นรากท่ีแตกต่างกันของพหุนาม 
1

1( ) ( , ) ( , )bmm
bf z M z M z s N a z s Nn a j       

ถ้า ( , ) ( , )s N a s M b  แล้วสมการ (7) มีผลเฉลยเป็นฟังก์ชันก้าลังวิเคราะห์ไม่เป็นศูนย์ที่แตกต่างกัน m

ฟังก์ชันซึ่งมีรูปแบบ izzx ii
)( , 1,2, ,i m  เมื่อ 
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และ                                     1
( , ) ( , ) ( , )

i
iB

s M b s Nn a s N a j



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บทพิสูจน์ อ้างองิจากการพิสูจน์ของ Talwong et al. (2004) 
แทน ( ) i

i ix z z  ในสมการ (7) จะได ้

     
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เทียบสัมประสิทธ์ิสมการ (8) ได้ระบบสมการดังนี้ 

              
1 1 2

( , ) ( , 1) ( ,1)( , )
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P n n Q A     




 
                (9) 

และ 

1
( , ) ( , ) l

b
m

l
l

s N a s Nn a M j 


                                    (10) 

ให้ 
1

( ) ( , ) ( , )l

b
m

l
l

f z M z s N a z s Nn a j


     เป็นฟังก์ชันจ้านวนเชิงซ้อน 

ต่อไปนี้จะแสดงว่า ( )f z  ไม่มีรากเป็นจ้านวนจริงบวกและศูนย์ 
เนื่องจาก (0) ( , ) 0f s N a j    
ถ้า 0 1z   แล้ว ( ) 0 ( , ) ( , ) 0f z s N a s Nn a j      
และ ถ้า 1z   เนื่องจาก ( , ) ( , )s N a s M b  ได้ว่า 
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1
1( , ) ( , ) bmm

bs N a z s M b z M z M z     

ดังนั้น ( ) ( , ) 0f z s Nn a j    
ให ้ 1, , m   เป็นรากท่ีแตกต่างกันของ ( )f z  

ดังนั้น 1, , m   ไม่เป็นจ้านวนจริงบวกและศูนย์ 
แทน i   เมื่อ 1, ,i m  ใน (9) จะได้ 0i   ที่แตกต่างกัน m  ค่า ดังแสดงไว้ในทฤษฎีบท 3 และ
สรุปได้ว่า ( ) i

i ix z z  เป็นฟังก์ชันก้าลังไม่เป็นศูนย์ซึ่งเป็นผลเฉลยของสมการ (7)                               
 

 ถ้าเง่ือนไข ( , ) ( , )s N a s M b  ในทฤษฎีบท 3 ไม่จริง จะได้ว่าทฤษฎีบท 3 ไม่จริงด้วยดังตัวอย่าง
ต่อไปนี ้

ตัวอย่ำง พิจารณาสมการ        
3(3) (1) [1]x z x z x z  

สมการนี้มี ( ,2) 4 ( ,1) 1s N s M    และ ( ) 4 6f z z z    มีรากเดียวคือ 2   ดังนั้นสมการนี้มีผล
เฉลยเป็นฟังก์ชันศูนย์ เนื่องจาก 0   ซึ่งเห็นว่าทฤษฎีบท 3 ไม่จริง 

บทตั้งต่อไปนี้จะแสดงให้เห็นจริงวา่จ้านวนของผลเฉลยของสมการ (7) ขึ้นอยู่กับจ้านวนการท้าซ้้า 1m ซึ่ง
ในการพิสูจน์บทตั้งนี้ต้องใช้กฎการเปลีย่นเครื่องหมายของเดการ์ตดงัแสดงในทฤษฎีบท 4 

 

ทฤษฎีบท 4 (กฎการเปลี่ยนเครื่องหมายของเดการ์ต) (Uspensky, 1948; Sheil-small, 2002) ถ้า 
( )p t  เป็นพหุนามจ้านวนจริง แล้ว ( )p t  มีจ้านวนรากที่เป็นจ้านวนจริงบวก (นับรวมรากซ้้า) ไม่มากกว่าจ้านวน

การเปลี่ยนแปลงเครื่องหมายของสัมประสิทธิ์เรียงจากเทอมที่มีระดับขั้นต่้าสุดไปยังเทอมที่มีระดับขั้นสูงสุดของ 
( )p t  และผลต่างของจ้านวนรากที่เป็นจ้านวนจริงบวกและจ้านวนการเปลี่ยนแปลงเครื่องหมายของสัมประสิทธิ์

ต้องเป็นจ้านวนคู่เสมอ จ้านวนรากที่เป็นจ้านวนจริงลบ (นับรวมรากซ้้า) ของ ( )p t  คือ จ้านวนรากที่เป็นจ้านวน
จริงบวก (นับรวมรากซ้้า) ของ ( )p t  

บทตั ง ถ้าเพิ่มสมมติฐานใน ทฤษฎีบท 3 ว่า  1 2, , , bm m m  เป็นจ้านวนเต็มบวกคู่ หรือ 1m  เป็น
จ้านวนเต็มบวกคี่ แต่ 2 , , bm m  เป็นจ้านวนเต็มบวกคู่ และ ( )f z  ไม่มีรากเชิงซ้อนซ้้ากัน แล้ว สมการ (7) มี
ผลเฉลยเป็นฟังก์ชันก้าลังวิเคราะห์ไม่เป็นศูนย์ท่ีแตกต่างกัน 1m  ฟังก์ชันจริง 

บทพิสูจน์ อ้างองิจากการพิสูจน์ของ Talwong et al. (2004) 
จากการพิสูจน์ในทฤษฎีบท 3 ได้ว่า ( )f z  ไม่มีรากเป็นจ้านวนจริงบวกและศูนย์ 
ต่อไปจะพิจารณาว่า ( )f z มีรากเป็นจ้านวนจริงลบหรือไม ่

กรณี 1 2, , , bm m m  เป็นจ้านวนเต็มบวกคู ่
เนื่ องจาก 1

1( ) ( , ) ( , )bmm
bf z M z M z s N a z s Nn a j        ไม่มีการ เปลี่ ยนแปลงของ

เครื่องหมายของสัมประสิทธ์ิ โดยกฎการเปลี่ยนเครื่องหมายของเดการ์ตได้ว่า ( )f z  ไม่มีรากเป็นจ้านวนจริงลบ 
กรณี 1m  เป็นจ้านวนเต็มบวกคี่ แต่ 2 , , bm m  เป็นจ้านวนเต็มบวกคู ่
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เนื่องจาก ( )f z  มีการเปลี่ยนแปลงของเครื่องหมายของสัมประสิทธิ์ 1 ครั้ง โดยกฎการเปลี่ยนเครื่องหมายของ
เดการ์ตได้ว่า ( )f z มีรากเป็นจ้านวนจริงลบ 1 รากเท่านั้น ดังนั้น ( )f z  มีรากท่ีแตกต่างกันทั้งหมด 1m         

ข้อสังเกตจากการพิสูจน์ของบทตั้ง ทราบดีว่าถ้าจ้านวนเชิงซ้อน ; 0x iy y   เป็นรากของ ( )f z   
สังยุคของจ้านวนเชิงซ้อนน้ัน คือ x iy  เป็นรากของ ( )f z  ด้วย ดังนั้นกรณี 1 2, , , bm m m  เป็นจ้านวนเต็ม
บวกคู่ สรุปได้ว่า ( )f z  มีรากเป็นจ้านวนเชิงซ้อนที่แตกต่างกันทั้งหมด กรณี  1m  เป็นจ้านวนเต็มบวกคี่ แต่ 

2 , , bm m  เป็นจ้านวนเต็มบวกคู่ ได้ว่า ( )f z  มีรากเป็นจ้านวนจริงลบ 1 ราก และเป็นจ้านวนเชิงซ้อนที่
แตกต่างกันทั้งหมด 1 1m   ราก 

 

บทสรุป 
จากวิธีการหาผลเฉลยของสมการที่กล่าวไปทั้งหมดนี้ ผู้เขียนคิดว่าสามารถหาผลเฉลยที่มีรูปแบบเป็น

ฟังก์ชันก้าลังไม่เป็นศูนย์ของสมการที่ (7) ได้โดยขยายให้ 1 2, , , bM M M  เป็นจ้านวนเต็มไม่เป็นศูนย์ได้ เช่น 

หาผลเฉลยฟังก์ชันก้าลังไม่เป็นศูนย์ของสมการ    [ ]
1j

mx z Az
x z

   โดยใช้การวิเคราะห์รูปแบบผลเฉลย

ท้านองเดียวกับการพิสูจน์ในทฤษฎีบท 3 
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