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การเปรียบเทียบสถิติทดสอบโดยใช้การจ าลองข้อมูล 
Comparison of Test Statistics Using Simulated Data 

มานะชัย รอดชื่น1 

 
บทคัดย่อ 

บทความนี้ได้พิจารณาการเปรียบเทียบสถิติทดสอบโดยใช้การจ าลองข้อมูล ภายใต้สถิติทดสอบที่มีขนาด 
  หรือ มีระดับ   เกณฑ์ที่ใช้ในการจัดกลุ่มการทดสอบได้ใช้เกณฑ์ของ Cochran (1947) เกณฑ์ของ Bradley 
(1978, cited in Tomarken and Serlin, 1986) และเกณฑ์การพิจารณาภายใต้การทดสอบสมมติฐานของค่า   
ซึ่งพิจารณาการแจกแจงของสถิติทดสอบสองแบบคือประมาณการแจกแจงของสถิติทดสอบด้วยการแจกแจงปรกติ 
และใช้การแจกแจงทวินาม 
 

ABSTRACT 
This article considers the comparison of the test statistics under the test of size   or 

level  . The criteria of Cochran (1947), the criteria of Bradley (1978, cited in Tomarken and 
Serlin, 1986) and the criteria under hypothesis testing for   are applied with distributions that 
are well approximated by a normal distribution and binomial distribution. 
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1. บทน า 
ในการประมาณค่าพารามิเตอร์ การพิจารณาตัวประมาณที่ดีจะดูจากคุณสมบัติต่าง ๆ ของตัวประมาณ 

เช่น ความไม่เอนเอียง (unbiased) ความต้องกัน (consistency) ความแปรปรวน (variance) หรือ ค่า
คลาดเคลื่อนก าลังสองเฉลี่ย (mean squared error) ส่วนการทดสอบสมมติฐาน การเลือกสถิติทดสอบที่เหมาะสม
ส่วนใหญ่จะพิจารณาจากขนาดของการทดสอบ (size of the test) หรือ ก าลังของการทดสอบ (power of the 
test) 

ส าหรับการทดสอบสมมติฐานจะพบว่าการหาขนาดของการทดสอบ หรือก าลังของการทดสอบนั้นท าได้
ไม่ง่ายในบางกรณี เนื่องจากอาจจะเกิดจากปัญหา เช่น ตัวแปรที่สนใจศึกษาไม่ได้มีการแจกแจงปรกติ การเกิดอัตต
สหสัมพันธ์ ข้อมูลที่สูญหายไป หรือกรณีข้อมูลมีค่าผิดปกติ ซึ่งได้มีนักวิชาการเสนอแนวคิดในการแก้ปัญหาดังกล่าว
เป็นจ านวนมาก แต่การแก้ปัญหามักใช้ได้ภายใต้ข้อจ ากัดบางประการเท่านั้น ส าหรับการเลือกวิธีการแก้ปัญหาที่
เหมาะสมกับสถานการณ์ต่าง ๆ โดยทั่วไปจะใช้ผลการจ าลองข้อมูลมาพิจารณาเป็นเบื้องต้น  

ในปัจจุบันมีวารสารทางวิชาการหลาย ๆ เรื่องที่ใช้ผลการจ าลองข้อมูลพิจารณาร่วมกับตัวสถิติทดสอบที่
สร้างขึ้นในการทดสอบสมมติฐาน สุพรรณี (2541) ได้แสดงขั้นตอนในการจ าลองข้อมูลเพื่อหาตัวประมาณ และ
ทดสอบสมมติฐาน Rizzo (2008) ได้แสดงแนวคิดในการจ าลองโดยใช้โปรแกรม R เป็นต้น 

ส าหรับการจ าลองข้อมูลเพื่อเปรียบเทียบสถิติทดสอบจะพิจารณาจากค่าประมาณขนาดของการทดสอบ 
ˆ( )  หรือค่าประมาณก าลังของการทดสอบ ˆ(1 )  หรือพิจารณาทั้งสองอย่างควบคู่กัน ซึ่งส าหรับการพิจารณาทั้ง

สองอย่างควบคู่กันนั้น อันดับแรกจะดูที่ค่าประมาณขนาดของการทดสอบก่อนว่าอยู่ในเกณฑ์ที่ก าหนดหรือไม่ 
(เรียกว่าการควบคุมความน่าจะเป็นของความคลาดเคลื่อนชนิดที่ 1) หากอยู่ในเกณฑ์ที่ก าหนด จากน้ันจึงเลือกสถิติ
ทดสอบทีใ่ห้ค่าประมาณก าลังของการทดสอบมากที่สุดเป็นสถิติทดสอบที่เหมาะสม 

ส าหรับเกณฑ์ในการควบคุมความน่าจะเป็นของความคลาดเคลื่อนชนิดที่ 1 ที่นิยมใช้ ได้แก่ เกณฑ์ของ 
Cochran (1947) เกณฑ์ของ Bradley (1978, cited in Tomarken and Serlin, 1986) และเกณฑ์การพิจารณา
ภายใต้การทดสอบสมมติฐานของค่า   ทีป่ระมาณการแจกแจงของสถิติทดสอบด้วยการแจกแจงปรกติ 

ส าหรับบทความนี้ได้ช้ีให้เห็นการใช้เกณฑ์การพิจารณาภายใต้การทดสอบสมมติฐานของค่า    ซึ่งสถิติ
ทดสอบมีการแจกแจงทวินาม และน าเสนอพื้นฐานของหลักการทดสอบสมมติฐาน ความคลาดเคลื่อนในการ
ทดสอบสมมติฐาน ความสัมพันธ์ระหว่างความคลาดเคลื่อนชนิดท่ี 1 และชนิดที่ 2 ซึ่งเป็นการแสดงความสัมพันธ์
ของขนาด และก าลังของการทดสอบนั่นเอง 
 

2. การทดสอบสมมติฐาน 
การทดสอบสมมติฐาน (hypothesis testing) เป็นการทดสอบค่าพารามิเตอร์ของประชากรว่าเป็นไป

ตามที่คาดหรือไม่ (การตัดสินใจเกี่ยวกับค่าของพารามิเตอร์) การก าหนดสมมติฐานนั้นมีการก าหนด 2 แบบ คือ 
สมมติฐานเชิงบรรยาย (descriptive hypothesis) ซึ่งเป็นสมมติฐานที่อยู่ในลักษณะของข้อความการบรรยาย และ
สมมติฐานเชิงสถิติ (statistical hypothesis) คือ “ข้อความ (statement) หรือข้อเสนอ (assertion) หรือ
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ประพจน์ (proposition) เกี่ยวกับการแจกแจงความน่าจะเป็นของตัวแปรสุ่มตัวหนึ่งหรือหลายตัว” (ประชุม, 
2545) ซึ่งนิยมเขียนอยู่ในรูปของสัญลักษณ์ทางคณิตศาสตร์ของพารามิเตอร์ สมมติฐานแบ่งเป็น 2 ชนิด คือ 
สมมติฐานจริง (สมมติฐานเพื่อการทดสอบ) หรือสมมติฐานว่าง (null hypothesis) แทนด้วย 0H และสมมติฐาน
แย้ง (alternative hypothesis) แทนด้วย 1H  

ในการทดสอบสมมติฐานจะใช้ตัวอย่างสุ่ม 1 2 nX ,X ,...,X  ที่อยู่ในวงศ์ของการแจกแจง P = 
 f (x, ),   โดยที่   แทนปริภูมิพารามิเตอร์ และก าหนด 0 1,     เมื่อ 0 1,   คือปริภูมิ
พารามิเตอร์ภายใต้ 0H และ 1H ตามล าดับ ซึ่ง 0 1     (empty set) และวงศ์ของการแจกแจงที่สอดคล้อง
กับ 0 1,   จะแทนด้วย P 0, P 1 ตามล าดับ ก าหนดผลแบ่งกั้นของปริภูมิตัวอย่าง S  แทนด้วย  0 1S ,S  การ
ตัดสินใจจะขึ้นกับ S  ถ้าค่าของข้อมูลจากตัวอย่างสุ่ม 1 2 nX ,X ,...,X เป็นสมาชิกของ 0S  0(x S )  สมมติฐาน
ภายใต้ P 0 ก็ไม่สามารถท่ีจะปฏิเสธได้ และถ้า 1x S  ก็ไม่สามารถท่ีจะยอมรับ P 0 ได้ และจะเรียก 1S  ว่าบริเวณ
ปฏิเสธสมมติฐาน หรือบริเวณวิกฤต (region of rejection or critical region) (Lehmann, 1986) 

โดยทั่วไปแล้วการตัดสินใจยอมรับหรือปฏิเสธสมมติฐานจะพิจารณาจากการแจกแจงของตัวสถิติที่ได้จาก
ตัวอย่าง (ขึ้นอยู่กับวิธีการหาการทดสอบ) ตัวอย่างเช่น ในการประมาณค่าเฉลี่ยของประชากร   นั้น โดยปกติแล้ว
เราจะใช้ค่าเฉลี่ยของตัวอย่าง X ท าการประมาณ ท านองเดียวกันในการทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของ
ประชากร   ก็จะพิจารณาจากการแจกแจงของค่าเฉลี่ยของตัวอย่าง X จะเรียกว่า สถิติเพ่ือการทดสอบ (test 
statistic) การที่จะยอมรับหรือปฏิเสธสมมติฐานน้ัน จะพิจารณาจากค่าสถิติเพื่อการทดสอบว่าตกอยู่ในอาณาเขตที่
ยอมรับ 0H หรือ ปฏิเสธ 0H และจะเรียกอาณาเขตปฏิเสธ 0H ว่า อาณาเขตวิกฤต (critical region) ซึ่ง
สอดคล้องกับ 1S  ส่วนค่าท่ีก าหนดขอบเขตของอาณาเขตปฏิเสธก็จะเรียกว่า ค่าวิกฤต (critical value) 

 

3. ความคลาดเคลื่อนในการทดสอบสมมติฐาน 
เนื่องจากการใช้ข้อมูลจากตัวอยา่งอ้างอิงถึงประชากรอาจท าให้เกิดความคลาดเคลื่อนในการสรุปผล ซึ่ง

ความคลาดเคลื่อนมี 2 ชนิด 
1) ความคลาดเคลื่อนชนิดที่ 1 (type I error) คือ ความคลาดเคลื่อนที่เกิดจากการตัดสินใจปฏิเสธ 0H  

โดยที่ 0H  เป็นจริง และขนาดของความคลาดเคลื่อนชนิดที่ 1 (size of type I error) คือ ความน่าจะเป็นที่จะเกิด
ความคลาดเคลื่อนชนิดนี้ แทนด้วย P( ปฏิเสธ 0 0H H จริง 1 0) P(X S )     และระดับนัยส าคัญ (level 
of significance) คือ 1 0P(X S ) ,    

2) ความคลาดเคลื่อนชนิดที่ 2 (type II error) คือ ความคลาดเคลื่อนที่เกิดจากการตัดสินใจยอมรับ 0H  
โดยที่ 0H  ไม่จริง และขนาดของความคลาดเคลื่อนชนิดที่ 2 (size of type II error) คือ ความน่าจะเป็นที่จะเกิด
ความคลาดเคลื่อนชนิดนี้แทนด้วย  นั่นคือ P( ยอมรับ 0 0H H ไม่จริง)   และจะเรียก 1  ว่า ก าลังของการ
ทดสอบ (power of the test) ซึ่งเป็นการตัดสินใจถูกต้องที่จะปฏิเสธ 0H โดยที่ 0H  ไม่จริง ในการสร้างหรือ
พิจารณาสถิติทดสอบที่เหมาะสมจะควบคุมให้   มีค่ามากที่สุดที่ยอมให้เกิดขึ้นได้ และท าให้   มีค่าน้อยที่สุด 
เพราะจะท าให้ก าลังของการทดสอบมีค่ามากที่สุดนั่นเอง (ธีระพร, 2536; Lehmann, 1986) ในการเกิดความ
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คลาดเคลื่อนจะเกิดเฉพาะชนิดใดชนิดหนึ่งเท่านั้น แต่เนื่องจากไม่ทราบว่าสมมติฐานที่ทดสอบเป็นจริงหรือไม่ 
ความคลาดเคลื่อนดังกล่าวจึงเป็นการก าหนดขึ้นภายใต้สถานการณ์ 0  หรือสถานการณ์ 1 โดยที่ 

0 1     
 

4. ความสัมพันธ์ระหว่างความคลาดเคลื่อนชนิดที่ 1 และชนิดที่ 2 
เนื่องจากการเกิดความคลาดเคลื่อนชนิดที่ 1 และ 2 จะเกิดขึ้นอย่างใดอย่างหนึ่งเท่านั้น และผลจากการ

ทดสอบสมมติฐานก็มีสองทางเลือกที่เป็นไปได้ ดังนั้นถ้ายอมรับสมมติฐาน 0H  ก็จะท าให้อาจเกิดความ
คลาดเคลื่อนชนิดที่ 2 ได้ เมื่อ 0H  ไม่จริง ท านองเดียวกันถ้าปฏิเสธสมมติฐาน 0H ก็อาจท าให้เกิดความ
คลาดเคลื่อนชนิดที่ 1 ได้ เมื่อ 0H  เป็นจริง อีกทั้งค่าความน่าจะเป็นของความคลาดเคลื่อนทั้งสองชนิดจะ
แปรผกผันกัน ซึ่งจะขึ้นอยู่กับบริเวณวิกฤต โดยทั่วไปในการทดสอบสมมติฐานจะหาค่าวิกฤต จากการก าหนดระดับ
นัยส าคัญ ( )  ไว้ล่วงหน้า และตัวสถิติทดสอบ ความสัมพันธ์ระหว่างค่า   และ   จะแสดงให้เห็นดังตัวอย่าง
ต่อไปนี ้

 

ตัวอย่าง ในการทดสอบสมมติฐาน 0 0H :    เทียบกับ 1 0 1H : ( )      กรณีที่ตัวอย่างสุ่มได้มาจาก
ประชากรที่มีการแจกแจงปรกติ และทราบค่าความแปรปรวน 2 ก าหนดระดับนัยส าคัญที่ทดสอบเท่ากับ   

ดังนั้นตัวสถิติทดสอบ คือ oX
Z

n





 มีบริเวณวิกฤต คือ cal 1
2

z z 

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  
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2

x x z
n


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     หรือ b 0 1

2

x x z
n




     

 

ax
2

bx
2

0  
รูปที่ 1 แสดงบริเวณวิกฤต กรณีทดสอบ 0 0H :    เทียบกับ 1 0H :     

 

กรณีนี้เป็นการแสดงบริเวณวิกฤต ภายใต้สมมติฐาน 0H  เป็นจริง แต่ถ้า 0H  ไม่จริง ซึ่งอาจเป็นกรณีที่ 
1 0   หรือ 1 0    ดังนั้นก็จะเกิดความคลาดเคลื่อนชนิดที่ 2 ขึ้น ซึ่งการหาความน่าจะเป็นของความ

คลาดเคลื่อนชนิดนี้พิจารณาจากบริเวณวิกฤตเดิมภายใต้เส้นโค้งการแจกแจงใหม่ท่ีเปลี่ยนพารามิเตอร์บอกต าแหน่ง 
(location parameter) ดังนี้ 
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ax
2

bx
2

01



 
รูปที่ 2 แสดงความน่าจะเป็นของความคลาดเคลื่อนชนิดที่ 1 และ 2 ในกรณทีดสอบ 0 0H :    เทียบกับ 

1 0H :    กรณี 1 0    
 

ax
2

bx
2

0 1



 
รูปที่ 3 แสดงความน่าจะเป็นของความคลาดเคลื่อนชนิดที่ 1 และ 2 ในกรณทีดสอบ 0 0H :    เทียบกับ 

1 0H :    กรณี 1 0    
 

ax


01



 
รูปที่ 4 แสดงความน่าจะเป็นของความคลาดเคลื่อนชนิดที่ 1 และ 2 ในกรณทีดสอบ 0 0H :    เทียบกับ 

1 0H :     เมื่อ a 0 0 1x z z
n n 

 
       

 

bx


0 1



 
รูปที่ 5 แสดงความน่าจะเป็นของความคลาดเคลื่อนชนิดที่ 1 และ 2 ในกรณทีดสอบ 0 0H :    เทียบกับ 

1 0H :     เมื่อ b 0 1x z
n


    

 

จากรูปที่ 5 ถ้าท าการเพิ่มค่า   ให้มากข้ึน จะพบว่าความน่าจะเป็น (พื้นที)่ ของการปฏิเสธจะมากข้ึน 
ดังนั้นท าให้   มีค่าลดลง ดังแสดงในรูปที่ 6 หรือถ้าลดค่า   ท าให้   มีค่าเพิ่มขึ้น ดังแสดงในรูปที่ 7 
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bx


0 1



 bx0 1

*  

*  
*

 
รูปที่ 6 ความสัมพันธ์ระหว่าง   และ   กรณีทดสอบ 0 0H :    เทียบกับ 1 0H :     เมื่อคา่   เพิ่มขึ้น 
 

bx


0 1



 bx0 1

*  

*  
*

 
รูปที่ 7 ความสัมพันธ์ระหว่าง   และ   กรณีทดสอบ 0 0H :    เทียบกับ 1 0H :     เมื่อคา่   ลดลง 

 

5. การเปรียบเทียบการทดสอบ 
ในการเปรียบเทียบการทดสอบจะพิจารณาจากฟังก์ชันก าลัง (Power Function) ซึ่งเป็นความน่าจะเป็น

ที่จะตัดสินใจปฏิเสธ 0H นั่นคือ 1P(X S ) และขึ้นอยู่กับวงศ์ของการแจกแจง P {f (x, ), }    หรือปริภูมิ
พารามิเตอร์   ในกรณีที่สมมติฐานที่ทดสอบขึ้นอยู่กับ   ฟังก์ชันก าลังของการทดสอบนิยมเขียนแทนด้วย 

1( ) P(X S )      และจะเรียกการทดสอบมีขนาด   (size of the test) ส าหรับทดสอบ 0 0H : ก็
ต่อเมื่อ 

0

sup ( )


     และเรียกการทดสอบมีระดับ   (level of the test) ก็ต่อเมื่อ 
0

sup ( )


     (Casella 

and Berger, 2001) ในการพิจารณาการทดสอบที่เหมาะสมจะพิจารณาจากกลุ่ม (class) ของการทดสอบเดียวกัน 
เช่น กลุ่มของการทดสอบที่มีขนาด   (แทนด้วย TS) หรือกลุ่มของการทดสอบระดับ   (แทนด้วย TL) (จะ
สังเกตเห็นได้ว่า TSTL) 

Lehmann (1986) และ Mukhopadhyay (2000) ได้ก าหนดการทดสอบที่ดีที่สุด (the best test) 
ส าหรับทดสอบ 0H เทียบกับ 1H  จะพิจารณาเพียงกลุ่มของการทดสอบ TL โดยที่สถิติทดสอบ TTL จะเรียกว่า
เป็นการทดสอบที่มีก าลังสูงสุดเสมอต้นเสมอปลายที่สุด หรือ uniformly most powerful test: UMP-Test 
ระดับ   ก็ต่อเมื่อ *T T

( ) ( )      ทุก ๆ 1 เมื่อ *T,  T TL และถ้าการทดสอบ 0H  เทียบกับ 1H เป็น
การทดสอบเชิงเดี่ยว (simple hypothesis) จะเรียกสถิติทดสอบ T  ที่เป็นสถิติทดสอบที่มีก าลังสูงสุดว่า the 
most powerful test: MP-Test ระดับ   

ประชุม (2545) นิยามบริเวณวิกฤตที่ดีที่สุด (best critical region: BCR) บนกลุ่มของการทดสอบ TS 
ท านองเดียวกันกับ Mukhopadhyay ในการทดสอบเชิงเด่ียว 0H  เทียบกับ 1H  จะเรียกสถิติทดสอบ T  ที่เป็น
สถิติทดสอบที่มีก าลังสูงสุดว่า the most powerful test: MP   Test ขนาด   

ในการเปรียบเทียบสถิติทดสอบขึ้นอยู่กับว่าพิจารณาการทดสอบในกลุ่ม TS หรือ TL ซึ่งถ้าใช้ผลจากการ
จ าลองข้อมูลโดยที่ปริภูมิตัวอย่างของผลลัพธ์ที่จะเกิดขึ้นแต่ละครั้ง คือ {ยอมรับ 0H , ปฏิเสธ 0H } โดยที่ถ้าท าการ
จ าลอง K  ครั้ง และก าหนดให้ iY 0  ถ้าการทดสอบครั้งท่ี i  ยอมรับ 0H  หรือ iY 1  ถ้าการทดสอบครั้งที่ i  
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ปฏิเสธ 0H ดังนั้น 
K

Y i
i 1

T Y


  มีการแจกแจงทวินาม (K,p)  เมื่อ iP(Y 1) p,  i 1,2, ,K   และถ้าท า

การจ าลองข้อมูลภายใต้ 0H เป็นจริง ในการทดสอบที่ระดับนัยส าคัญ   จะได้ว่า iP(Y 1)    และได้
ค่าประมาณของ   แทนด้วย Yˆ T / K   ท านองเดียวกันถ้าท าการจ าลองข้อมูลภายใต้ 0H ไม่เป็นจริง ในการ
ทดสอบที่ระดับนัยส าคัญ   เดียวกัน จะได้ว่า iP(Y 1) 1    ซึ่งก็คือก าลังของการทดสอบ และได้
ค่าประมาณของ 1  แทนด้วย Y

ˆ1 T / K   
เกณฑ์ในการพิจารณาเปรียบเทียบการทดสอบจากการจ าลองข้อมูล ส่วนมากผู้ศึกษาจะใช้ค่าความน่าจะ

เป็นของความคลาดเคลื่อนชนิดที่ 1 เป็นเกณฑ์ขั้นต้นในการจัดกลุ่มการทดสอบ แล้วจึงพิจารณาจากค่าก าลังของ
การทดสอบ ในการเลือกสถิติทดสอบที่เหมาะสมภายใต้สถานการณ์ในกลุ่มการทดสอบเดียวกัน ซึ่งมีผู้นิยมใช้หลาย
รูปแบบ อาทิเช่น บุรินทร์ (2549) Gu and Lee (2010) พิจารณาค่า ̂  ถ้าค่าที่ได้ใกล้เคียงกับขนาดของการ
ทดสอบแสดงว่าวิธีการทดสอบนั้นมีประสิทธิภาพ 

ดวงฤดี (2545) ชวนี และบุญอ้อม (2552) นิภาดา (2553) ปรีชา (2554) ท าการศึกษาและทดสอบค่า 
  โดยตั้งสมมติฐาน 0 0H :   เทียบกับ 1 0H :    เมื่อ 0 0.01   ที่ระดับนัยส าคัญ 0.01 และสรุปผล
การทดสอบโดยวิธีจ าลองข้อมูล ซึ่งในแต่ละสถานการณ์ ก าหนด K 1,000  รอบ โดยประมาณการแจกแจงของ
สถิติทดสอบด้วยการแจกแจงปรกติ ท าให้ได้กลุ่มการทดสอบขนาด 0  ที่ท าให้ ˆ [0.002,0.018]  ท านอง
เดียวกันในกรณีที่ 0 0.05   ที่ระดับนัยส าคัญ 0.05 ใช้เกณฑ์ ˆ [0.036,0.063]  

ศศิกานต์ (2545) มงคล (2550) ภัทราพร (2551) ขจิตา (2552) ท าการศึกษากลุ่มการทดสอบจากการ
จ าลองข้อมูล โดยใช้เกณฑ์จัดกลุ่มการทดสอบจากการทดสอบ 0 0H :   เทียบกับ 1 0H :    ที่ระดับ
นัยส าคัญ *  โดยประมาณการแจกแจงของสถิติทดสอบด้วยการแจกแจงปรกติ ท าให้ได้กลุ่มการทดสอบระดับ 0  
จากนั้นพิจารณาสถิติทดสอบภายในกลุ่มดังกล่าว หากการทดสอบใดท่ีให้อ านาจการทดสอบมากกว่าก็จะถือว่าการ
ทดสอบนั้นเหมาะสม เช่น ถ้า K 1,000  และ 0 0.01,0.05,0.1   ที่ระดับนัยส าคัญ 0.05 ใช้เกณฑ์ 
ˆ 0.0152,   0.0613,0.1156  ตามล าดับ 

สายทอง (2547) สถาพร (2547) นพดล (2553) ศิริรักษ์ (2553) Kim (2010) ใช้เกณฑ์ของ Bradley 
(1978, cited in Tomarken and Serlin, 1986) โดยที่พิจารณา 0 0ˆ [0.9 ,1.1 ]    หรือ 0 0ˆ [0.5 ,1.5 ]    
และนิยมใช้ 0 0.01,   0.05  ใช้เกณฑ์ ˆ [0.005,0.015],  [0.025,0.075]  ตามล าดับ 

สุพรรณี และวิชุดา (2540) พรรษณพร (2549) พลชาติ (2549) Vorapongsathorn et al. (2004) 
Sapchookul (2005) Kitidamrongsuk and Siripanich (2010) ใช้เกณฑ์ของ Cochran (1947) เมื่อ 

0 0.01,  0.05,0.1  ในการทดสอบสองทาง (two-sided test) ใช้เกณฑ์ ˆ [0.007,0.015], [0.04,0.06],

[0.081,0.119]  ตามล าดับ ส่วนการทดสอบทางเดียว  (one-sided test) จะใช้เกณฑ์ 
ˆ / 2 [0.0025,0.00075],  [0.0175,0.0325], [0.0425,0.0575]  เมื่อ 0 0.01,0.05,  0.1ตามล าดับ 

Tomarken and Serlin (1986) ประยุกต์ใช้เกณฑ์ของ Cochran และ Bradley ในการก าหนดขอบเขต
บนของ ̂  ที ่ ˆ [0,0.015], [0,0.07]  เมื่อ 0 0.01,0.05   ตามล าดับ ซึ่งมีค่าใกล้เคียงกับการก าหนดเกณฑ์โดย
ใช้การทดสอบระดับ  0  
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ในการน าผลการจ าลองข้อมูลมาจัดกลุ่มการทดสอบว่าอยู่ใน TS หรือไม่ จะตั้งสมมติฐานในการทดสอบ 
0 0H :   เทียบกับ 1 0H :    และหากจัดกลุ่มการทดสอบว่าอยู่ ใน TL หรือไม่  จะตั้ งสมมติฐาน 
0 0H :   เทียบกับ 1 0H :    เมื่อก าหนดจ านวนรอบที่ท าซ้ า K  รอบ และก าหนดระดับนัยส าคัญ พบว่า

ภายใต้ 0H  เป็นจริง จะได้ iP(Y 1)    และ 
K

Y i
i 1

T Y


  มีการแจกแจงทวินาม (K, )  ผู้ศึกษาเห็นว่าควรใช้

สถิติทดสอบทวินามน่าจะเหมาะสม 
เมื่อก าหนด 0 0.01  และ 0.05  และก าหนด K 200,500, 1,000, 5,000  และ 10,000  จะได้ช่วง

ของค่า ̂  ดังแสดงในตารางที่ 1 
 

ตารางที่ 1 ค่า ̂  ของการทดสอบที่อยู่ในกลุ่มการทดสอบ TS และกลุ่มการทดสอบ TL เมื่อจ าแนกตามจ านวน
รอบที่ท าซ้ า K  รอบ และระดับนัยส าคัญ จากการใช้การทดสอบทวินาม 

0  K  
̂ (TS) ̂ (TL) 

ระดับนัยส าคัญ 0.01 ระดับนัยส าคัญ 0.05 ระดับนัยส าคัญ 0.01 ระดับนัยส าคัญ 0.05 

0.01 

200 [0.000, 0.03]  [0.000, 0.025]  [0.0, 0.03]  [0.0, 0.025]  

500 [0.002, 0.024]  [0.004, 0.022]  [0.0, 0.022]  [0.0, 0.018]  

1,000 [0.003, 0.018]  [0.005, 0.017]  [0.0, 0.018]  [0.0, 0.015]  

5,000 [0.0066, 0.0138]  [0.0074, 0.0128]  [0.0, 0.0134]  [0.0, 0.0124]  

10,000 [0.0076, 0.0127]  [0.0082, 0.0121]  [0.0, 0.0124]  [0.0, 0.0117]  

0.05 

200 [0.015, 0.09]  [0.015, 0.075]  [0.0, 0.09]  [0.0, 0.075]  

500 [0.028, 0.078]  [0.034, 0.072]  [0.0, 0.074]  [0.0, 0.066]  

1,000 [0.034, 0.069]  [0.037, 0.063]  [0.0, 0.067]  [0.0, 0.062]  

5,000 [0.042, 0.0578]  [0.0436, 0.0556]  [0.0, 0.0572]  [0.0, 0.0552]  

10,000 [0.0443, 0.0555]  [0.0459, 0.0544]  [0.0, 0.0551]  [0.0, 0.0536]  
 

จากตารางที่ 1 จะพบว่าเมื่อระดับนัยส าคัญที่ทดสอบเพิ่มขึ้นจะท าให้ความกว้างช่วงของค่า ̂  ลดลง 
และถ้า 0  เพิ่มขึ้นจะท าให้ความกว้างของช่วงเพิ่มมากขึ้น อีกทั้งถ้าจ านวนรอบการท าซ้ าเพิ่มมากขึ้นความกว้าง
ช่วงของค่า ̂  จะลดลงเช่นกัน 

 

6. สรุป 
เมื่อเปรียบเทียบช่วงของค่า ̂  โดยใช้เกณฑ์ของ Cochran และ Bradley จะเห็นว่าทั้งสองเกณฑ์ไม่ได้

พิจารณาจ านวนรอบของการท าซ้ า ส่วนการพิจารณาจากการใช้สถิติทดสอบที่มีการแจกแจงทวินาม และการ
ประมาณการทดสอบด้วยการแจกแจงปรกติ ช่วงของค่า ̂  มีค่าต่างกันไม่มากนักและช่วงที่ได้จะให้ความกว้างของ
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ช่วงลดลง เมื่อจ านวนรอบการท าซ้ ามากขึ้น แต่เนื่องจาก 
K

Y i
i 1

T Y


  มีการแจกแจงทวินาม ผู้ศึกษาจึงเห็นว่าการ

ใช้สถิติทดสอบ YT  น่าจะเหมาะสมกับการจ าลองข้อมูล 
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ให้บทความนี้มีความสมบรูณ์ยิ่งข้ึน 
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